tmvnorm {tmvtnorm}R Documentation

Truncated Multivariate Normal Density and Random Numbers

Description

These functions provide the density function and a random number generator for the truncated multivariate normal distribution with mean equal to mean and covariance matrix sigma, lower and upper truncation points lower and upper

Usage

dtmvnorm(x, mean = rep(0, nrow(sigma)), 
  sigma = diag(length(mean)), 
  lower=rep(-Inf, length = length(mean)), 
  upper=rep( Inf, length = length(mean)))
rtmvnorm(n, mean = rep(0, nrow(sigma)), 
  sigma = diag(length(mean)), 
  lower=rep(-Inf, length = length(mean)), 
  upper=rep( Inf, length = length(mean)))

Arguments

x Vector or matrix of quantiles. If x is a matrix, each row is taken to be a quantile.
n Number of observations.
mean Mean vector, default is rep(0, length = ncol(x)).
sigma Covariance matrix, default is diag(ncol(x)).
lower Vector of lower truncation points,\ default is rep(-Inf, length = length(mean)).
upper Vector of upper truncation points,\ default is rep( Inf, length = length(mean)).

Details

The computation of truncated multivariate normal probabilities and densities is done using conditional probabilities from the standard/untruncated multivariate normal distribution. So we refer to the documentation of the mvtnorm package and the methodology is described in Genz (1992, 1993).

The generation of random numbers from a truncated multivariate normal distribution is done using rejection sampling from the standard multivariate normal distribution. So we use the function rmvnorm of the mvtnorm package. In order to speed up the generation of N samples from the truncated distribution, we first calculate the acceptance rate alpha from the truncation points and then generate N/alpha samples iteratively until we have got N samples. This typically does not take more then 2-3 iterations.

Author(s)

Stefan Wilhelm <Stefan.Wilhelm@financial.com>

References

Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1, 141–150

Genz, A. (1993). Comparison of methods for the computation of multivariate normal probabilities. Computing Science and Statistics, 25, 400–405

Johnson, N./Kotz, S. (1970). Distributions in Statistics: Continuous Multivariate Distributions Wiley & Sons, pp. 70–73

Horrace, W. (2005). Some Results on the Multivariate Truncated Normal Distribution. Journal of Multivariate Analysis, 94, 209–221

See Also

ptmvnorm, pmvnorm, rmvnorm, dmvnorm

Examples

dtmvnorm(x=c(0,0))
dtmvnorm(x=c(0,0), mean=c(1,1), upper=c(0,0))

###########################################
#
# Example 1: 
# truncated multivariate normal density        
#
############################################

x1<-seq(-2, 3, by=0.1)
x2<-seq(-2, 3, by=0.1)

density<-function(x)
{
  sigma=matrix(c(1, -0.5, -0.5, 1), 2, 2)
  z=dtmvnorm(x, mean=c(0,0), sigma=sigma, lower=c(-1,-1))
  z
}

fgrid <- function(x, y, f)
{
    z <- matrix(nrow=length(x), ncol=length(y))
    for(m in 1:length(x)){
        for(n in 1:length(y)){
            z[m,n] <- f(c(x[m], y[n]))
        }
    }
    z
}

# compute density d for grid
d=fgrid(x1, x2, density)

# plot density as contourplot
contour(x1, x2, d, nlevels=5, main="Truncated Multivariate Normal Density", 
  xlab=expression(x[1]), ylab=expression(x[2]))
abline(v=-1, lty=3, lwd=2)
abline(h=-1, lty=3, lwd=2)

###########################################
#
# Example 2: 
# generation of random numbers
# from a truncated multivariate normal distribution        
#
############################################

sigma <- matrix(c(4,2,2,3), ncol=2)
x <- rtmvnorm(n=500, mean=c(1,2), sigma=sigma, upper=c(1,0))
plot(x, main="samples from truncated bivariate normal distribution",
  xlim=c(-6,6), ylim=c(-6,6), 
  xlab=expression(x[1]), ylab=expression(x[2]))
abline(v=1, lty=3, lwd=2, col="gray")
abline(h=0, lty=3, lwd=2, col="gray")

[Package tmvtnorm version 0.4-2 Index]