Bayesian graphical models using MCMC


[Up] [Top]

Documentation for package ‘rjags’ version 1.0.3-13

Help Pages

adapt Adaptive phase for JAGS models
as.mcmc.dic Generate penalized deviance samples
as.mcmc.list.mcarray Objects for representing MCMC output
coda.samples Generate posterior samples in mcmc.list format
coef.jags Functions for manipulating jags model objects
dic Generate penalized deviance samples
dic.samples Generate penalized deviance samples
diffdic Differences in penalized deviance
jags.model Create a JAGS model object
jags.module Dynamically load JAGS modules
jags.samples Generate posterior samples
list.samplers Functions for manipulating jags model objects
print.mcarray Objects for representing MCMC output
read.data Read data files for jags models
summary.mcarray Objects for representing MCMC output
update.jags Update jags models
variable.names.jags Functions for manipulating jags model objects