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APPROXIMATING DISTRIBUTION FUNCTIONS BY ITERATED FUNCTION
SYSTEMS

Stefano M. Iacus1 and Davide La Torre1

Abstract. In this small note an iterated function system on the space of distribution functions is
built. The inverse problem is introduced and studied by convex optimization problems. Applications
of this method to approximation of distribution functions and estimation are presented.

Résumé. Dans cette petite note un système de fonction itéré sur l’espace de fonctions de repartition
est construit. Le problème inverse est introduit et étudié par des problèmes d’optimisation convexes.
Des applications de cette méthode à l’approximation de fonctions de repartition et à l’estimation est
présenté.
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1. Introduction

The Iterated Function Systems (IFSs) were born in mid eighties [2,7] as applications of the theory of discrete
dynamical systems and as useful tools to build fractals and other similar sets. Some possible applications of
IFSs can be found in image processing theory [6], in the theory of stochastic growth models [13] and in the
theory of random dynamical systems [1, 4, 9]. The fundamental result [2] on which the IFS method is based is
Banach theorem.

In practical applications a crucial problem is the so-called inverse problem. This can be formulated as follows:
given f in some metric space (S, d), find a contraction T : S → S that admits a unique fixed point f̃ ∈ S such
that d(f, f̃) is small enough. In fact if one is able to solve the inverse problem with arbitrary precision, it is
possible to identify f with the operator T which has it as fixed point.

The paper is organized as follows: Section 2 is devoted to introduce a contractive operator T on the space of
distribution functions while, in Section 3, the inverse problem for T is studied in details. Section 4 is divided
into two parts: in the first some examples of inverse problems are analyzed and explicit solutions are given. In
the second one, we introduce an estimator of the unknown distribution function based on IFSs.
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2. A contraction on the space of distribution functions

Let us denote by the space of distribution functions F on [0, 1] by F([0, 1]) and by B([0, 1]) the space of real
bounded functions on [0, 1]. Let us further define, for F,G ∈ B([0, 1]), d∞(F,G) = supx∈[0,1] |F (x)−G(x)|. So
that (F([0, 1]), d∞) is a complete metric space.

Let N ∈ N be fixed and let:
i) wi : [ai, bi) → [ci, di) = wi([ai, bi)), i = 1, . . . , N − 1, wN : [aN , bN ] → [cN , dN ], with a1 = c1 = 0 and

bN = dN = 1;
ii) wi, i = 1 . . . N , are increasing and continuous;

iii)
N−1⋃
i=1

[ci, di) ∪ [cN , dN ] = [0, 1];

iv) if i 6= j then [ci, di) ∩ [cj , dj) = ∅.

v) pi ≥ 0, i = 1, . . . , N , δi ≥ 0, i = 1 . . . N − 1,
N∑

i=1

pi +
N−1∑
i=1

δi = 1.

On (F([0, 1], d∞) we define an operator in the following way:

TF (x) =



p1F (w−1
1 (x)), x ∈ [c1, d1)

piF (w−1
i (x)) +

i−1∑
j=1

pj +
i−1∑
j=1

δj , x ∈ [ci, di) , i = 2, . . . , N − 1

pNF (w−1
N (x)) +

N−1∑
j=1

pj +
N−1∑
j=1

δj , x ∈ [cN , dN ]

(1)

where F ∈ F([0, 1]). In many pratical cases wi are affine maps. The new distribution function TF is union of
distorted copies of F ; this is the fractal nature of the operator.

A similar approach has been discussed in [10] but here a more general operator is defined.
We stress here that in the following we will think to the maps wi and to the parameters δj as fixed whistle

the parameters pi have to be chosen. To put in evidence the dependence of the operator T on the vector
p = (p1, . . . , pN ) we will write Tp instead of T .

In Remark 2.2 the hypotheses ii) and v) will be weakened to allow more general functionals.
Theorem 2.1. Tp is an operator from F([0, 1]) to itself.

Proof. It is trivial that TpF (0) = 0 and TpF (1) = 1. Furthermore if x1 > x2, without loss of generality, we will
consider the two cases:

i) x1, x2 ∈ wi([ai, bi));
ii) x1 ∈ wi+1([ai+1, bi+1)) and x2 ∈ wi([ai, bi)).

In case i), recalling that wi are increasing maps, we have:

TpF (x1) = piF (w−1
i (x1)) +

i−1∑
j=1

pj +
i−1∑
j=1

δj

≥ piF (w−1
i (x2)) +

i−1∑
j=1

pj +
i−1∑
j=1

δj

= TpF (x2)

In case ii) we obtain:

TpF (x1)− TpF (x2) = pi + δi + pi+1F (w−1
i+1(x1))− piF (w−1

i (x2))

= pi(1− F (w−1
i (x2))) + pi+1F (w−1

i+1(x1)) + δi ≥ 0
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since pi ≥ 0, δi ≥ 0 and 0 ≤ F (y) ≤ 1. Finally, one can prove without difficulties the right continuity of Tpf . �

The following remark will be useful for the applications in Section 4.
Remark 2.2. If hypotheses i), ii) and v) in the definition of Tp are replaced by the following
i’+ii’) wi(x) = x, ai = ci, bi = di, i = 1, . . . , N ,

v’) pi = p, δi ≥ −p, Np +
N−1∑
i=1

δi = 1,

then Tp : F([0, 1]) → F([0, 1]).
Theorem 2.3. If c = max

i=1,...,N
pi < 1, then Tp is a contraction on (F([0, 1]), d∞) with contractivity constant c.

Proof. Let F,G ∈ (F([0, 1]), d∞) and let it be x ∈ wi([ai, bi)). We have

|TpF (x)− TpG(x)| = pi

∣∣F (w−1
i (x))−G(w−1

i (x))
∣∣ ≤ c d∞(F,G) .

This implies d∞(TpF, TpG) ≤ c d∞(F,G). �

The following theorem states that small perturbations of the parameters pi produce small variations on the
fixed point of the operator.
Theorem 2.4. Let p, p∗ ∈ RN such that TpF1 = F1 and Tp∗F2 = F2. Then

d∞(F1, F2) ≤
1

1− c

N∑
j=1

∣∣pj − p∗j
∣∣

where c is the contractivity constant of Tp.

Proof. In fact, recalling that wi and δi are fixed, we have

d∞(F1, F2) = d∞(TpF1, TpF2)

= max
i=1,...,N

sup
x∈[ci,di)


∣∣∣∣∣∣piF1(w−1

i (x)) +
i−1∑
j=1

pj − p∗i F2(w−1
i (x))−

i−1∑
j=1

p∗j

∣∣∣∣∣∣


≤
N∑

i=1

|pi − p∗i |+ c d∞(F1, F2) ,

since ∣∣∣∣∣∣piF1(w−1
i (x)) +

i−1∑
j=1

pj − p∗i F2(w−1
i (x))−

i−1∑
j=1

p∗j

∣∣∣∣∣∣
≤

i−1∑
j=1

|pj − p∗j |+ |piF1(w−1
i (x))− piF2(w−1

i (x))|+ |piF2(w−1
i (x))− p∗i F2(w−1

i (x))|

≤
i−1∑
j=1

|pj − p∗j |+ pid∞(F1, F2) + |pi − p∗i |

≤ c d∞(F1, F2) +
N∑

j=1

|pj − p∗j | .

�



4 S.M. IACUS AND D. LA TORRE

3. The inverse problem as a convex constrained optimization problem

Choose F ∈ (F([0, 1]), d∞). The aim of solving the inverse problem is to find a contractive map T :
F([0, 1]) → F([0, 1]) which has a fixed point “near” to F . In fact if it is possible to solve the inverse problem
with an arbitrary precision one can identify the operator T with its fixed point. With a fixed system of maps
wi and parameters δj , the inverse problem can be solved, if it is possible, by using the parameters pi. These
have to be choosen in the following convex set:

C =

{
p ∈ RN : pi ≥ 0, i = 1, . . . , N,

N∑
i=1

pi = 1−
N−1∑
i=1

δi

}
,

We have the following result that is trivial to prove.

Proposition 3.1. Choose ε > 0 and p ∈ C such that pi · pj > 0 for some i 6= j. If d∞(TpF, F ) ≤ ε, then:

d∞(F, F̃ ) ≤ ε

1− c
,

where F̃ is the fixed point of Tp on F([0, 1]) and c = max
i=1,...,N

pi is the contractivity constant of Tp.

If we wish to find an approximated solution of the inverse problem, we have to solve the following constrained
optimization problem:

(P) min
p∈C

d∞(TpF, F )

It is clear that the ideal solution of (P) consists of finding a p∗ ∈ C such that d∞(Tp∗F, F ) = 0. In fact this
means that, given a distribution function F , we have found a contractive map Tp which has exactly F as fixed
point. Indeed the use of Theorem 3.1 gives us only an approximation of F . This can be improved, once fixed
the maps wi, by increasing the number of parameters pi.

The following result proves the convexity of the function D(p) = d∞(TpF, F ), p ∈ RN .

Theorem 3.2. The function D(p) : RN → R is convex.

Proof. If we choose p1,p2 ∈ RN and λ ∈ [0, 1] then:

D(λp1 + (1− λ)p2) = sup
x∈[0,1]

|Tλp1+(1−λ)p2F (x)− F (x)| ≤

λ sup
x∈[0,1]

|Tp1F (x)− F (x)|+ (1− λ) sup
x∈[0,1]

|Tp2F (x)− F (x)| = λD(p1) + (1− λ)D(p2).

�

Hence for solving problem (P) one can recall classical results about convex programming problems (see
for instance [14]). A necessary and sufficient condition for p∗ ∈ C to be a solution of (P) can be given by
Kuhn-Tucker conditions.

4. Inverse problem for distribution functions and applications

In this section we consider different problems. We show that for a particular class of distribution functions
the inverse problem can be solved exactly without solving any optimization problem. Then we discuss two ways
of construct IFS to approximate a distribution function F with a finite number of parameters pi and maps wi.
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As is usual in statistical applications, given a sample of n independent and identically distributed observa-
tions, (x1, x2, . . . , xn), drawn from an unknown distribution function F , one can easily contruct the empirical
distribution function (e.d.f.) F̂n that reads

F̂n(x) =
1
n

n∑
i=1

χ(−∞,x](xi), x ∈ R ,

where χA is the indicator function of the set A. Asymptotic properties of optimality of F̂n as estimator of the
unknown F when n goes to infinity are well known and studied [11,12]. This function has an IFS representation
that is exact and can be found without solving any optimization problem. We assume that the xi in the sample
are all different (this assumption is natural if F is a continuous distribution function). Let wi(x) : [xi−1, xi) →
[xi−1, xi), when i = 1 . . . n and w1(x) : [0, x1) → [0, x1), wn+1(x) : [xn, xn+1] → [xn, xn+1],with x0 = 0 and
xn+1 = 1. Assume also that every map is of the form wi(x) = x. If we choose pi = 1

n , i = 2 . . . n + 1, p1 = 0
and

δ1 =
n− 1
n2

, δi = − 1
n2

then the following representation holds:

TpF̂n(x) =


0, i = 1
1
n F̂n(x) + n−1

n2 , i = 2
1
n F̂n(x) + i−1

n + n−i+1
n2 , i = 3, . . . , n + 1.

when x ∈ [xi−1, xi). Furthermore, from Remark 2.2 we are guaranteed that

lim
s→∞

d∞(T (s)
p u, F̂n) → 0, ∀u ∈ F [0, 1].

Note that from the point of view of applications, constructing the e.d.f. or iterate the IFS with the given maps
is exactly equivalent if one start, for example, with a uniform distribution on [0,1] in the first iteration. So
this is just a case when we can present an IFS that gives exact result for this particular class of distribution
functions.

What follows, on the contrary, is more attractive from the point of view of applications. Suppose that one
knows the distribution function F and wants to construct the IFS which has F as fixed point. In general one
has to provide an infinite set of affine maps {wi, i ∈ N} and solve an extremal problem to find the corresponding
sequence of weigths pi, i ∈ N. This problem has not a general solution but at the same time the solution in
terms of a finite, possibily few, number of maps and weigths is crucial in applications like image compression
and trasmission.

The idea is the following: one can think at n points (x1, x2, . . . , xn) as they were drawn from the distribution
function F , and use the same maps wi of the e.d.f. F̂n, then instead of using the pi equal to 1/n one solve the
extremal problem as it is usual in IFS application. The corresponding IFS should have a fixed point that is a
“good” approximation on F . So it is sufficient to store the simulated data and the weights instead of F itself.

We take the functional TpF with the particular choice of δi = 0. This choice is in principle not necessary but
simplifies the solution of the problem. We simulated n i.i.d. observations from the distribution function F and
we use the maps of the e.d.f. above.

We now try to solve the extremal problem

min d∞(TpF, F )

under the constrain
n∑

i=1

pi = 1, pi ≥ 0, i = 1, . . . , n (with some pi > 0). The optimal solution will be

{p̂i, i = 1, . . . , n} such that d∞(Tp̂F, F ) = 0 that it is true in at least one case: if F equals F̂n and pi = 1/n.
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Otherwise we will obtain some positive number. That means that, in principle, in the worst case we can
approximate F with its empirical distribution function F̂n. But we can generally do better. So let us solve the
problem: let us fix x0 = 0 and xn+1 = 1, then

d∞(TpF, F ) = sup
x∈[0,1]

|TpF (x)− F (x)|

= max
i=1,...,n+1

{
sup

[xi−1,xi)

|TpF (x)− F (x)|

}

= max
i=1,...,n+1

 sup
[xi−1,xi)

∣∣∣∣∣∣
i−1∑
j=1

pj − (1− pi)F (x)

∣∣∣∣∣∣


= max
i=1,...,n+1


∣∣∣∣∣∣
i−1∑
j=1

pj − (1− pi)F (xi−1)

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
i−1∑
j=1

pj − (1− pi)F (x−i )

∣∣∣∣∣∣


and the last line is due to the non-decreasing property of F .
Example 4.1. Suppose that F is the distribution function of a uniform distribution on [0,1] and suppose
that we can only draw one observation from F (or choose a point) x1. The empirical distribution function
F̂1(x) = χ{x1,1}(x) is usless if we have in mind to approximate F . Let us use the second technique: fix
w1 : [0, x1) → [0, x1) and w2 : [x1, 1] → [x1, 1]. We try to solve the above extremal problem.

d∞(TpF, F ) = max
i=1,...,n+1


∣∣∣∣∣∣
i−1∑
j=1

pj − (1− pi)F (xi)

∣∣∣∣∣∣ ,

∣∣∣∣∣∣
i−1∑
j=1

pj − (1− pi)F (xi+1)

∣∣∣∣∣∣


= max
{∣∣∣∣−(1− p1) · 0

∣∣∣∣, ∣∣∣∣−(1− p1)x1

∣∣∣∣, ∣∣∣∣p1 − (1− p2)x1

∣∣∣∣, ∣∣∣∣p1 − (1− p2)
∣∣∣∣}

= max{0, x1(1− p1), p1(1− x1), 0} ,

x1 ∈ (0, 1), p1 + p2 = 1. Now minimazing with respect to p1 and p2 under the constrain p1 + p2 = 1 one obtains
simply p1 = x1. The resulting functional will be

Tx1u(x) =

{
x1 u(x), x ∈ [0, x1)
(1− x1) u(x) + x1, x ∈ [x1, 1]

and it is clear that Tx1u(x) = Tx1x, for one iteration only, is closer than F̂1 to F (x) = x and the approximation
is better and better as x1 → 0 or x1 → 1.

We propose now a more efficient method to approximate F when F is not to be estimated. We have already
mentioned that the e.d.f. is the better estimator of an unknown distribution function F , so one can think to
sample n points from F and use their values to approximate F by F̂n. As n → ∞, the statistical literature
assures almost sure convergence of F̂n(x) to F (x) for every x. We also have shown the exact IFS representation
of F̂n. But this method is not efficient. On the contrary, suppose that F is a continuous distribution function.
As we know F , we can think to approximate it by means of continuous functions instead of simple functions
like F̂n. Choose n points (x1, . . . , xn) and assume that x0 = 0 and xn+1 = 1. One can costruct the following
functional

TF u(x) = (F (xi)− F (xi−1))u
(

x− xi−1

xi − xi−1

)
+ F (xi−1), x ∈ [xi−1, xi),

i = 1, . . . , n + 1. Notice that TF is a particular case of (1) where pi = F (xi) − F (xi−1), δi = 0 and wi(x) :
[0, 1) → [xi−1, xi). This is a contraction and, at each iteration, TF passes exactly through the points F (xi). It
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is almost evident that, when n increases the fixed point of the above functional will be “close” to F . So again,
instead of sending an infinite set of weigths and maps, one can send n points and the values of F evaluated at
these points. All in summary, only 2 · n informations should be sent to reconstruct F .

For n small, the choice of a good grid of point is critical. So one question arises: how to choose them ? One
can proceed case by case but as F is a distribution function one can use its properties. We propose the following
solution: take n points (u1, u2, . . . , un) equally spaced [0, 1] and define xi = F−1(ui), i = 1, . . . , n. The points
xi are just the quantiles of F . In this way, it is assured that the profile of F is followed as smooth as possible.
In fact, if two quantiles xi and xi+1 are relatively distant each other, then F is slowly increasing in the interval
(xi, xi+1) and viceversa. This method is more efficient than simply taking equally spaced points on [0, 1]. If
this method of choosing the points is used, then the functional simply reads

TF u(x) =
1
n

u

(
x− xi−1

xi − xi−1

)
+

i− 1
n

, x ∈ [xi−1, xi), i = 1, . . . , n + 1 .

And this suggests an empirical estimator of F . If q̂i, i = 1, 2, . . . , k, k < n, are the empirical quantiles of the
sample (x1, x2, . . . , xn) of order i

k , then an estimator of the unknown distribution function F should be written
as

F̃(k)u(x) =
1
k

u

(
x− q̂i

q̂i+1 − q̂i

)
+

i− 1
k

, x ∈ [q̂i, q̂i+1),

i = 1, . . . , k, with q̂0 = 0 and q̂k+1 = 1 As n and k = k(n) go to infinity F̂(k) converges to F . Relative efficiency
of F̃(k) with respect to F̂n is investigated via simulations. The results are reported in Table 1 for differently
shaped distribution functions and sample sizes. What emerges is that F̃(k) is equivalent to the e.d.f. in the
sense of the sup-norm. If we choose k = n a natural choice of the q̂i are the order statistics x(i). Since, every
u ∈ F([0, 1]) is such that u(x) = 0, x ≤ 0 and u(x) = 1, x ≥ 1, the operator F̃(k) can be rewritten as

F̃(n)u(x) =
1
n

n∑
i=1

u

(
x− x(i)

x(i+1) − x(i)

)
, x ∈ R .

The fixed point of the above operator, F̃ ∗(n)(x), satisfies

F̃ ∗(n)(x) =
1
n

n∑
i=1

F̃ ∗(n)

(
x− x(i)

x(i+1) − x(i)

)
, (2)

for real x. The following (Glivenko-Cantelli) theorem states that F̃ ∗(n) has the same properties of an admissible

perturbation of the e.d.f. in the sense of [15–17].

Theorem 4.2. Let F̃ ∗(n) be as in (2). If F is continuous, then

lim
n→∞

sup
x∈R

∣∣∣F̃ ∗(n)(x)− F (x)
∣∣∣ a.s.= 0 .

Proof. We can write ∣∣∣F̃ ∗(n)(x)− F (x)
∣∣∣ =

∣∣∣F̃ ∗(n)(x)− F̂n(x)
∣∣∣ +

∣∣∣F̂n(x)− F (x)
∣∣∣

and the first term can be estimated by 1/n while the second one converges to 0 almost surely by the Glivenko-
Cantelli theorem. �

Notice that F̃ ∗(n) cannot be directly reduced to an admissible perturbed e.d.f. F ∗n = n−1
∑n

i=1 un(x−x(i)) as
defined in [15]. In fact, in our case we have a sequence of families {ui

n, i = 1, 2, . . . , n}n>1 instead of a simple
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number of points d∞

(
F̃

(4)
(k)u, F

)
d∞

(
F̂n, F

)
(a)
(b) · 100% distribution F

drawn from F (a) (b)
10 0.20232 0.24103 83.94% Beta(2,2)
50 0.09376 0.10241 91.56% Beta(2,2)
100 0.06989 0.07131 98.01% Beta(2,2)
500 0.02884 0.02917 98.87% Beta(2,2)
1000 0.02475 0.02506 98.78% Beta(2,2)
10 0.18747 0.19472 96.27% Beta(3,3)
50 0.09945 0.09777 101.72% Beta(3,3)
100 0.07103 0.07521 94.44% Beta(3,3)
500 0.03077 0.03061 100.52% Beta(3,3)
1000 0.01993 0.02018 98.74% Beta(3,3)
10 0.20842 0.22220 93.80% Beta(5,3)
50 0.10615 0.10517 100.93% Beta(5,3)
100 0.06881 0.07096 96.96% Beta(5,3)
500 0.02959 0.02971 99.60% Beta(5,3)
1000 0.02176 0.02194 99.17% Beta(5,3)
10 0.23054 0.23301 98.94% Beta(3,5)
50 0.08993 0.089347 100.66% Beta(3,5)
100 0.06541 0.06515 100.40% Beta(3,5)
500 0.02978 0.03015 98.80% Beta(3,5)
1000 0.01978 0.02003 98.77% Beta(3,5)
10 0.20522 0.24492 83.79% Beta(1,1)
50 0.10456 0.11990 87.20% Beta(1,1)
100 0.07621 0.08124 93.81% Beta(1,1)
500 0.02938 0.02974 98.77% Beta(1,1)
1000 0.02382 0.02428 98.09% Beta(1,1)

Table 1. Simultation results. Values are the arithmetic means over 30 trials. The functional
is iterated 4 times starting with the uniform distribution on [0,1] as initial point. Functions
are evaluated at 20 equally spaced points on [0,1]. The proposed estimator can be said to be
almost equivalent as F̂n, the best estimator of F .

sequence {un}n>1 even if, for each fixed i ≤ n, we have

ui
n = F̃ ∗(n)

(
x

x(i+1) − x(i)

)
n−→ u0 =

{
0, x < 0
1, x > 0

by the properties of the order statistics.

Remark 4.3. If we let k = k(n), with k(n) → ∞ as n → ∞ in the construction of F̃(k), then a similar
Glivenko-Cantelli result can be obtained. In fact, if F̃ ∗(k)(x) is the fixed point of F̃(k), we have

∣∣∣F̃ ∗(k)(x)− F (x)
∣∣∣ =

∣∣∣F̃ ∗(k)(x)− F̂n(x)
∣∣∣ +

∣∣∣F̂n(x)− F (x)
∣∣∣

and the first term is bounded by 1/k(n).
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4.1. Applications to survival analysis

Let T denote a random lifetime (or time until failure) with distribution function F . On the basis of a sample
of n independent replications of T the object of inference are usually quantities derived from the so-called
survival function S(t) = 1 − F (t) = P (T < t). If F has a density f then it is possible to define the hazard
function h(t) = lim∆t→0 P (t ≤ T < t + ∆t|T ≥ T )/∆t = f(t)/S(t) and in particular the cumulative hazard
function H(t) =

∫ t

0
h(s) ds = − log S(t). Usually T is thought to take values in [0,∞), but we can think to

consider the estimation conditionally to the last sample failure, say τ , and rescale the interval [0, τ ] to [0, 1].
So we will assume, from now on, all the failure times occur in [0,1], being 1 the instant of the last failure
when the experiment stops. In this scheme of observation Ŝ(t) = 1 − F̂ (t) is a natural estimator of S, with
F̂ any estimator of F and, in particular, the IFS estimator. A more realistic situation is when some censoring
occurs, in the sense that, as time pass by, some of the initial n observations are removed at random times C not
because of failure (or death) but for some other reasons. In this case, a simple distribution function estimator
is obviously not good. Let us denote by t0 = 0 < t1 < · · · < td−1 < td = 1 the observed instants of failure (or
death). A well known estimator of S is the Kaplan-Meyer estimator

Ŝ(t) =
∏
ti<t

r(ti)− di

r(ti)

where r(ti) are the subject exposed to risk of death at time ti and di are the dead in the time interval [ti, ti+1)
(see the original paper of Kaplan and Meyer [8] or for a modern account [5]). In our case di is one as ti are the
instants when failures occur. Subjects exposed to risk are those still present in the experiment and not yet dead
or censored. This estimator has good properties whenever T and C are independent. Related to the quantities
r(ti) and di it is also available the Nelson estimator for the function H that is defined as Ĥ(t) =

∑
ti<t di/r(ti).

We assume for simplicity that there are no ties, in the sense that in each instant ti only one failure occurs. The
function Ĥ(t) is a increasing step-function. Now let Ĥ(t) = Ĥ(t)/Ĥ(1). Ĥ(t) can be thought as an empirical
estimates of a distribution function H on [0,1]. To derive and IFS estimator for the cumulative hazard function
H we construct the sample quantiles by simply taking the inverse of Ĥ. Suppose we want to deal with k + 1
quantiles, being q̂1 = 0 and q̂k+1 = 1. One possible definition of the empirical quantile of order m/k is obtained
by the formula

q̂m+1 = ti +
ti+1 − ti

Ĥ(ti+1)− Ĥ(ti)
·
(m

k
− Ĥ(ti)

)
, if Ĥ(ti) ≤

m

k
< Ĥ(ti+1), (3)

for i = 0, 1, . . . , d− 1 and m = 1, 2, . . . , k − 1. Now set pi = 1/k, i = 1, 2, . . . , k and q̂i, i = 1, 2, . . . , k + 1 as in
(3). An IFS estimator of H is Ĥ(1) · H̃(t) where H̃(t) is the following IFS:

H̃(t) = H̃u(t) =
1
k

k∑
i=1

u

(
t− q̂i

q̂i+1 − q̂i

)
,

and u is any member of the space of distribution function on [0, 1]. In (3) we have assumed that H is the
distribution function of a continuous random variable, with H varying linearly between ti and ti+1, but of
course any other assumption than linearity can be made as well (for example an exponential behaviour). A
Fleming-Harrington (or Altshuler) IFS-estimator of S is then

S̃(t) = exp{−Ĥ(1) · H̃(t)}, t ∈ [0, 1] .

5. Final remarks about the method

There is at least one open issue in this topic as this is a first attempt to introduce IFS in distribution function
estimation: how to choose the maps ? We have suggested a quantile approach but some other good partition
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of the space, like a dyadic sequence, can be used at the cost of the need to solve some optimization problems.
In [6] this problem is touched incidentally but not in a statistical perspective.

The authors are thanksfull to Anestis Antoniadis for his conseils and for having brought to their attention the papers
of Winter [15,16] and Yukich [17].
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