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Abstract

In this paper we review some recent results concerning the approximations of dis-
tribution functions and measures on [0, 1] based on iterated function systems. The two
different approaches available in the literature are considered and their relation are
investigated in the statistical perspective. In the second part of the paper we propose
a new class of estimators for the distribution function and the related characteristic
and density functions estimators. Via Monte Carlo analysis we show that, for small
sample sizes, the proposed estimator can be as efficient or even better than the empir-
ical distribution function and the kernel density estimator respectively. This paper is
to be considered as a first attempt in the construction of new class of estimators based
on fractal objects.

1 Introduction

Let X1, X2, . . . , Xn be a sequence of i.i.d. random variables, each having a common contin-
uous cumulative distribution function F of a real random variable X with values on [0, 1],
i.e. F (x) = P (X ≤ x), such that F (x) = 0, x ≤ 0 and F (x) = 1 for x ≥ 1. The empirical
distribution function (e.d.f.)

F̂n(x) =
1

n

n∑
i=1

1(Xi ≤ x)
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is one commonly used estimator of the unknown distribution function F . Here 1(·) is the
indicator function. The e.d.f. has an impressive set of good statistical properties such as it
is first order efficient in the minimax sense (see Dvoretsky et al. 1956, Kiefer and Wolfowitz
1959, Beran 1977, Levit 1978 and Millar 1979, Gill and Levit 1995). More or less recently,
other second order efficient estimators have been proposed in the literature for special classes
of distribution functions F . Golubev and Levit (1996a,b) and Efromovich(2001) are two of
such examples.

It is rather curious that a step-wise function can be such a good estimator and, in fact,
Efromovich (2001) shows that, for the class of analytic functions, for smal sample sizes, the
e.d.f. is not the best estimator. Here we study the properties of a new class of continuous
distribution function estimators based on iterated function systems (IFSs). IFSs have been
introduced in Hutchinson (1981) and Barnsley and Demko (1985). These are particular
fractal objects, hence the title of this note. The fractal nature of IFSs based estimators
implies that they are nowhere differentiable and cannot be used directly in density estimation
as in Efromovich (2001) but, to this end, we will show a Fourier analysis approach to bypass
the problem.

The paper is organized as follows. Section 2 is dedicated to the theoretical background of
two constructive methods of approximating measures and distribution functions respectively,
with support on compact sets. The first method essentially consists in the minimization
approach based on moment matching. This is rather common in the IFS literature. The
second approach attacks directly the problem of approximating a distribution function with
an IFS, by imposing conditions on the graph of the IFS. In practice, it is imposed to the
IFS to pass through a fixed grid of points. IFS for measures are usually used not in a
statistical context but mainly for image compression, here the main goal will be the problem
of reconstructing a distribution function from sampled data. Even if we do not treat the
problem here, the results are likely to hold for measures in any finite dimension [0, 1]k, k ≥ 1.
In particular, the case k = 2 is interesting for image reconstruction.

Section 3 recalls some results on the Fourier transform for affine IFS. These results are rather
important in Section 4 where we propose two kinds of IFS estimators and a density estimator
obtained as a Fourier series estimator. Last section is dedicated to the Monte Carlo analysis
as it is rather difficult to study statistical properties of IFS-based estimators.

2 Theoretical background for affine IFSs

In this section we recall some of the results from Forte and Vrscay (1995) and Iacus and La
Torre (2001) concerning the IFSs setup on the the space of distribution function. Let M(X)
the set of probability measures on B(X), the σ-algebra of Borel subsets of X where (X, d)
is a compact metric space (in our case will be X = [0, 1] and d the Euclidean metric.)
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In the IFS literature the following Hutchinson metric plays a crucial role

dH(µ, ν) = sup
f∈Lip(X)

{∫
X

fdµ−
∫

X

fdν

}
, µ, ν ∈M(X) ,

where
Lip(X) = {f : X → R, |f(x)− f(y)| ≤ d(x, y), x, y ∈ X}

thus (M(X), dH) is a complete metric space (see Hutchinson, 1981).

As usual, we denote by (w,p) an N -map contractive IFS on X with probabilities or simply
an N -maps IFS, that is, a set of N affine contractions maps, w = (w1, w2, . . . , wN),

wi = si x+ ai, with |si| < 1, si, ai ∈ R, i = 1, 2, . . . , N,

with associated probabilities p = (p1, p2, . . . , pN), pi ≥ 0, and
N∑

i=1

pi = 1. The IFS has a

contractivity factor defined as
c = max

1≤i≤N
si < 1

Consider the following (usually called the Markov) operator M : M(X) → M(X) defined
as

Mµ =
N∑

i=1

piµ ◦ w−1
i , µ ∈M(X), (1)

where w−1
i is the inverse function of wi and ◦ stands for the composition. In Hutchinson

(1981) it was shown that M is a contraction mapping on (M(X), dH): for all µ, ν ∈ (X),
dH(Mµ,Mν) ≤ cdH(µ, ν). Thus, there exists a unique measure µ̄ ∈ M(X), the invariant
measure of the IFS, such that Mµ̄ = µ̄ by Banach theorem.

2.1 Minimization approach

For affine IFS there exists a simple and useful relation between the moments of probabilty
measures on M(X). Given an N -maps IFS(w,p) with associated Markov operator M , and
given a measure µ ∈M(X) then, for any continuous function f : X → R,∫

X

f(x)dν(x) =

∫
X

f(x)d(Mµ)(x) =
N∑

i=1

pi

∫
X

(f ◦ wi)(x)dµ(x) , (2)

where ν = Mµ. In our case X = [0, 1] ⊂ R so we readly have a relation involving the
moments of µ and ν. Let

gk =

∫
X

xkdµ, hk =

∫
X

xkdν, k = 0, 1, 2, . . . , (3)
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be the moments of the two measures µ and ν, with g0 = h0 = 1. Then, by (2), with
f(x) = xk, we have

hk =
k∑

j=0

(
k

j

){ N∑
i=1

pis
j
ia

k−j
i

}
gj, k = 1, 2, . . . , .

Recursive relations for the moments and more details on polynomial IFSs can be found in
Forte and Vrscay (1995). The following theorem is due to Vrscay and can be found in Forte
and Vrscay (1995) as well.

Theorem 1. Set X = [0, 1] and let µ and µ(j) ∈ M(X), j = 1, 2, . . . with associated
moments of any order gk and

g
(j)
k =

∫
X

xkdµ(j) .

Then, the following statements are equivalent (as j →∞ and ∀k ≥ 0):

i) g
(j)
k → gk,

ii) ∀f ∈ C(X),
∫

X
fdµ(j) →

∫
X
fdµ , (weak* convergence),

iii) dH(µ(j), µ) → 0.

(here C(X) is the space of continuous functions on X). This theorem gives a way to find
and appropriate set of maps and probabilities by solving the so called problem of moments
matching. With the solution in hands, given the convergence of the moments, we also have
the convergence of the measures and then the stationary measure of M approximates with
given precision (in a sense specified by the collage theorem below) the target measure µ (see
Barnsley and Demko, 1985).

Next theorem, called the collage theorem is a standard result of IFS theory and is a conse-
quence of the Banach theorem.

Theorem 2 (Collage theorem). Let (Y, dY ) be a complete metric space. Given an y ∈ Y ,
suppose that there exists a contractive map f on Y with contractivity factor 0 ≤ c < 1 such
that dY (y, f(y)) < ε. If ȳ is the fixed point of f , i.e. f(ȳ) = ȳ, then dY (ȳ, y) < ε/(1− c).

So if one wishes to approximate a function y with the fixed point ȳ of an unknown contractive
map f , it is only needed to solve the inverse problem of finding f which minimizes the collage
distance dY (y, f(y)).

The main result in Forte and Vrscay (1995) that we will use to build on of the IFSs estimators
is that the inverse problem can be reduce to minimize a suitable quadratic form in terms of
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the pi given a set of affine maps wi and the sequence of moments gk of the target measure.
Let

ΠN =

{
p = (p1, p2, . . . , pN) : pi ≥ 0,

N∑
i=1

pi = 1

}
be the simplex of probabilities. Let w = (w1, w2, . . . , wN), N = 1, 2, . . . be subsets of
W = {w1, w2, . . .} the infinite set of affine contractive maps on X = [0, 1] and let g be the
vector of the moments of any order of µ ∈M(X). Denote by M the Markov operator of the
N -maps IFS (w,p) and by νN = Mµ with associated moment vector of any order hN . The
collage distance between the moment vector of µ and νN

∆(p) = ||g − hN ||l̄2 : ΠN → R

is a continuous function and attains an absolute minimum ∆min on ΠN where

||x||l̄2 = x2
0 +

∞∑
k=1

x2
k

k2
.

Theorem 3 (Forte and Vrscay, 1995). ∆min → 0 as N →∞.

Thus, the collage distance can be made arbitrarily small by choosing a suitable number of
maps and probabilities, N∗.

By the same authors, the inverse problem can be posed as a quadratic programming one in
the following notation

S(p) = (∆(p))2 =
∞∑

k=1

(hk − gk)
2

k2

D(X) = {g = (g0, g1, . . .) : gk =

∫
X

xkdµ, k = 0, 1, . . . , µ ∈M(X)}

Then by (2) there exists a linear operator A : D(X) → D(X) associated to M such that
hN = Ag. In particular

hk =
N∑

i=1

Akipi, k = 1, 2, . . . ,

where

Aki =
n∑

j=0

sj
ia

k−j
i gj

Thus

(Q) S(x) = xtQx + btx + c, x ∈ RN ,

where

qij =
∞∑

k=1

AkiAkj

k2
, i, j = 1, 2, . . . , N,
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bi = −2
∞∑

k=1

gk

k2
Aki, i = 1, 2, . . . , N, and c =

∞∑
k=1

g2
k

k2
.

The series above are convergent as 0 ≤ Ani ≤ 1 and the minimum can be found by minimizing
the quadratic form on the simplex ΠN . This is the main result in Forte and Vrscay (1995)
that can be used straight forwardly in statistical applications as we propose in Section 4.

On the other side Iacus and La Torre (2001) propose a different and direct approach to
construction on IFSs on the space of distribution function on [0, 1]. Instead of constructing
the IFS by matching the moments, the idea there is to have an IFS that has the same values
of the target distribution function on a finite number of points.

2.2 Direct approach

We use directly the fractal nature of the IFS. Given a distribution function on [0, 1], the
idea is to rescale the whole function in abscissa and ordinate and copying it a number of
times obtaining a function that is again a distribution function. Consider F([0, 1]), the
space of distribution functions on [0, 1], then (F([0, 1]), d∞ is a complete metric space, where
d∞(F,G) = supx∈[0,1] |F (x)−G(x)|. On (F([0, 1], d∞) we define the following operator (see
Iacus and La Torre, 2001):

TF (x) = piF (w−1
i (x)) +

i−1∑
j=1

pj +
i−1∑
j=1

δj , x ∈ wi([ai, bi)) , i = 1, . . . , N, (4)

where F ∈ F([0, 1]), N ∈ N is fixed and:

i) wi : [ai, bi) → [ci, di) = wi([ai, bi)), i = 1, . . . , N − 1, wN : [aN , bN ] → [cN , dN ], with

a1 = c1 = 0 and bN = dN = 1,
N−1⋃
i=1

[ai, bi) ∪ [aN , bN ] =
k−1⋃
i=1

[ci, di) ∪ [cN , dN ] = [0, 1];

ii) wi = si x+ ai, 0 < si < 1, si, ai ∈ R, i = 1, . . . , N ;

iii)
N⋃

i=1

wi([ai, bi)) = [0, 1);

iv) pi ≥ 0, i = 1, . . . , N , δi ≥ 0, i = 1 . . . N − 1,
N∑

i=1

pi +
N−1∑
i=1

δi = 1;

v) if i 6= j then wi([ai, bi)) ∩ wj([aj, bj)) = ∅;

In equation (4), when i = 1 the summation are to be intended to be equal to 0. We limit the
treatise to affine maps wi as in Forte and Vrscay (1995), but the general case of increasing
and continuous maps can be treated as well (see cited reference of the authors). From now
on, we consider the sets of maps wi and parameters δi as given, thus the operator depends
only on the probabilities pi and we denote it by Tp.
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Theorem 4 (Iacus and La Torre, 2001). Under conditions i) to v):

1. Tp is an operator from F([0, 1]) to itself.

2. Suppose that wi(x) = x, pi = p, and δi ≥ −p, then Tp : F([0, 1]) → F([0, 1]).

3. If c = max
i=1,...,N

pi < 1, then Tp is a contraction on (F([0, 1]), d∞) with contractivity

constant c.

4. Let p, p∗ ∈ Rk such that TpF1 = F1 and Tp∗F2 = F2. Then

d∞(F1, F2) ≤
1

1− c

N∑
j=1

∣∣pj − p∗j
∣∣

where c is the contractivity constant of Tp.

The theorem above assures the IFS nature of the operator Tp that can be denoted, as in the
previous section, as a N -maps IFS(w,p) with obvious notation.

The goal is again the solution of the inverse problem in terms of p. Consider the following
convex set:

CN =

{
p ∈ RN : pi ≥ 0, i = 1, . . . , N,

N∑
i=1

pi = 1−
N−1∑
i=1

δi

}
,

then we have the following results:

Theorem 5 (Iacus and La Torre, 2001). Choose ε > 0 and p ∈ CN such that pi · pj > 0
for some i 6= j. If d∞(TpF, F ) ≤ ε, then:

d∞(F, F̃ ) ≤ ε

1− c
,

where F̃ is the fixed point of Tp on F([0, 1]) and c is the contractivity constant of Tp. More-
over, the function D(p) = d∞(TpF, F ), p ∈ RN is convex.

Thus, the following constrained optimization problem:

(P) min
p∈CN

d∞(TpF, F )

can be solved at least numerically.

Another way of choosing the form of Tp is the direct approach, that is the following. Choose
n = N+1 points on [0, 1], (x1, . . . , xn), and assume that 0 = x1 < x2 < · · · < xn−1 < xn = 1.
The proposed functional is the following

TFu(x) = (F (xi+1)− F (xi))u

(
x− xi

xi+1 − xi

)
+ F (xi), x ∈ [xi, xi+1),
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i = 1, . . . , n−1, where u is any member in the space F([0, 1]). Notice that TF is a particular
case of Tp where pi = F (xi+1)−F (xi), δi = 0 and wi(x) : [0, 1) → [xi, xi+1) = (xi+1−xi)x+xi.
This is a contraction and, at each iteration, TF passes exactly through the points F (xi). It is
almost evident that, when n increases the fixed point of the above functional will be “close”
to F .

For n small, the choice of a good grid of points is critical. So one question arises: how to
choose the n points ? One can proceed case by case but as F is a distribution function
so one can use its properties. We propose the following solution: take n points (u1 =
0, u2, . . . , un = 1) equally spaced [0, 1] and define qi = F−1(ui), i = 1, . . . , n. The points
qi are just the quantiles of F . In this way, it is assured that the profile of F is followed as
smooth as possible. In fact, if two quantiles qi and qi+1 are relatively distant each other, than
F is slowly increasing in the interval (qi, qi+1) and viceversa. This method is more efficient
than simply taking equally spaced points on [0, 1]. With this assumption the functional TF

reads as

TNu(x) = TFu(x) =
1

N
u

(
x− qi
qi+1 − qi

)
+
i− 1

N
, x ∈ [qi, qi+1), i = 1, . . . , N .

This form of the estimator proposes an intuitive (possibily) good candidate for distribution
function estimation. Note that we overcome the problem of moment matching as we don’t
even need the existence of the moments.

Corollary 6. As a corollary of the collage Theorem 4 we can anwser to the question: how
many quantiles are needed to approximate a distribution function with a given precision, say
ε ? The answer is: take the first integer N such that N > 1/ε. This value of N is in fact the
one that guarantees that the sup-norm distance between the true F and the fixed point F̃ of
TF is less than ε. In general, this distance could be considerably smaller as shown in Table
1.

Proof. The proof is as follows: assume that we set ε < 1 (the contrary will be absurd), then
it holds true that

d∞(F, F̃ ) ≤ d∞(TpF, F ) ≤ ε

as, by Theorem 4, d∞(u, F̃ ) < ε/(1− c) where c = maxi pi = 1/N . And this is in particular
true for F . To estimate d∞(TpF, F ) we can slipt the interval [0,1] as [0 = q0, q1) ∪ [q1, q2) ∪
· · · ∪ [qN , qN+1 = 1]. In each of the intervals [qi, qi+1) the distance between TpF (x) and F (x)
is at most 1/N , thus ε < 1/N . It is worth to note that this is really a bad case because, all
of the distributions we have tested has an estimated sup-norm less than 1/N .

2.3 Links between the two approaches

To investigate the asymptotic behaviour of Tp it is worth to show the relation between this
functional on the space of distribution function and the one proposed by Forte and Vrscay
(1995) on the space of measures.
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Assuming that Tp as well as TF is such that, for any G ∈ F([0, 1]),

TpG(x) = 0, ∀x ≤ 0 and TpG(x) = 1, ∀x ≥ 1 ,

Then Tp can be rewritten as

TpF (x) =


0, x ≤ 0,
N∑

i=1

piF (w−1
i (x)), x ∈ (0, 1),

1, x ≥ 1 .

Theorem 7 (Bridge theorem). Given a set of N maps and probabilities (w,p), then the
fixed points of M ∈M([0, 1]) and Tp ∈ F([0, 1]) relates as follows

µ̄((0, x]) = Mµ̄((0, x]) = TpF̃ (x) = F̃ (x), ∀x ∈ [0, 1] .

Proof. For each fixed µ ∈ M([0, 1]) there corresponds a distribution function F ∈ F([0, 1])
defined by the relation µ((0, x]) = F (x), ∀x ∈ [0, 1]. Thus, fixed a set of N -maps IFS (w,p)

Mµ((0, x]) = TpF (x) .

The second iteration is then

M(Mµ((0, x]) ) = Tp(TpF (x) )

so, the fixed points in the relative spaces are

µ̄((0, x]) = M(M( . . .M( µ̄((0, x]) ) . . . ) )

and
TpF̃ (x) = Tp(Tp( . . . Tp( F̃ (x) ) . . . ) )

from which the statement of the theorem.

The previous theorem allows to reuse the results of Forte and Vrscay (1995) and in particular
gives another way of finding the solution of (P) in terms of (Q) at least on the simplex ΠN

by letting δi = 0 in CN . This is true in particular if we choose the maps as in TF .

2.4 The choice of the affine maps

As we are mostly concerned with estimation, we briefly discuss the problem of choosing the
maps. In Forte and Vrscay (1995) the following two sets of wavelet-type maps are proposed.
Fixed and index i∗ ∈ N, define

WL1 : ωij =
x+ j − 1

2i
, i = 1, 2, . . . , i∗ j = 1, 2, . . . , 2i
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and

WL2 : ωij =
x+ j − 1

i
, i = 2, . . . , i∗ j = 2, . . . , i .

Then set N =
i∗∑

i=1

2i or N = i∗(i∗ − 1)/2 respectively. To choose the maps, consider the

natural ordering of the maps ωij and operate as follows

W1 = {w1 = ω11, w2 = ω12, w3 = ω21, . . . , w6 = ω24, w7 = ω31, . . . , wN = ωi∗2i∗}
and

W2 = {w1 = ω22, w2 = ω32, w3 = ω33, w4 = ω42, . . . , w6 = ω44, . . . , wN = ωi∗i∗}
respectively. Our quantile based maps are of the following type Wq = {wi(x) = (qi+1−qi)x+
qi, i = 1, 2, . . . , N} where qi = F−1(ui), and 0 = u1 < u2 < . . . < uN < uN+1 = 1 are N + 1
equally spaced points on [0, 1].

For each given sets of maps w above different p’s will be solution of (Q) (or (P)). Wether
the corresponding fixed point is closer a given F in the three cases is not always clear. As
an example, in Table 1 we show the relative performance of the approximation based on the
quantity

∆m(p) =
m∑

k=1

1

k2

(
N∑

i=1

Akipi − gk

)2

(that is an approximation of the collage distance) and on the sup-norm d∞ and the average
mean square error, AMSE. We also report the contractivity constant in both the space
M([0, 1]) and the space F([0, 1]). Recall that the collage theorem for the moments establishes
that, if g is the vector of moments of a the target measure µ (of a distribution function F )
and ḡ is the moment vector of the invariant measure µ̄ of the IFS (w,p) then

||g − ḡ||l̄2 <
∆

1− c
.

Table 1 shows that, at least in this classical example of the IFS literature, for a fixed number
of maps N , TN is a better approximator than M relatively to the sup-norm and the AMSE
while the contrary is true in terms of the approximate collage distance ∆m(p). As noted
in Forte and Vrscay (1995), M uses not all the maps, in the sense that N ′, the number of
non null probabilities, is usually smaller than N . It is evident that, two alternatives seem
promising in the perspective of distribution function estimation: M with W1 and TN (i.e.
M with Wq and pi = 1/N). Note that it is apparently simpler to use TN because there is no
need to calculate moments.

3 Fourier analysis results

The results presented in this section, taken from Forte and Vrscay (1998) Sec. 6, are rather
straight forward to prove but it is essential to recall them since we will use these in density
estimation later on.
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IFS w N N ′ ∆m(p) d∞ AMSE maxp c = max s

M W1 6 5 7.79e-08 0.06253 5.31e-4 0.255 0.500
M W2 6 3 3.40e-05 0.25024 9.62e-3 0.483 0.500
M Wq 6 6 8.32e-08 0.12718 2.51e-3 0.165 0.259
TN Wq 6 6 9.90e-05 0.04550 4.54e-4 0.166̄ 0.259

M W1 10 10 2.45e-07 0.03948 3.45e-4 0.291 0.500
M W2 10 6 1.54e-06 0.17870 5.66e-3 0.678 0.500
M Wq 10 10 5.00e-08 0.04060 3.55e-4 0.351 0.195
TN Wq 10 10 3.34e-05 0.02778 1.46e-4 0.100 0.195

M W1 14 11 5.38e-7 0.02983 1.93e-4 0.266 0.500
M W2 14 12 9.56e-7 0.09822 2.17e-3 0.218 0.500
M Wq 14 14 2.66e-8 0.02546 1.43e-4 0.106 0.163
TN Wq 14 14 1.57e-5 0.01973 6.93e-5 0.100 0.163

Table 1: Approximation results for the different N -maps IFS (w,p) for the targe tdistri-
bution function F (x) = x2(3 − 2x) as in Forte and Vrscay (1995). N = number of maps
used, AMSE = average MSE, max p is the contractivity constant of Tp in F([0, 1]), s is the
contractivity constant of M in M([0, 1]). N ′ the number of non null probabilities. For the
rest of the notation see text.

Given a measure µ ∈M(X), the Fourier transform (FT) φ : R → C, where C is the complex
space, is defined by the relation

φ(t) =

∫
X

e−itxdµ(x), t ∈ R .

with the well known properties φ(0) = 1 and |φ(t)| ≤ 1, ∀ t ∈ R. We denote by FT (X) the
set of all FT’s associated to the measures in M(X). Given two elements φ and ψ in FT (X),
the following metric can be defined

dFT (φ, ψ) =

(∫
R
|φ(t)− ψ(t)|2t−2dt

) 1
2

and the above integral is always finite (see cited paper). With this metric (FT (X), dFT ) is
a complete metric space. Given an N -maps (affine) IFS(w,p) and its Markov operator M
it is possibile to define a new linear operator B : FT (X) → FT (X) as follows

ψ(t) =
N∑

k=1

pke
−itakφ(skt), t ∈ R ,

where φ is the FT of a measure µ and ψ is the FT of ν = Mµ.

Theorem 8 (Forte and Vrscay, 1998). The operator B is contractive in (FT (X), dFT )
and has a unique fixed point. In particular, if φ̄ is the FT of the invariant measure of the
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Markov operator M , then the fixed point is

φ̄(t) =
N∑

k=1

pke
−itak φ̄(skt), t ∈ R .

The following final results holds true.

Theorem 9 (Collage Theorem for FT, (Forte and Vrscay, 1998)). Let (X, d) be a
compact metric space and µ ∈ M(X) with FT φ, φ ∈ FT (X). Let (w,p) be an N-maps
IFS with contractivity factor c ∈ [0, 1) such that dFT (φ, ψ) < ε, where ψ = B(φ) is the FT
of ν = Mµ. Then

dFT (φ, φ̄) <
ε

c
,

where φ̄, φ̄ ∈ FT (X), is the FT of the invariant measure µ̄ of M , i.e. µ̄ = Mµ̄.

4 Statistical applications

It is rather natural to propose two estimators for a distribution function, the Markov operator
M with wavelets maps W1 and the TN IFS. By Corollary 6 one can easily note that using the
sample quantiles, it is not possible in general to achieve a precision ε = 1/N if the sample size
n is less than N . But when n = N than, in the most defavorable case ε = 1/N , we just have
the empirical distribution function for which we have the identity TN(x) = F̂n(x) for x = xi,
i = 1, . . . , N + 1 and a linear interpolant between F̂n(xi) and F̂n(xi+1). Thus apparently,
the worst thing one can do with the estimator TN is to estimate the unknown distribution
function with an interpolated version of F̂n. The target of having ε = 1/100 means that at
least 100 quantiles are needed and, non asymptotically, this is a to severe condition because,
even having n = 100 observations, the empirical quantiles are not good estimates of the true
quantiles. As we have seen in the previous section (see Table 1) for having an error of order
ε = 1/50 only 14 quantiles are needed: around 1/3 of ε. So, as a rule of thumb we suggest
to use a number of quantiles between n/2 and n/3. In our Monte Carlo analysis of Section
5 we convain to use n/2. This strategy is computationally heavy when n is large as the time
to calculate the estimator increases too much, thus from a certain sample size n it is better
to use a fixed amount of quantiles. Our experience shows that N = 50 for large sample sizes
is big enough, but for very large sample sizes we suggest to use the empirical distribution
function instead. Moreover, it has to be reminded that for N = 50 one can attend, in the
worst case an error in sup-norm of 2%.

The two estimators are of the following types:

a) The Markov-Wavelets IFS

M̂W1u(x) =
N∑

i=1

p̂iu(w
−1
i (x))

12



where wi ∈ W1 and the p̂i are the solutions of the quadratic problem (Q) with vector
of empirical moments ĝ instead of g. The number of empirical moments (m = N + 1)

used is linked to the number of wavelet maps N =
i∗∑

i=1

2i, for i∗ = 1, 2, 3, 4.

b) The quantile-based IFS

T̂Nu(x) =
N∑

i=1

1

N
u(ŵ−1

i (x))

where ŵ−1
i (x) = (x − q̂i)/(q̂i+1 − q̂i) with q̂i the empirical quantiles, being q̂1 = 0 and

q̂N+1 = 1.

In both cases u is any distribution function on [0, 1], for example the Uniform distribution,
that is to be considered at the starting point in F([0, 1]) form which the iteration of the
functionals start.

Asymptotic properties of the fixed point of both M̂W1 and T̂N derive as a natural consequency
from the properties of moments estimators and empirical quantiles. So, one can expect that
for a fixed number N of maps M̂ converges in probability to M as the sample size increases
and that T̂N converges to the fixed point of TN as n→∞.

4.1 Characteristic function and Fourier density estimation

Using the results of Section 3 is now feasible to propose a Fourier expansion estimator of the
density function of F assuming tha it exists. We assume that all the minimal conditions to
proceed in the Fourier analysis of this section are fulfilled. Thus, given andN -map IFS(w,p),
we have seen that the IFS estimator is the fixed point of the operator

Tpu(x) =
N∑

i=1

piu(w
−1
i (x)), x ∈ [0, 1],

for any u ∈ F([0, 1]) or, equivalently, in the space of measure M([0, 1])

Mµ(A) =
N∑

i=1

piµ(w−1
i (A)), A ⊂ [0, 1]

with maps and coefficients eventually estimated. Now, let φ̄ be the fixed point of the operator
B in Section 3, i.e.

φ̄(t) =
N∑

k=1

pke
−iaktφ̄(skt), t ∈ R .

Then φ̄ is nothing else that the characteristic function of f(·) where f(·) is the density
function of the underlying unknown distribution function F (·) that generates the sample

13



data X1, X2, . . . , Xn. Now (see e.g. Tarter and Lock, 1993) it is possible to derive a Fourier
expansion density estimator in this way.

φ̄(t) =

∫ 1

0

f(x)e−itxdx =

∫ 1

0

e−itxdF (x)

and, given φ̄(t) the density function f(·) can be rewritten as

f(x) =
1

2π

+∞∑
k=−∞

Bke
ikx =

1

2π
+

1

π

∞∑
i=1

(
Re(Bk) cos(kx)− Im(Bk) sin(kx)

)
where

Bk =

∫ 1

0

f(x)e−ikxdx = φ(k)

Denoting by φ̂ (the fixed point of) the characteristic function estimator based on quantiles

φ̂(t) =
N∑

k=1

1

N
e−iâktψ(ŝkt) âk = q̂k, ŝk = q̂k+1 − q̂k , (5)

with q̂0 = 0 and q̂N+1 = 1, a density estimator is the following

f̂(x) =
1

2π

+∞∑
k=−∞

ckB̂ke
ikx (6)

where {ck, k = 0,±1,±2, . . .} is a sequence of suitable multipliers not to be estimated and
B̂k = φ̂(k). One choice for the multipliers is ck = 1 for |k| ≤ m and ck = 0 if |k| > m. In
such a case the estimator reduces to the raw Fourier expansion estimator

f̂FT (x) =
1

2π

+m∑
k=−m

B̂ke
ikx =

1

2π
+

1

π

m∑
i=1

(
Re(B̂k) cos(kx)− Im(B̂k) sin(kx)

)
.

A detailed discussion on which family of multipliers is to be choosen can be found in Tarter
and Lock (1993) and can be applied to this case as well. As it is well known, the fact that
the Fourier expansion is a convergent series it is always possible to differentiate or integrate
it in order to obtain an estimator for the first derivative of the density

f̂ ′(x) =
1

2π

d

dx
f̂(x) =

1

2π

+m∑
k=−m

d

dx
B̂ke

ikx =
+m∑

k=−m, k 6=0

ik

2π
B̂ke

ikx (7)

which is a particular case of (6) with ck = ik, |k| ≤ m, k 6= 0 and ck = 0 for k = 0 or
|k| > m. We can also propose another distribution function estimator

F̂FT (x) =
1

2π

(
x+

+m∑
k=−m, k 6=0

B̂k

ik

(
eikx − 1

))

=
1

2π

(
x+ 2

m∑
k=1

(
Re(B̂k) sin(kx) + Im(B̂k)(cos(kx)− 1)

)) (8)
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Figure 1: Old Faithful gayser data rescaled on [0,1]. Dotted line is the kernel estimator
(bw=0.03, kernel=Gaussian), solid line is the IFS-Fourier expansion estimator (iterated 2
times, 26 Fourier coefficients).

that can be used as a smooth estimator derived from IFS techinques instead of applying
direclty the fractal M̂ or T̂N estimator.

To conclude this section, we have to say that it is still possible to build IFSs in the space
of density functions but direct application to estimation is less straightforward and this will
be the object of another paper as it requires a different class of IFS systems, namely the
local-IFS approach.

5 Monte Carlo analysis

Before going into details with simulations results, we want to remark that the IFS estimators
are fractal objects, this means that they are nowhere differentiable and they are self-similar.
In Figure 2 we have represented the distribution function estimator T̂N of an underlying
truncated normal distribution. It is evident that the curve simply replicates of itself. To put
in evidence this fractal nature, we have “zoomed” the curve 4 times. As it is possible to see
the curve is the same at any scale. Figure 1 shows an application of the density estimator
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to real data. In particular, we have choosen the classical textbook Old Faithful gayser data
rescaled on [0,1]. It is evident that f̂FT is capable of discriminate the two curves as the kernel
estimator does.

As seen in the previous sections, it is rather difficult to establish statistical properties of the
estimators based on the IFS as it is not yet clear to us, how to characterize the fixed points
of the IFSs. So in this section we will show some numerical results both for distribution
function and density estimation. We have choosen the Beta family of random variable as
they allow compact support, moments existance, different shapes and well tested pseudo
random number generators. As criterior for evaluating the performance of the estimators
we consider the average mean square error (AMSE) and the sup-norm distance. We also
consider small sample sizes n = 10, 20, 30, 50, 75, 100 as asymptotically the IFS converges to
the e.d.f. based estimators. Four estimators are considered for the distribution function: M̂
with W1, T̂N , F̂n, F̂FT . For T̂N we have choose n/2 quantiles. For the density estimator,
we compare a standard kernel estimator and f̂FT , the Fourier transform estimator based on
the IFS. It is well known that kernel estimators are particular Fourier expansion estimators
by a proper choice of the multiplier ck when the e.d.f is used in the Fourier transform. The
number of terms used in the Fourier series estimators of the distribution function, is choosen
accordingly to the following rule

if
∣∣∣B̂m+1

∣∣∣2 and
∣∣∣B̂m+2

∣∣∣2 < 2

n+ 1
then use the first m coefficents

as suggested in Tarter and Lock (1993). The rule of thumb we use cannot be consid-
ered optimal in any sense but its principle is to minimize the integrated MSE. The soft-
ware used is R (Ihaka and Gentleman, 1996) with a beta ‘ifs’ package available soon at
http://159.149.74.117/~web/R/ifs/. Kernel density estimation is as in Silverman (1986)
and implemented in R with the density() function (see also Venables and Ripley, 2002) in
the R implementation. All the estimates are evaluated in 512 points in order to calculates
AMSE and the sup-norm. For density estimation we calculate the average of the absolute
error (MAE) instead of the sup-norm as this index is influenced by the bad performance of
density estimators in the endpoints (0 and 1) of the support of the distributions.

Tables 2 and 3 are organized as follows: there are five main columns, one for the distribution
investigated, two for the distribution function estimators and the last two are for density
estimation. Under column AMSE, the M̂W1 column reports the ratio, in percentage, between
the AMSE of M̂W1 and the AMSE of the F̂n and similarly for the entire row. This means that
we indicate the relative efficiency of the three estimators M̂W1 , T̂N anf F̂FT with respect to
F̂n. Under the column marked SUP-NORM the same scheme as been applied but considering
the sup-norm distance.

The last two columns are for density estimation. This time the columns represents the ratio
in percentage, of the distance for the Fourier estimator f̂FT and the kernel estimator.

The tables shows that, in the average the T̂N estimator is equivalent to to the e.d.f. for ugly
distributions like the beta(.1,.9) or beta(.1,.1), while it is somewhat better in the other case
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Figure 2: The fractal nature of the IFS distribution function estimator T̂N . The dotted line
is the underlying truncated Gaussian distribution. The dotted rectangle is to represent the
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parameters AMSE SUP-NORM AMSE MAE

n law
10 beta(.9,.1)
10 beta(.1,.9)
10 beta(.1,.1)
10 beta( 2, 2)
10 beta( 5, 5)
10 beta( 5, 3)
10 beta( 3, 5)
10 beta( 1, 1)

M̂W1 T̂N F̂FT

105260.1 94.86 186.81
827.42 99.79 2097.27

34067.84 99.26 560.99
153.01 80.99 133.33
114.13 89.91 210.05
76.14 98.57 163.17
142.96 90.70 194.36

58094.14 81.23 88.16

M̂W1 T̂N F̂FT

2179.91 98.10 193.42
608.94 100.33 262.18
5879.58 100.05 190.82
102.51 82.18 68.48
99.60 89.74 81.67
79.46 92.86 71.24
99.41 91.34 79.51

2741.62 80.04 80.07

f̂FT

—
—
—

171.16
162.46
185.88
154.86
148.71

f̂FT

—
—
—

123.05
123.63
119.36
125.25
117.11

parameters AMSE SUP-NORM AMSE MAE

n law
20 beta(.9,.1)
20 beta(.1,.9)
20 beta(.1,.1)
20 beta( 2, 2)
20 beta( 5, 5)
20 beta( 5, 3)
20 beta( 3, 5)
20 beta( 1, 1)

M̂W1 T̂N F̂FT

80402.60 101.56 216.58
3156.71 113.31 4028.99
30695.03 99.77 999.28

91.73 86.05 100.44
154.93 89.27 120.92
83.89 92.89 133.44
198.84 88.27 116.82
8601.04 84.89 79.26

M̂W1 T̂N F̂FT

676.97 99.10 251.70
1265.92 114.50 371.70
6611.92 98.84 231.88
82.46 83.34 61.55
114.32 87.49 65.56
87.12 89.31 67.28
114.82 87.29 67.64
751.59 79.27 71.67

f̂FT

—
—
—

121.19
120.54
123.48
132.69
153.64

f̂FT

—
—
—

109.07
109.30
104.81
117.18
118.69

parameters AMSE SUP-NORM AMSE MAE

n law
30 beta(.9,.1)
30 beta(.1,.9)
30 beta(.1,.1)
30 beta( 2, 2)
30 beta( 5, 5)
30 beta( 5, 3)
30 beta( 3, 5)
30 beta( 1, 1)

M̂W1 T̂N F̂FT

143440.9 97.17 245.11
3740.29 118.80 6842.92
39983.05 99.62 1352.06

92.86 86.23 86.09
191.88 89.54 114.96
98.55 91.67 135.96
241.12 88.31 108.49
483.23 87.16 87.77

M̂W1 T̂N F̂FT

1357.53 92.91 283.57
1328.19 115.38 486.58
8086.76 98.57 284.39
82.66 84.01 55.83
132.21 89.21 67.27
97.77 87.90 66.60
124.99 88.34 66.76
181.99 81.00 75.80

f̂FT

—
—
—

103.84
118.48
113.78
130.77
168.50

f̂FT

—
—
—

99.35
106.07
105.41
115.17
129.67

Table 2: Relative efficiency of IFS-based estimator with respect to the empirical distribution
function and the kernel density estimator. Small sample sizes.

(10 to 20% better). The Fourier series estimator based on IFS, F̂FT is preferable to the e.d.f
only for bell shaped distributions and seems unbeatable for simmetric shaped laws. This is
somewhat expected by a Fourier expansion estimator. The same argument applies to the
density estimator: for bell shaped symmetric distributions, it seems as good as the kernel
estimator and in some cases even better.

For the beta(.1,.9) or the beta(.1,.1) the density estimators (both kernel and our Fourier)
are of no use, we have omitted the corresponding ratios.

6 Applications to survival analysis

Let T denote a random lifetime (or time until failure) with distribution function F . On
the basis of a sample of n independent replications of T the object of inference are usually
quantities derived from the so-called survival function S(t) = 1 − F (t) = P (T < t). If
F has a density f then it is possible to define the hazard function h(t) = lim∆t→0 P (t ≤
T < t + ∆t|T ≥ T )/∆t = f(t)/S(t) and in particular the cumulative hazard function
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parameters AMSE SUP-NORM AMSE MAE

n law
50 beta(.9,.1)
50 beta(.1,.9)
50 beta(.1,.1)
50 beta( 2, 2)
50 beta( 5, 5)
50 beta( 5, 3)
50 beta( 3, 5)
50 beta( 1, 1)

M̂W1 T̂N F̂FT

4462.59 98.59 318.90
7577.62 107.85 11017.55
41958.58 97.77 1740.82

99.40 91.55 75.24
279.55 91.57 91.36
124.40 97.80 96.04
327.86 91.90 84.84
548.05 92.84 104.46

M̂W1 T̂N F̂FT

524.57 95.87 361.67
1875.88 113.85 619.15
8419.93 99.87 318.48
88.29 87.40 54.08
158.18 89.64 56.17
112.71 92.73 59.33
145.24 91.40 60.54
144.12 86.24 80.56

f̂FT

—
—
—

93.06
88.25
89.63
115.95
173.79

f̂FT

—
—
—

92.63
91.67
96.36
105.87
132.25

parameters AMSE SUP-NORM AMSE MAE

n law
75 beta(.9,.1)
75 beta(.1,.9)
75 beta(.1,.1)
75 beta( 2, 2)
75 beta( 5, 5)
75 beta( 5, 3)
75 beta( 3, 5)
75 beta( 1, 1)

M̂W1 T̂N F̂FT

49097.24 98.85 409.18
2518.57 122.62 15348.49
52407.20 100.37 2460.06
109.62 94.77 66.97
338.18 97.41 72.95
139.85 104.31 111.65
407.03 95.14 87.93
107.36 98.39 130.28

M̂W1 T̂N F̂FT

853.06 97.66 427.17
1206.46 122.78 721.83
10475.81 106.85 381.39

90.00 90.42 52.11
177.11 92.39 53.67
120.93 96.29 63.52
163.53 91.80 61.76
90.23 89.05 83.62

f̂FT

—
—
—

89.97
72.79
93.45
107.14
158.01

f̂FT

—
—
—

91.61
86.68
97.32
104.07
131.13

parameters AMSE SUP-NORM AMSE MAE

n law
100 beta(.9,.1)
100 beta(.1,.9)
100 beta(.1,.1)
100 beta( 2, 2)
100 beta( 5, 5)
100 beta( 5, 3)
100 beta( 3, 5)
100 beta( 1, 1)

M̂W1 T̂N F̂FT

322.52 98.22 575.82
1191.05 114.91 22660.02
65060.00 102.02 3901.37
113.49 97.03 74.57
425.20 95.08 69.37
179.28 95.52 100.85
489.18 97.59 76.83
108.74 101.58 141.98

M̂W1 T̂N F̂FT

425.48 96.65 457.07
895.01 152.41 890.91
9778.29 110.96 455.34
97.12 91.68 58.62
198.27 93.37 50.80
137.34 93.96 60.62
176.56 94.23 58.68
91.94 92.26 84.65

f̂FT

—
—
—

96.45
67.01
82.91
92.38
146.78

f̂FT

—
—
—

95.48
80.75
92.25
98.10
125.03

Table 3: Relative efficiency of IFS-based estimator with respect to the empirical distribution
function and the kernel density estimator. Moderate sample sizes.
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H(t) =
∫ t

0
h(s)ds = − logS(t). Usually T is thought to take values in [0,∞), but we can

think to consider the estimation conditionally to the last sample failure, say τ , and rescale
the interval [0, τ ] to [0, 1]. So we will assume, from now on, all the failure times occur in [0,1],
being 1 the instant of the last failure when the experiment stops. In this scheme of observation
Ŝ(t) = 1 − F̂ (t) is a natural estimator of S, with F̂ any estimator of F and, in particular,
the IFS estimator. A more realistic situation is when some censoring occurs, in the sense
that, as time pass by, some of the initial n observations are removed at random times C not
because of failure (or death) but for some other reasons. In this case, a simple distribution
function estimator is obviously not good. Let us denote by t0 = 0 < t1 < · · · < td−1 < td = 1
the observed instants of failure (or death). A well known estimator of S is the Kaplan-Meyer
estimator

Ŝ(t) =
∏
ti<t

r(ti)− di

r(ti)

where r(ti) are the subject exposed to risk of death at time ti and di are the dead in the
time interval [ti, ti+1) (see the original paper of Kaplan and Meyer, 1958 or for a modern
account Fleming and Harrington, 1991). In our case di is one as ti are the instants when
failures occur. Subjects exposed to risk are those still present in the experiment and not yet
dead or censored. This estimator has good properties whenever T and C are independent.
Related to the quantities r(ti) and di it is also available the Nelson estimator for the function
H that is defined as Ĥ(t) =

∑
ti<t di/r(ti). We assume for simplicity that there are not ties,

in the sense that in each instant ti only one failure occurs. The function Ĥ(t) is a increasing
step-function. Now let Ĥ(t) = Ĥ(t)/Ĥ(1). Ĥ(t) can be thought as an empirical estimates
of a distribution function H on [0,1]. To derive and IFS estimator for the cumulative hazard
function H we construct the sample quantiles by simply taking the inverse of Ĥ. Suppose
we want to deal with N + 1 quantiles, being q̂1 = 0 and q̂N+1 = 1. One possible definition of
the empirical quantile of order k/N is obtained by the formula

q̂k+1 = ti +
ti+1 − ti

Ĥ(ti+1)− Ĥ(ti)
·
(
k

N
− Ĥ(ti)

)
, if Ĥ(ti) ≤

k

N
< Ĥ(ti+1), (9)

for i = 0, 1, . . . , d − 1 and k = 1, 2, . . . , N − 1. Now set pi = 1/N , i = 1, 2, . . . , N and q̂i,
i = 1, 2, . . . , N+1 as in (9). An IFS estimator of H is Ĥ(1) ·H̃(t) where H̃(t) is the following
IFS:

H̃(t) = H̃u(t) =
N∑

i=1

1

N
u(ŵ−1

i (x))

where ŵ−1
i (x) = (x− q̂i)/(q̂i+1− q̂i) and u is any member of the space of distribution function

on [0, 1]. In (9) we have assumed that H is the distribution function of a continuous random
variable, withH varying linearly between ti and ti+1, but of course any other assumption than
linearity can be made as well (for example an exponential behaviour). A Fleming-Harrington
(or Altshuler) IFS-estimator of S is then

S̃(t) = exp{−Ĥ(1) · H̃(t)}, t ∈ [0, 1] .
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7 Final remarks

We have shown how it is relatively powerful to adopt IFS technique in distribution function
estimation and related quantities (density and Fourier transform). There are several open
issues about the estimators themself. The main open problem is about a better characteri-
zation of the fixed points of the IFS in order to establish non asymptotic properties for the
estimators. The second, and commonly not discussed in the IFS literature, is the problem
of choosing the maps w. There recently appeared some papers that discuss the relationship
of some class of IFS and wavelets analysis as well as some papers on local IFS (possible
candidates to density function approximators) but the results there in are not directly useful
to statistics.
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