plot.moc {moc}R Documentation

Plotting methods for MOC models

Description

plot.moc plots the fitted and observed values of a fitted moc model.

profilesplot is a generic method to plot subject profiles of fitted model.

profilesplot.moc plots the response profiles of each subject of fitted moc object with colors that are a posterior probability mix of group colors.

plot.residuals.moc nicely plots and object of type residuals.moc.

mix.colors.moc computes subject colors by mixing group base colors accordind to the subject posterior probabilities.

Usage


  plot(x,against=1:x$ntimes,main="",xlab="",ylab="",
                      prob.legend=TRUE,scale=FALSE,group.colors=rainbow(x$groups),...)

  plot(x,against="Index",groups=1:dim(x)[3],sunflower=FALSE,...)

  profilesplot(x,...)
  
  profilesplot(x,against=1:x$ntimes,main="",xlab="",ylab="",
                     col.legend=TRUE,scale=FALSE,
                     group.colors=rainbow(x$groups),...)

  mix.colors.moc(object,group.colors=rainbow(object$groups))
  
 

Arguments

x,object Objects of class moc or residuals.moc.
against x axis for plotting the profiles. A variable against which to plot the residuals or the strings
Index:
The default, use the index of the residuals array.
Observation:
Use the column (variable) index of the response matrix.
Subject:
Use the row (subject) index of the response matrix.
main, xlab, ylab, ... Arguments to be passed to plot, matplot.
prob.legend, col.legend Add a mixture probabilities and color legend to the plot.
scale Specify if each variable should be scaled.(see scale)
group.colors The groups colors to be used in the plot.
groups Specify for which groups residuals.moc plot is requested.
sunflower Specify if a sunflower or standard plot is requested.

Value

plot.moc invisibly returns a list containing the plotted values and scaling information. plot.residuals.moc invisibly returns the plotted residual values. mix.colors.moc invisibly returns subject mixed colors in hexadecimal RGB values.

Author(s)

Bernard Boulerice <Bernard.Boulerice@umontreal.ca>

See Also

moc,residuals.moc,print.moc, AIC.moc


[Package Contents]