
Comments on algorithmic design

Robert E. Wheeler

January 29, 2004

Copyright c°2004 by Robert E. Wheeler

1

Contents
1 Introduction 4

2 The varieties of designs 5
2.1 One-way layouts . 5
2.2 Higher way layouts . 8
2.3 Factorial Designs . 8
2.4 Blocked experiments . 9
2.5 Response surface experiments . 11

2.5.1 The form of X . 11
2.5.2 Design criteria . 12
2.5.3 Design spaces . 13
2.5.4 Goals . 13
2.5.5 Mixture experiments . 14
2.5.6 Blocking response surface experiments 14

3 Confounding 15

4 Examples using R 16
4.1 Approximate theory designs . 16

4.1.1 Support Points . 16
4.1.2 Rounding Approximate Designs 18

4.2 Exact Designs . 19
4.2.1 Classical Designs . 20

4.2.1.1 Fractional Factorial 20
4.2.1.2 Orthogonal design 20
4.2.1.3 Central composite 21
4.2.1.4 Latin square . 21

4.2.2 Factorials . 22
4.2.2.1 Two level Designs 22
4.2.2.2 Mixed level designs 24

4.2.3 Response surface designs 25
4.2.3.1 Three variables in a cube 25
4.2.3.2 Design augmentation 28
4.2.3.3 Mixture designs 30
4.2.3.4 Large problems 31
4.2.3.5 Constrained regions 33

4.2.4 Starting designs . 34
4.3 Blocked designs . 35

4.3.1 Balanced and partially balanced designs 36
4.3.2 Blocking illustration . 37
4.3.3 Improving individual blocks with the Dp criterion 39
4.3.4 Orthogonal Blocking { Nguyen's ideas 41
4.3.5 Blocking with whole plot factors (split plots) 42
4.3.6 Multistratum blocking . 45

2

5 Appendix A: Federov's algorithm 49

6 Appendix B: Blocking designs 50
6.1 Background . 50

6.1.1 Blocking models . 50
6.1.2 Interblock, intrablock information and optimal blocking. . 52
6.1.3 Measuring intrablock information 53

6.2 Alternative criteria . 54
6.3 Updating equations for the Dpc criterion. 55
6.4 Updating equations for the D criterion. 56
6.5 Updating equations for the D criterion when there are interac-

tions between block factors and within block factors. 57
6.6 Computational note . 58

3

1 Introduction
This paper has three goals:

1. To brie°y describe algorithmic design in a way that will be helpful to those
who primarily use other experimental design methodologies.

2. To provide examples illustrating the use of the functions in AlgDesign.

3. To document the mathematical expressions used in the programs and call
attention to any di®erences from those available in the literature.

The general model used for experimental design is

Y = X¯ + §b
i=1Zi°i + ²; (1)

where Y is a vector of N observations, X is a N £k matrix, Z i; (i = 1 : : : b) are
N £mi matrices. The vectors °i; (i = 1 : : : b) and the N vector ², are random
and independent of each other with variances ¾2

i Imi and ¾2
² I , respectively.

The variance of Y is V ¾2
² where V = §b

i=1XiXT
i ½2

i + I , and ½i = ¾2
i =¾2

² .
The generalized least squares estimator of ¯ is ^̄ = (XTV ¡1X)¡1XTV ¡1Y ,
and thus the covariance is M¡1¾ 2=N , where M = XT V ¡1X=N .

From this it may be seen that the \best" estimates of the parameters are
obtained when M¡1 is made as small as possible in some sense.

Established, or classical, designs that are described in the various textbooks
and papers on the subject, all ¯t within a larger framework wherein designs
are constructed to meet various criteria for the information matrix, region of
experimentation, and model. Algorithmic optimization of these criteria will
produce the above mentioned designs. Simply replaying tables of such designs
is not the goal of algorithmic design, but rather the goal is to extend these
criteria to the often awkward conditions of practical experimentation which
defy standard designs, and to produce highly e±cient designs not in the canon.

For example, a 36¡1 factorial requires 243 observations to estimate 28 terms
if the model is quadratic; thus, there are 215 degrees of freedom for error, which
even to the most conservative experimenter, must seem to be a great many. Of
course, power calculations may indicate that one needs many observations in
order to estimate the coe±cients with adequate precision. More commonly, how-
ever, one would be satis¯ed with something like 10 degrees of freedom for error
and would like an experiment with about 40 observations. The canon contains
no suitable design, but an algorithmic calculation will create a 40 run design
with coe±cient variances only 10% larger than those for the 243 observation
fractional factorial.

The model described by equation (1) contains multiple error terms. This is
quite unrealistic. To be sure, in the analysis, estimates of the several variance
components can be obtained, but in the design phase, there is very seldom a
rational basis for their specī cation, and the \best" design does depend on their
values. Fortunately, a great many experimental problems involve only one or

4

at the most two variance components. The problem of designing with multiple
error terms is not one that has not been generally solved for established designs.

A simply written survey of some of the ideas involved is presented in Chapter
7 of Cox and Reid [2], and a longer, but equally simply written, exposition may
be found in the ¯rst part of Atkinson and Donev [1].

2 The varieties of designs

2.1 One-way layouts
The very ¯rst statistical experiment [12] was a simple one-way layout with equal
numbers of observations at each level. The estimates were uncorrelated because
randomization was employed (its ¯rst use in an experimental setting). This
simple experimental arrangement may be represented by a table with observed
values yi in the cells:

level 1 y1
level 2 y2
level 3 y3

For this, the structure of X could be

I =

0
@

1 0 0
0 1 0
0 0 1

1
A ;

which means that M is diagonal, and the estimates uncorrelated. If there are
ni replications at each level, then X comprises replications of the rows of I , and

M =
1
N

0
@

n1 0 0
0 n2 0
0 0 n3

1
A ;

where N =
P
ni.

The estimates of the parameters are easy to compute, being the means of
the cells, ~̄i = ¹yi for i = 1; 2; 3. Simplicity of computation was very important
in the days before computers, and many standard designs require nothing more
than simple arithmetic for their analysis. In order to preserve this simplicity,
various schemes have been developed for \¯lling in" missing data to preserve
the computational protocol: but this is another topic, and our concern is with
design.

The only design question is the number of observations in each cell. If N is
¯xed, then it is easy to see1that the expected variance of any pairwise contrast

1The expected variance of a pairwise contrast is proportional to 1
n+x + 1

n¡x = 2n2

n2¡x2 ,
where x is an integral increment or decrement. This is obviously minimized for x= 0.

5

of the parameter estimates is minimized by making the ni equal. Almost all
of the discussion of e±ciency in the standard texts, such as Cochran and Cox
[5] is in terms of pairwise contrasts, and by and large this has been the major
criterion in constructing designs. It is however a specialized instance of more
general criteria. In particular, maximizing the determinant of M leads to the
same design.

The form of X is not unique, since any non-singular linear transformation
of the parameters, say from X¯ to XTT¡1¯ = Z°, will leave unchanged the
statistical characteristics of the experiment. For example, the F-ratio for the
single factor is unchanged by such a transformation.

A common transformation restates the parameters in terms of deviations
from their mean, producing \main e®ects." For example, one might use

T =

0
@

1 ¡1 ¡1
1 1 0
1 0 ¡1

1
A ;

with

T¡1 =
1
3

0
@

1 1 1
¡1 2 ¡1
¡1 ¡1 2

1
A :

The ¯rst form has a parameter (¯1; ¯2; ¯3) for each level, while the new
one has parameters representing a mean ¯: = 1

3 (¯1 + ¯2 + ¯3), and the main
e®ects (¯2 ¡ ¯:), (¯3 ¡ ¯:). Although apparently asymmetric, all main e®ects
are estimated, since (¯1 ¡ ¯:) = ¡(¯2 ¡ ¯:) ¡ (¯3 ¡ ¯:). Each of these main
e®ects has the same variance, but in contrast to the original parameters, they
are correlated: the expected value of the correlation is 0.67 in this example.

Correlation among parameter estimates is common in experimental design,
and can lead to misinterpretations, since the observed magnitude of an e®ect
may be due to a substantial value for another parameter. The usual technique
for dealing with this problem is to use an omnibus test for all parameters of
interest and then to follow this up with multiple comparisons using contrasts
among the parameters. That is to rely on ANOVA. The point is important
especially in connection with response surface designs which can tempt the
experimenter into the misinterpretation of individual parameters.

Another transformation that is frequently used is the orthogonal represen-
tation

T =

0
@

1 ¡1 ¡1
1 0 2
1 1 ¡1

1
A ;

which produces uncorrelated estimates of the parameters ¯:, (¯3 ¡ ¯1)=2, and
(¯2¡ (¯1 +¯3)=2)=3. These parameters are interpretable as linear and quadratic
components if the levels of the variable are from a continuum such as time or
temperature.

There are basically three types of variables in experimentation: (1) cate-
gorical variables, which assume discrete levels unrelated to each other, such as

6

\old men," \young men," etc.; (2) continuous variables such as time or tem-
perature; and (3) random variables such as \¯rst sample," \second sample,"
etc. For the most part we will be concerned with categorical and continuous
variables, but the distinction is not always clear. In the Peirce-Jastrow [12] ex-
periments, the levels were designated by the ratio of two weights (1.015, 1.030,
and 1.060 in one experiment). These can be interpreted as three categories,
\small," \medium," and \large." They could also be interpreted as continuous,
and one might even prefer to take logarithms so that they represent an ap-
proximate doubling between steps. Some experimental designs assume that the
variables are continuous, and some designs for categorical variables are seldom
used for continuous variables, but in general, the distinction between these two
types is not important as far as design construction is concerned.

For ¯xed N, minimizing the expected variance of pairwise contrasts leads to
a design with equal sample sizes in each cell, but after transformation, optimiza-
tion in terms of the parameters is no longer obvious, which serves to indicate
that a better understanding of criteria is needed. At the moment it is useful to
note that ¯xed linear transformations have no e®ect on the maximization of the
determinant of M ; and the maximization of the determinant, in this one-way
example, leads to equal numbers of observations at each level regardless of the
transformation chosen. The trace ofM¡1 is proportional to the average variance
of the parameter estimates, and is also a criterion of interest. Its minimization
is not invariant under linear transformation however, and the number of ob-
servations per level which minimize the trace can di®er from transformation to
transformation.

The original form ofX was not particularly interesting, since the parameters
represent expectations of cell means. When one observes several levels in for
a factor, one naturally inquires about the di®erences between them, and the
original parameters are not informative in this. The second form, however, with
a grand mean and main e®ects as parameters is more informative, in that some
of the most interesting contrasts are expressed as parameters. In times past
this was more important than today, since in certain cases it saved computa-
tional labor. It is of little practical importance nowadays, since one may always
compute any contrast of interest, together with its standard error, with modern
computer software.

There are of course many other possible transformations. One could even

write X as

0
@

1 1 0 0
1 0 1 0
1 0 0 1

1
A, which this has more parameters than data val-

ues, leading to multiple solutions. Except in very special cases, one may as
well choose a non-singular transformation, as in the previous forms, since any
function of the parameters is readily computed from such. For the most part,
forms involving a grand mean are preferred. The general structure of X is then
X = [1; Xm], where the column rank of Xm is k ¡ 1.

7

2.2 Higher way layouts
For two factors, one has a two way layout:

y1;1 y1;2 y1;3
y2;1 y2;2 y2;3
y3;1 y3;2 y3;3

The basic parameterization of one parameter per cell is seldom used, rather,
more informative parameterizations are common, such a main e®ect, interaction
form such as

X = [1; Xme® ; Xint] =

0
BBBBBBBBBBBB@

1 ¡1 ¡1 ¡1 ¡1 1 1 1 1
1 1 0 ¡1 ¡1 ¡1 ¡1 0 0
1 0 1 ¡1 ¡1 0 0 ¡1 ¡1
1 ¡1 ¡1 1 0 ¡1 0 ¡1 0
1 1 0 1 0 1 0 0 0
1 0 1 1 0 0 0 1 0
1 ¡1 ¡1 0 1 0 ¡1 0 ¡1
1 1 0 0 1 0 1 0 0
1 0 1 0 1 0 0 0 1

1
CCCCCCCCCCCCA

;

where Xint is an interaction expansion of Xme® obtained by taking cross prod-
ucts. The main e®ect estimates for the ¯rst factor are (y1:¡y: :; y2:¡y::; y3:¡y::),
where dots denote averages, and similar estimates for the other factor. An in-
teraction is a product, a typical one is (y2:¡y::)(y:3¡y::). All these are obtained
by simple summation as indicated by the pattern in X above.

As before, the optimum allocation is equal numbers of observations in each
cell of the two-way layout, which is also the allocation obtained by maximizing
the determinant of M .

2.3 Factorial Designs
As Lorenzen and Anderson [15] have shown, linear experimental designs may
be expressed as factorial designs involving linear models which are variants of
the fundamental model in equation (1): the usual enhancement is to include
additional error terms.

When there are three factors, there will be columns in X representing three
way interactions, and as the number of factors increase, so does the order of the
maximum interaction. In practice, designs with several factors require substan-
tial numbers of observations, and the question arrises as to their utility. One
solution is to select rows from X which will enable the estimation of main e®ects
and low order interactions. In doing this, information about the higher order in-
teractions is confounded and they are no longer estimable. The complete layout
is called a factorial layout, and the reduced layout obtained by selecting rows
from X is called a fractional factorial. The idea was ¯rst addressed by Finney
[8].

8

Note that the ¯rst three rows for columns 2 and 3 is repeated in the next
three rows and in the last three. Each of these repeats is associated with ¯xed
values for the second factor, hence one can estimate the parameters for the ¯rst
factor in each of the three repeats. Of course these estimates are conditional on
the second factor; however, if it were possible to assume that the second factor
had no e®ect, then one could use the estimates from the ¯rst repeat alone. One
could even pool the estimates from the three repeats to obtain greater precision.

When there are several factors in an experiment, patterns enabling the esti-
mation of low order e®ects will be found that are associated with ¯xed values of
high order interactions, and the technique of fractional factorial design consists
of selecting one of the several repeats associated with a ¯xed high order inter-
action. All this, of course, on the assumption that the high order interaction is
negligible.

An easy illustration of this is the fractioning of a two-level experiment. Part
of the pattern for four two level factors is

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1 ¡1 ¡1 ¡1 ¡1 1
1 ¡1 ¡1 1 1 1
1 ¡1 1 ¡1 1 1
1 ¡1 1 1 ¡1 1
1 1 ¡1 ¡1 1 1
1 1 ¡1 1 ¡1 1
1 1 1 ¡1 ¡1 1
1 1 1 1 1 1
1 ¡1 ¡1 ¡1 1 ¡1
1 ¡1 ¡1 1 ¡1 ¡1
1 ¡1 1 ¡1 ¡1 ¡1
1 ¡1 1 1 1 ¡1
1 1 ¡1 ¡1 ¡1 ¡1
1 1 ¡1 1 1 ¡1
1 1 1 ¡1 1 ¡1
1 1 1 1 ¡1 ¡1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

;

where the two-level factor are coded -1 and 1, and only the mean, main e®ect
and four-way interaction columns are shown. The rows have been rearranged
according to the levels of the four-way interactions, and it is easy to see that if
the experiment were divided in two according to the four-way levels, that each
half would provide data for estimating the main e®ects of all four factors. Such
a fraction is called a half fraction and denoted 24¡1.

As before, the allocation that minimizes the variance of an estimate of pair-
wise contrasts is an equal allocation of observations to the cells, and this is also
the allocation that maximizes the determinant of M for a ¯xed number of trials.

2.4 Blocked experiments
One of the ¯rst problems that arose in the early days of experimental design
was in the practical allocation of experimental units. It often happens that the

9

amount of material or time available is inadequate for all experimental trials.
Many things happen from trial to trial which are unrelated to the treatment ap-
plied. For the most part these can be lumped together as \experimental error,"
but this becomes less tenable if the material or conditions of the experiment
change. For example, Peirce and Jastrow [12] found that their judgments im-
proved as their experiments progressed, and they did not think it fair to directly
compare results taken from a late series with those from an earlier one.

Early on, the idea of dividing the experiment into \blocks" arose. In this,
one seeks to arrange the trials in such a way that the comparisons of interest
may all be made in close proximity, so that disparities due to extraneous factors
can be avoided. If it is possible to fraction an experiment so that each fraction
¯ts into a homogeneous block, then one can estimate the parameters in each
block and pool the estimates. To the ¯rst order, the di®erences between blocks
will be captured by the constant terms which can be discarded. If it is not
possible to fraction the experiment, then other methods must be used.

In general, for each block there is a constant column, so that X = [Ib; ~X],
where ~X is the block centered2 form of the expanded design matrix and Ib is
a block diagonal matrix with columns of unities on the diagonal and zeros o®-
diagonal. Thus X for a blocked experiment has as many constant columns as
there are blocks. Since the columns of ~X and those of Ib are orthogonal, the
least squares parameter estimates for the factors do not depend on the block
parameters3 when the number of blocks and their sizes are ¯xed.

The model for a blocked experiment is

~Y = [Ib ; ~X]¯ + ~²; (2)

where ~Y ; ~X and ~² correspond to values in equation (1) after centering by block
means, and ¯T = (¯Tb ; ¯

T
X). The uncentered observations have two error compo-

nents, one within the block and one between the blocks. The centering cancels
the between block error component. Maximizing the determinant of ~M = ~XT ~X
will lead to the same design as minimizing the variances of pairwise di®erences
within blocks.

In this formulation, it is assumed that the block parameters ¯b, are nuisance
parameters, of no particular interest. Indeed, they are often random, such as
\oven load 1," \oven load 2," etc., and although one could treat them in the
usual way and estimate variance components, the number of blocks involved is
often so small that the estimates are hardly worth having.

An incomplete block experiment is one in which the trials are arranged so
that contrasts of interest can be estimated within the several blocks. For exam-
ple, suppose that one can complete only 3 trials per day, but that 7 treatments
are to be compared. If 21 trials are arranged as in Table (1), then it may seen
that each pair of treatments occurs together exactly once in the same block.

2The block mean is subtracted from each value in the block.
3The least square parameter estimates are (XTX)¡1XT Y , andXTX =

³ ~XT ~X 0
0 nI

´
,

when all blocks have n trials.

10

Thus the di®erences between treatments may all be estimated without the error
that might be caused by block e®ects.

Table 1: A balanced incomplete block experiment

block 1 1 2 4
block 2 2 3 5
block 3 3 4 6
block 4 4 5 7
block 5 1 5 6
block 6 2 6 7
block 7 1 3 7

The X matrix for this experiment has 21 rows selected from a contrast matrix
for a 7 level factor. Any 7£ 7 matrix of full column rank will do. The default
contrast matrix built into R has a constant column followed by 6 mutually
orthogonal columns: 0

BBBBBBBB@

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 0

1
CCCCCCCCA

:

The constant column is discarded, because each block has its own constant
column. In this case, the design in Table (1) will be obtained when ~M is
maximized.

The blocks are not always nuisance parameters, and in some practical sit-
uations, such as split-plots, represent factors of interest. The model for this is
~Y = ~X¯ + Xb¯b + Zµ + ~², where Xb and ¯b represent the whole plot factors,
while Z and µ represent the random block components. This model is discussed
in Appendix B.

There are other, more complicated blocking schemes involving blocks in a
two dimensional layout, but these will not be discussed. Blocking of response
surface, and factorial experiments will be discussed later.

2.5 Response surface experiments
2.5.1 The form of X

When the variables are continuous, it is natural to envision the experimental
space as a multidimensional continuum { a multidimensional box or sphere.
Predictions from the \model" may assume any value in the range of the re-
sponse. Equation (1) still applies, but now X = [1; F (x)], where F (x) =

11

ff1(x); : : : ; fk (x)g for vector valued functions fi(x); i = 1 : : : k, and x is a set of
N design vectors x = fx1; : : : ; xNgT , where fxj = (xj;1; : : : xj;p)T ; j = 1 : : : Ng.

For example if p = 2, N = 9, and if both design variables range from -1 to
1, then x might look like

x =

0
BBBBBBBBBBBB@

¡1 ¡1
¡1 0
¡1 1

0 ¡1
0 0
0 1
1 ¡1
1 0
1 1

1
CCCCCCCCCCCCA

:

The fi() are terms in the model. Frequently, the fi() describe a polynomial,
for example row j of F (x) might be fxj;1; xj;2; x2

j;1; x
2
j;2; xj;1xj;2g with k = 6,

and

F (x) =

0
BBBBBBBBBBBB@

¡1 ¡1 1 1 ¡1
¡1 0 1 0 0
¡1 1 1 1 ¡1

0 ¡1 0 1 0
0 0 0 0 0
0 1 0 1 0
1 ¡1 1 1 ¡1
1 0 1 0 0
1 1 1 1 1

1
CCCCCCCCCCCCA

:

2.5.2 Design criteria

The design problem becomes one of selecting points in the multidimensional
region that will \best" estimate some important function of the parameters. In
this case, there is no obvious criterion as there was for one-way layouts. See
Federov [13] or Silvey [19] for a discussion of this topic.

The one most generally used is the D criterion, which maximizes the de-
terminant of M = F (x)TF (x) for a ¯xed number of design points. There are
several rationales for using D. For example, a con¯dence ellipsoid for ¯ is

(^̄¡ ¯)TM (^̄¡ ¯) · constant;

and since the volume of this ellipsoid is proportional to jM j¡ 1
2 , maximizing

M will make this volume as small as possible. Similarly, the numerator of the
F-test when the errors are iid normal, is proportional to ^̄TM ^̄, which by the
same argument leads to the minimization of M for a ¯xed number of design
points.

12

2.5.3 Design spaces

Although response surface problems are de¯ned for continuous variables which
can assume any real value in a region, only a subset of the points support the
design. Any point not in this set of support points may be exchanged for a point
in the set with an increase in the determinant. For quadratic models, this set of
support points is the set of points of a three level factorial. In general, one can
replace the continuous region with a set of discrete points, such as the points
from a factorial with an appropriate number of levels. The actual support points
are always in the neighborhood of the factorial points, and improvements due
to their use are minor [3].

2.5.4 Goals

There are usually two goals of interest in a response surface experiment: para-
meter estimation, and prediction.

Although the parameters themselves are of interest, the fact that the model
is an approximation, makes them less interesting than in other forms of experi-
mentation, where the factors represent important attributes. Polynomial models
act as mathematical French curves to graduate the response surface, and within
a given region will usually mimic the actual underlying functionality, but by
themselves have no meaning; and clearly are false outside the region. It is an
error to think of them as Taylor series approximations, which is a siren that
often tempts those new to the ¯eld. One can parcel out the terms in a polyno-
mial model as if they were factors and interactions and perform ANOVA. For
most response surface designs, the ANOVA sums of squares will not be indepen-
dent, but they still provide likelihood ratio tests for the individual sources, and
looking at such is a better practice than attempting to interpret the individual
terms.

Prediction is a related, but independent goal. For approximate theory, where
fractional points are allowed, the general equivalence theorem [1] says that a
D-optimal design is also a G-optimal design, where G is the criterion that mini-
mizes the maximum variance in the experimental region. Thus, for approximate
theory, the maximum prediction variance will be minimized by maximizing4 jM j.
For exact theory, where one has a discrete set of N points in the design, the two
criteria are not equivalent, although G can be used to bound D.

A criterion that deals speci¯cally with prediction is the I criterion, which is
de¯ned as the average prediction variance in the region. In spite of the apparent
di®erence between the two criteria, the points chosen by the D and I criterion
are similar. The I criterion, by and large, tends to select its points from the
support points for the D criterion.

4In approximate theory, the fractional weights add to unity, thus ensuring a maximum

13

2.5.5 Mixture experiments

Since the variables are continuous, they may represent mixtures, as for example,
mixtures of components in a paint. In these, the variables are constrained to
sum to a constant, usually unity. An example of a design for three mixture
components is shown in Table (2).

Table 2: A mixture experiment

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
0.5 0.5 0.0
0.5 0.0 0.5
0.0 0.5 0.5

Because of the constraint, ordinary polynomial models will have redundant
terms. This may be dealt with by appending non-estimable constraints to the
design, or by reformulating polynomial models to account for the constraint.
The constraint method may be useful in the analysis in those cases where it is
desired to interpret the coe±cients. Cox [7] treats this problem. For design,
there is no advantage in carrying redundant terms through the calculation, and
so reformulated models is appropriate. These have been given by Sche®¶e [18],
and elaborated upon by Gorman and Hinman [10]. The Sche®¶e models for three
variables are shown in Table (3). Note that the constant term is omitted from
these models, which among other things, means that they are una®ected by
block e®ects.

Table 3: Sche®¶e models

linear X1 +X2 +X3
quadratic X1 +X2 +X3 +X1X2 + X1X3 +X2X3

cubic X1 +X2 +X3 +X1X2 + X1X2 +X2X3+
X1X2(X1 ¡X2) + X1X3(X1 ¡X3) +X2X3(X2 ¡ X3)

2.5.6 Blocking response surface experiments

Blocking is often required when using response surface designs which require
too many trials for a single physical test. The division into blocks is seldom
symmetrical, and instead of seeking to balance pairs in the blocks, one seeks
to obtain parameter estimates orthogonal to block e®ects. In general, the D
criterion is useful; however, when the blocks are of a size to allow estimation
of the parameters within each block, the resulting designs may be D-optimal in

14

toto, but are not necessarily D-optimum within blocks. An auxiliary criterion,
Dp is then useful, which attempts to maximize the product of the determinants
of the individual blocks. Table (4) shows the cross product matrix for one block
of a 24, blocked into two 8 run blocks by using the D criterion. The model is
linear.

Table 4: Cross product of an 8 run block of a 24

8 0 -4 0
0 8 0 0
-4 0 8 0
0 0 0 8

Using the Dp criterion, the crossproduct matrix becomes diagonal, and the
block is shown in Table (5). Note that this is not the usual fractioning of a
24¡1 in that no higher order interaction is used to divide the trials. The usual
fractioning results in interaction columns orthogonal to main e®ect columns. A
Dp design will not usually have this property.

Table 5: One block from a blocked 24

1 -1 -1 -1
-1 1 -1 -1
-1 -1 1 -1
1 -1 1 -1

-1 1 1 -1
1 1 1 -1

-1 -1 1 1
1 1 1 1

3 Confounding
Confounding is a very important criterion: it is a dominant factor in the struc-
ture of established designs. The fact that a parameter estimate is signi¯cant,
is always tempered by the degree to which the parameter may be confounded
with other parameters in the design. Builders of established designs have taken
pains to eliminate confounding; but this often has the side e®ect of producing
oversize designs.

A measure of confounding it the degree of diagonality of a design. Since
positive de¯nite information matrices, M , have weighty diagonals5, this may be

5The 2£ 2 principal minors are positive

15

measured by comparing jM j with the product of the diagonal elements of M .
Diagonality may thus be de¯ned as O = [jM j=Q diag(M)]1=k , where k is the
number of columns of M .

It is important to note that a design which maximized jM j also seems to
maximize O, which means that the confounding is minimized by designs that
maximize jM j.

4 Examples using R

4.1 Approximate theory designs
Abstraction and simpli¯cation are often useful in understanding di±cult prob-
lems, since the simpler structure often leeds to insights into the original prob-
lem. This is the case in experimental design, where the X in the basic model,
Y = X¯ + ², can assume many forms, and almost always leads to combinator-
ial problems of one sort or another. The useful simpli¯cation, due I believe to
Elfving [4], is to write the observational weights as p = 1=N , where N is the
number of observations, and then to substitute a probability. Thus one might
write the matrix M = XTX=N = XT PX , where P is a diagonal matrix, all of
whose diagonal values are p; and then to allow the elements of P to assume any
real values, so long as the trace of P is unity. This is the germ of approximate
theory, which by an large replaces consideration of special combinatorial cases
with a uni¯ed analytical approach.

4.1.1 Support Points

One of the interesting results that °ow from this simpli¯cation is that only a
subset of the possible points in an experimental region are support points for an
experimental design. Consider a simple quadratic model in three variables, and
assume that the variables can assume seven levels (¡3;¡2;¡1; 0; 1;2; 3). The
candidate set has 37 possible points, and running optFedrov() with a quadratic
model in the following fashion will produce a list of the support points for the
D criterion:

dat<-gen.factorial(levels=7,nVars=3,center=TRUE,varNames=c("A","B","C"))
desD<-optFederov(~quad(.),dat,approximate=TRUE)
desD$design[c(1:5,23:27),]

Proportion A B C
1 0.069 -3 -3 -3
4 0.029 0 -3 -3
7 0.072 3 -3 -3
22 0.022 -3 0 -3
25 0.017 0 0 -3
...
319 0.024 0 0 3
322 0.020 3 0 3

16

337 0.071 -3 3 3
340 0.024 0 3 3
343 0.075 3 3 3

There are 27 support points in all, and each assumes only the three values
(¡3; 0; 3). The support points for a quadratic model in fact correspond to the
points of a 3m factorial, where m is the number of variables. The support
points for other criteria are di®erent. For example, the support points for the I
criterion in this example are as below, where it may be seen that points not on
the 3m grid are obtained.

desI<-optFederov(~quad(.),dat,approximate=TRUE,criterion="I")
desD$design[c(1:5,27:31),]

Proportion A B C
1 0.042 -3 -3 -3
4 0.030 0 -3 -3
7 0.043 3 -3 -3
22 0.034 -3 0 -3
25 0.021 0 0 -3
...
322 0.028 3 0 3
337 0.038 -3 3 3
340 0.035 0 3 3
341 0.002 1 3 3
343 0.040 3 3 3

This result indicates that experimental regions are not quite what they ap-
pear to be with respect to experimental designs. Even though one thinks of a
variable as continuous between some limits, the points in this region are not all
candidates for inclusion in an optimal experimental design. For example the
support points for a quadratic polynomial on the real line are the two extreme
points and the mid point. No other points are involved.

Even after accepting this fact, there are still surprises. The support points
on the real line between 1 and 2 may be obtained as follows. These may be
shown to be the support points on the continuous interval between 1 and 2.

desA<-optFederov(~quad(.),data.frame(A=1+((0:100)/100)),approximate=TRUE)
desA$design

Proportion A
1 0.333 1.0
51 0.333 1.5
101 0.333 2.0

The slight change caused by running the interval from 1.01 to 2 produces, the
following, in which the proportions are quite di®erent from the previous ones,
although there still remain only three support points.

17

desB<-optFederov(~quad(.),data.frame(A=1+((1:100)/100)),approximate=TRUE)
desB$design

Proportion A
1 0.485 1.01
50 0.029 1.50
100 0.485 2.00

The di®erence between these examples is due to the fact that the precise
midpoint is not included in the second set of candidate points. When it is, the
optimum design agrees with the optimum design on the continuous interval, as
the following shows:

desC<-optFederov(~quad(.),data.frame(A=c(1+((1:100)/100),1.505)),approximate=TRUE)
desC$design

Proportion A
1 0.333 1.010
100 0.333 2.000
101 0.333 1.505

The basic conclusion from these examples is that an optimal design is a
function of the set of candidate points, and if these candidate points fail to
include the support points of the underlying continuum, the design will di®er
from the optimal design on the continuum.

Atkinson and Donev [1] give a useful table of support points and their weights
for quadratic models in cubic regions on page 130.

4.1.2 Rounding Approximate Designs

The sample size for an experimental design must be integral, and thus the
question of rounding arises. The proportions in the ¯rst example in the previous
section may be rounded by specifying the nTrials parameter, as follows:

dat<-gen.factorial(levels=7,nVars=3,center=TRUE,varNames=c("A","B","C"))
desDR<-optFederov(~quad(.),dat,approximate=TRUE,nTrials=20)
desDR$design

Rep.. A B C
1 1 -3 -3 -3
4 1 0 -3 -3
7 1 3 -3 -3
22 1 -3 0 -3
28 1 3 0 -3
43 1 -3 3 -3
49 1 3 3 -3
148 1 -3 -3 0
154 1 3 -3 0
175 1 3 0 0
190 1 -3 3 0

18

193 1 0 3 0
295 1 -3 -3 3
298 1 0 -3 3
301 1 3 -3 3
316 1 -3 0 3
319 1 0 0 3
337 1 -3 3 3
340 1 0 3 3
343 1 3 3 3

The unrounded design had 30 support points, but the rounding has discarded
ten of them to produce a 20 run design. Had 40 trials been speci¯ed, all 30
support points would have been included and the result would have been:

desDR2<-optFederov(~quad(.),dat,approximate=TRUE,nTrials=40)
desDR$design[c(1:5,26:30),]

Rep.. A B C
1 2 -3 -3 -3
4 1 0 -3 -3
7 2 3 -3 -3
22 1 -3 0 -3
25 1 0 0 -3
...
319 1 0 0 3
322 1 3 0 3
337 2 -3 3 3
340 1 0 3 3
343 2 3 3 3

The rounding is done with an algorithm for e±cient rounding of experimen-
tal designs by Pukelsheim and Rieder [16] which produces the smallest loss in
e±ciency for several criteria. The efficient.rounding() function is included
as part of the package.

4.2 Exact Designs
Away from the world of theory, experimental designs are composed mostly of
unique points. Some replication is done to aid in the estimation of error, but for
the most part, practical constraints dominate and limit the number of points
available. The rounding of approximate theory designs has never been very sat-
isfactory, because such designs can usually be improved upon when the sample
size is ¯xed. In practice, then, one has to deal with the combinatorial problem;
however, insights from approximate theory are very helpful.

The most successful algorithm for dealing with exact designs is due to
Federov (13). It starts with a non-singular design matrix, and sequentially
exchanges points until a local optima is found. Since local optimas abound, the
process is usually repeated a number of times and the best design reported.

19

With the exception of Ge, the criteria e±ciencies are not known for exact
designs, and it is therefore not possible to tell from their values whether or not a
design is globally optimal. The e±ciencey Ge, is de¯ned relative to the opimum
approximate theory design and is thus a useful guide when judging an exact
design. In particular, a Ge of unity not only indicates that the exact design is
optimum, but that the optimum weights are all equal.

4.2.1 Classical Designs

Classical designs can be produced algorithmically, since they are almost invari-
ably optimal designs. It is simply a matter of choosing the correct number of
trials and repeating the algorithmic calculations until the global optimum is
found. This section illustrates this. The advantage of algorithmic design lies,
however, in its ability to ¯nd optimal or near optimal designs for situations in
which classical designs do not or can not exist.

4.2.1.1 Fractional Factorial The following design is a one third fraction
of a 33. The confounding de¯nition is AB2C2.

dat<-gen.factorial(levels=3,nVars=3,varNames=c("A","B","C"))
desT<-optFederov(~.,dat,nTrials=9)
desT$design

A B C
2 2 1 1
6 3 2 1
7 1 3 1
12 3 1 2
13 1 2 2
17 2 3 2
19 1 1 3
23 2 2 3
27 3 3 3

4.2.1.2 Orthogonal design An orthogonal design, similar to a 12 run
Plackett-Burman design can be produced by the following. If you try this,
you may need to set nRepeats to more than 20 to get an optimum design,
which is marked by a Ge of unity.

dat<-gen.factorial(levels=2,nVars=11,center=TRUE)
desPB<-optFederov(~.,dat,12,nRepeats=20)
desPB$design
$design

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
180 1 1 -1 -1 1 1 -1 1 -1 -1 -1
317 -1 -1 1 1 1 1 -1 -1 1 -1 -1
332 1 1 -1 1 -1 -1 1 -1 1 -1 -1

20

609 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1
734 1 -1 1 1 1 -1 1 1 -1 1 -1
903 -1 1 1 -1 -1 -1 -1 1 1 1 -1
1111 -1 1 1 -1 1 -1 1 -1 -1 -1 1
1161 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1
1510 1 -1 1 -1 -1 1 1 1 1 -1 1
1584 1 1 1 1 -1 1 -1 -1 -1 1 1
1810 1 -1 -1 -1 1 -1 -1 -1 1 1 1
2043 -1 1 -1 1 1 1 1 1 1 1 1

4.2.1.3 Central composite A central composite design in three variables
may be obtained. This central composite is an optimal exact design. The D
and G e±ciencies of the following, relative to the optimum approximate theory
design, are 98% and 89%.

dat<-gen.factorial(3,3,center=TRUE,varNames=c("A","B","C"))
desC<-optFederov(~quad(A,B,C),dat,nTrials=14,evaluateI=TRUE,nR=100)
desC$design

A B C
1 -1 -1 -1
3 1 -1 -1
5 0 0 -1
7 -1 1 -1
9 1 1 -1
11 0 -1 0
13 -1 0 0
15 1 0 0
17 0 1 0
19 -1 -1 1
21 1 -1 1
23 0 0 1
25 -1 1 1
27 1 1 1

4.2.1.4 Latin square One can even ¯nd Latin squares; although this is
more di±cult, which is why it is repeated 1000 times, and that may not be
enough if you were to try it.

dat<-gen.factorial(5,3)
desL<-optFederov(~.,dat,nTrials=25,nRepeats=1000)
cs<-xtabs(~.,desL$design)
{xx<-matrix(0,5,5); for (i in 1:5) xx=xx+cs[1:5,1:5,i]*i;xx}

X2
X1 1 2 3 4 5

1 1 3 4 5 2
2 5 1 3 2 4

21

3 4 2 1 3 5
4 3 5 2 4 1
5 2 4 5 1 3

The reason the above designs appear, is because most classic designs are
D-optimal, and indeed the above designs are D-optimal.

4.2.2 Factorials

According to Lorenzen and Anderson [15], all linear designs are factorial, and
the various names such as Latin square, split-plot, incomplete block, etc. are
due to historical processes and not to anything essentially di®erent in their
construction or analysis. There is considerable justi¯cation for this viewpoint,
and it does eliminate the need to treat a host of special cases which in essence
di®er mostly in nomenclature. So let's consider a few factorial designs.

4.2.2.1 Two level Designs Two levels designs are very useful. There are
statistical consultants that except for very occasional forays, use nothing else.
Such designs certainly make possible the screening of many variables, as the
12 run orthogonal design, in the previous section, illustrates. A problem with
factorial designs in general is that the number of experimental trials increases
exponentially with the number of variables, while the number of terms of interest
increases linearally. Thus the need to fraction such designs, but even this soon
runs into di±culties.

Consider a 27 design. A full factorial requires 128 trials, while a half fraction
27¡1 requires 64. In both, all two-factor interactions are estimable; however,

there are only 1 +
µ

7
2

¶
such terms. The remaining 35 degrees of freedom

are allocated to error. Surely this is wasteful, but standard methods of frac-
tioning o®er no solution, since a quarter fraction leaves some of the two-factor
interactions unestimable. Instead, consider the following design in 34 trials:

dat<-gen.factorial(2,7,center=TRUE)
desF<-optFederov(~.^2,dat,nTrials=34,nRepeats=100)
desF
$D
[1] 0.9223281

$A
[1] 1.181451

$Ge
[1] 0.675

$Dea

22

[1] 0.617

$design
X1 X2 X3 X4 X5 X6 X7

2 1 -1 -1 -1 -1 -1 -1
5 -1 -1 1 -1 -1 -1 -1
8 1 1 1 -1 -1 -1 -1
11 -1 1 -1 1 -1 -1 -1
19 -1 1 -1 -1 1 -1 -1
...
112 1 1 1 1 -1 1 1
113 -1 -1 -1 -1 1 1 1
116 1 1 -1 -1 1 1 1
119 -1 1 1 -1 1 1 1
126 1 -1 1 1 1 1 1

The design is not optimal, but nearly so, since the D value for the optimal
design is unity, making this one 92% e±cient. Moreover the confounding is min-
imal as indicated by the diagonality of 0.92 and the confounding matrix, shown
below. The columns of the confounding matrix give the regression coe±ceints
of a variable regressed on the other variables. If X is a design matrix and C a
confounding matrix (¡XC) is a matrix of residuals of each variable regressed
on the other variables.

eval.design(~.^2,desF$design,confounding=TRUE)
$confounding

[,1] [,2] [,3] ... [,27] [,28] [,29]
(Intercept) -1.0000 0.0000 0.0000 ... 0.0000 -0.0203 0.0000
x1 0.0000 -1.0000 -0.0323 ... -0.0323 0.0000 0.0323
x2 0.0000 -0.0323 -1.0000 ... 0.0323 0.0000 -0.0323
...
x5:x6 0.0000 -0.0323 0.0323 ... -1.0000 0.0000 -0.0323
x5:x7 -0.0278 0.0000 0.0000 ... 0.0000 -1.0000 0.0000
x6:x7 0.0000 0.0323 -0.0323 ... -0.0323 0.0000 -1.0000

$determinant
[1] 0.9223281

$A
[1] 1.181451

$diagonality
[1] 0.92

$gmean.variances

23

[1] 1.179251

This design has 5 degrees of freedom for estimating error, which some may
consider too small. If so, it is easy to create a larger design. However, the power
function changes rapidly and the gains from larger error degrees of freedom are
smaller than many suppose. Most of the power of a design comes not from a large
error degrees of freedom, but from the averaging that occurs in the coe±cient
estimation; due to the fact that the variance of a coe±cient is proportional to
1=N , where N is the number of trials in the design.

4.2.2.2 Mixed level designs Mixed level factorial designs can be created
in the same way with savings in the number of trials. For example a one half
fraction of a 3224 requires 72 trials to estimate 35 terms. The following design
does it in 40. Note: It is prefereable to switch to orthogonal contrasts when
judgments about the orthogonality of designs are of interest.

options(contrasts=c("contr.sum","contr.poly"))

dat<-gen.factorial(c(3,3,2,2,2,2),factors=1:2)
desFM<-optFederov(~.^2,dat,nTrials=40)
desFM[1:4]
$D
[1] 0.5782264

$A
[1] 2.397925

$Ge
[1] 0.436

$Dea
[1] 0.274

eval.design(~.^2,desFM$design,confounding=TRUE)
$confounding

[,1] [,2] [,3] ... [,33] [,34] [,35]
(Intercept) -1.0000 -0.0346 0.0009 ... 0.0177 0.0328 0.0247
X11 -0.0771 -1.0000 0.5154 ... 0.2885 -0.1956 -0.0467
X12 0.0021 0.5364 -1.0000 ... -0.1327 0.3419 -0.0075
...
X4:X5 0.0186 0.1364 -0.0603 ... -1.0000 0.0828 0.0528
X4:X6 0.0412 -0.1102 0.1850 ... 0.0986 -1.0000 -0.0185
X5:X6 0.0252 -0.0214 -0.0033 ... 0.0511 -0.0150 -1.0000

24

$determinant
[1] 0.5782264

$A
[1] 2.397925

$diagonality
[1] 0.801

$gmean.variances
[1] 2.223677

4.2.3 Response surface designs

These designs treat the model as a mathematical French curve for graduating
the response, which is visualized as a surface in multidimensional space. The
model is invariably a low order polynomial, usually quadratic. The model has
no validity outside the experimental region as decribed by the data, and only in
exceptional cases can it be assumed to represent some underlying function. The
variables are continuous, although it is reasonable to incorporate categorical
variables into the model to allow for baseline changes.

For such designs, the orthogonality or lack of orthogonality of the design is of
small importance; rather the prediction ability is paramount. However, designs
which have good prediciton ability also have good parameter estimation ability,
which leads to designs that tend to orthogonality. For approximate theory
designs, the fundamental theorem says that the two problems are equivalent,
in that a design with minimizes the maximum prediction variance in a region
also maximize the determinant of the information matrix: thus the optimun
prediction and parameter estimation designs are the same.

4.2.3.1 Three variables in a cube In this case the experimental region is
a cube. For the D criterion, the support points are the corners and centers of
the cube, as the following shows:

dat<-gen.factorial(7,3)
desCD=optFederov(~quad(.),dat,approximate=TRUE)
dim(desCD$design)
[1] 27 4
apply(desCD$design[,-1],2,table)

x1 x2 x3
-3 9 9 9
0 9 9 9
3 9 9 9

25

For the A criterion, there are 66 support points using all 5 levels of the
variables. There is some assymetry in the design.

desCA<-optFederov(~quad(.),dat,approximate=TRUE,criterion="A")
dim(desCA$design)
[1] 66 4
apply(desCA$design[,-1],2,table)

x1 x2 x3
-3 19 19 19
-1 7 7 7
0 12 15 15
1 8 5 7
3 20 20 18

For the I criterion, there are 31 support points. There is considerable assym-
etry due to the discreteness of the candidate set. The I criterion is a measure
most appropriatly visualized with respect to a continuous region. In such a
region, the I optimal design is symmetric and concentrated on a 53 grid.

desCI<-optFederov(~quad(.),dat,approx=T,criterion="I")
dim(desCI$design)
[1] 31 4
apply(desCI$design[,-1],2,table)
$x1

-3 -1 0 1 3
9 1 9 2 10

$x2

-3 0 3
9 11 11

$x3

-3 0 1 3
10 9 1 11

Exact designs for three variables in a cube select points from a grid, which
can be a 33 for D, but should be a 53 for A and I. The quadratic model has 10
terms, so 15 trial designs seem appropriate.

An exact design for D may be obtained as follows. (Using the 53 grid so that
D and I statistics may be compared.) There is little to choose between these
designs, except that the I design requires more levels.

dat<-gen.factorial(5,3)
desDE<-optFederov(~quad(.),dat,nTrials=15,evaluateI=TRUE)

26

desDE[1:5]
$D
[1] 3.675919

$A
[1] 1.255597

$I
[1] 8.848874

$Ge
[1] 0.775

$Dea
[1] 0.749

The optimum approximate theory D is 3.8, making this design about 97\% efficient.

eval.design(~quad(.),desDE$design)
$determinant
[1] 3.675919

$A
[1] 1.255597

$diagonality
[1] 0.755

$gmean.variances
[1] 0.2324225

apply(desDE$design,2,table)
X1 X2 X3

-2 6 6 5
0 3 4 3
2 6 5 7

And one for I as follows:

> desIE<-optFederov(~quad(.),dat,nTrials=15,criterion="I")
> desIE[1:5]
$D
[1] 3.485428

$A
[1] 0.9161151

27

$I
[1] 8.096772

$Ge
[1] 0.582

$Dea
[1] 0.488

The optimum approximate theory I is 7.57, making this design about 93\% efficient.

> eval.design(~quad(.),desIE$design)
$determinant
[1] 3.485428

$A
[1] 0.9161151

$diagonality
[1] 0.809

$gmean.variances
[1] 0.2452361

> apply(desIE$design,2,table)
$X1

-2 -1 0 2
5 1 4 5

$X2

-2 0 2
5 5 5

$X3

-2 0 1 2
5 4 1 5

4.2.3.2 Design augmentation Designs sometimes break because certain
variable combinations are not taken, and sometimes the experimenter desires to
include certain points in the design: both requre design agumentation. A boken
design usually requires the region to be constrained: this is discussed in section

28

(4.2.3.5).
Suppose one wants to include the followng trials in a design:

myData<-data.frame(X1=c(0.5,-0.5,-1.0),X2=c(-.05,0.5,-1.0),X3=c(1.5,-0.5,0.5))
myData

X1 X2 X3
[1,] 0.5 -0.5 1.5
[2,] -0.5 0.5 -0.5
[3,] -1.0 -1.0 0.5

Simply add these to the candidate list, and run optFederov() as follows. This
may be compared with the unaugmented design on page 26.

dat<-rbind(myData,gen.factorial(5,3))
desAG<-optFederov(~quad(.),dat,nTrials=15,rows=1:3,augment=TRUE)
desAG
$D
[1] 3.40889

$A
[1] 0.9248038

$Ge
[1] 0.564

$Dea
[1] 0.462

$design
X1 X2 X3

1 0.5 -0.05 1.5
2 -0.5 0.50 -0.5
3 -1.0 -1.00 0.5
4 -2.0 -2.00 -2.0
7 1.0 -2.00 -2.0
18 2.0 0.00 -2.0
24 -2.0 2.00 -2.0
26 0.0 2.00 -2.0
28 2.0 2.00 -2.0
58 2.0 -2.00 0.0
78 2.0 2.00 0.0
104 -2.0 -2.00 2.0
108 2.0 -2.00 2.0
124 -2.0 2.00 2.0
128 2.0 2.00 2.0

29

4.2.3.3 Mixture designs Mixture variables sum to a constant, usually
unity. This constraint con¯nes the variables to a multidimensional simplex,
and requires an adjustment in the model to accommodate the constraint. The
following illustrates a mixture calculation for a quadratic model: note that the
constant term is deleted from the model in order to remove the singularity
caused by the mixture constraint. In general the confounding is substantial
between linear and interaction terms.

dat<-expand.mixture(4,3)
desMix<-optFederov(~-1+.^2,dat,nTrials=8)
desMix
$D
[1] 0.03623366

$A
[1] 98.34085

$Ge
[1] 0.62

$Dea
[1] 0.541

$design
X1 X2 X3

1 1.0000000 0.0000000 0.0000000
2 0.6666667 0.3333333 0.0000000
4 0.0000000 1.0000000 0.0000000
5 0.6666667 0.0000000 0.3333333
6 0.0000000 0.6666667 0.3333333
8 0.3333333 0.0000000 0.6666667
9 0.0000000 0.3333333 0.6666667
10 0.0000000 0.0000000 1.0000000

eval.design(~-1+.^2,desMix$design,confounding=TRUE)
$confounding

[,1] [,2] [,3] [,4] [,5] [,6]
X1 -1.0000 -0.0026 -0.0526 0.0922 0.1122 0.0056
X2 -0.0026 -1.0000 -0.0526 0.0463 0.0056 0.1122
X3 -0.0501 -0.0501 -1.0000 0.0069 0.1072 0.1072
X1:X2 3.0040 1.5079 0.2368 -1.0000 -0.3452 -0.1853
X1:X3 2.3628 0.1187 2.3684 -0.2230 -1.0000 -0.2538
X2:X3 0.1187 2.3628 2.3684 -0.1197 -0.2538 -1.0000

$determinant

30

[1] 0.03623366

$A
[1] 98.34085

$diagonality
[1] 0.748

$gmean.variances
[1] 37.19754

4.2.3.4 Large problems The implementation of algorithmic design in optFederov()
is somewhat wasteful of memory. Nonetheless, the program can deal with sub-
stantial problems. Up to 11 variables in a quadratic model on my machine.
A more careful structuring could no doubt push this up to 12 or 13 variables,
but larger problems are not really feasible with a straightforward application
of Federov's algorithms. To deal with larger problmes, optMonteCarlo() calls
optFederov() with a reduced candidate list obtained by randomly sampling
from the full candidate list. The full candidate list is never created, only the
necessary trials are generated. The result, is in general, quite satisfactory.

As an example, the following may be compared with the design on page 26.

dat<-data.frame(var=paste("X",1:3,sep=""),low=-2,high=2,
center=0,nLevels=5,round=1,factor=FALSE

dat
var low high center nLevels round factor

1 X1 -2 2 0 5 1 FALSE
2 X2 -2 2 0 5 1 FALSE
3 X3 -2 2 0 5 1 FALSE

desMC<-optMonteCarlo(~quad(.),dat)
desMC
$D
[1] 3.192013

$A
[1] 1.173419

$Ge
[1] 0.741

$Dea
[1] 0.705

$design
X1 X2 X3

31

1 0 0 0
2 0 0 2
3 -1 -2 0
4 -2 -2 2
5 2 2 0
6 -2 2 1
7 0 -2 -2
8 2 2 2
9 2 2 -2
10 -2 -1 -2
11 -1 2 -2
12 1 -2 2
13 2 0 -2
14 2 -2 0
15 -2 1 -2

> eval.design(~quad(.),desMC$design,confounding=TRUE)
$confounding

[,1] [,2] [,3] [,4] ...
(Intercept) -1.0000 0.0557 -0.6953 -0.1220 ...
X1 0.0028 -1.0000 0.1509 0.0301 ...
X2 -0.0332 0.1455 -1.0000 -0.1231 ...
X3 -0.0057 0.0283 -0.1198 -1.0000 ...
I(X1^2) 0.0924 -0.0072 0.2939 -0.0973 ...
I(X2^2) 0.1189 0.0835 -0.0418 0.1719 ...
I(X3^2) 0.1204 -0.0712 -0.0099 -0.1240 ...
X1:X2 -0.0237 0.0932 0.0385 0.0673 ...
X1:X3 -0.0004 -0.1114 0.0912 0.0151 ...
X2:X3 0.0181 0.0662 -0.0341 -0.0039 ...

$determinant
[1] 3.192013

$A
[1] 1.173419

$diagonality
[1] 0.78

$gmean.variances
[1] 0.2981729

Now for a really big design, a 20 variable quadratic. This takes some time
to calculate. It's G e±ciency is low, but this is typical of large designs. The

32

diagonality could be better. The determinant of the optimal approximate design
is 0.337, thus this design is about 53% e±cient, which is acceptable given the
di±culty of the problem. Increasing nRepeats may produce a better design.

dat<-data.frame(var=paste("X",1:20,sep=""),low=-1,high=1,
center=0,nLevels=3,round=0,factor=FALSE)

dat
desBig[1:4]
$D
[1] 0.1785814

$A
[1] 27.70869

$Ge
[1] 0.046

$Dea
[1] 0

eval.design(~quad(.),desBig$design)
$determinant
[1] 0.1785814

$A
[1] 27.70869

$diagonality
[1] 0.455

$gmean.variances
[1] 24.51871

As a ¯nal point in this section, let me call your attention to the parameter
nCand which controls the size of the randomly selected candidate list. It is by
default set to 100 times the number of terms in the model. This may not be
large enough for di±cult problems, so try changing if the designs being produced
are not satisfactory.

4.2.3.5 Constrained regions In practice most response surfaces are de-
¯ned over cubical regions, even though quite a bit of optimal design theory is
devoted to spherical regions. The limits of the variables are usually di±cult
enough to specify without the additonal complication of dealing with spheres;
however, it is common to have inadmissible corners in which the mechanism un-
derlying the process changes. One way to handle this is to edit the candidate list,

33

deleting inadmissible points. A better way is to construct a boundary and allo-
cate candidate points on this boundary. An e±cient algorithm for doing this ex-
ists, but has not been implemented as yet. In the meantime, optMonteCarlo()
will accept a constraint function that may be used to exclude points. The best
way to use it is to create a dense gird of candidate points so that the boundary
will be roughly marked by non-eliminated points near it. The following example
cuts o® the upper half of a cubical region.

dat<-data.frame(vars=c("A","B","C"),low=-10,
high=10,center=0,nLevels=21,round=1,factor=FALSE)

dat
vars low high center nLevels round factor

1 A -10 10 0 21 1 FALSE
2 B -10 10 0 21 1 FALSE
3 C -10 10 0 21 1 FALSE

constFcn<-function(x){if (sum(x)<=0) return(TRUE);return(FALSE);}
desCon<-optMonteCarlo(~quad(.),dat,constraint=constFcn,nTrials=15)
desCon
$D
[1] 154.4033
$A
[1] 0.9057725
$Ge
[1] 0.456
$Dea
[1] 0.303

The design is no longer concentrated on the support points of the cube. A
plot of the resulting design is shown in Figure (1). It is useful to note that
optMonteCarlo() tends to underpopulate the corners of experimental regions
because the probability of random points falling therein is low.

4.2.4 Starting designs

There are two ways to start the design calculation: at random or by using
nulli¯cation. Nulli¯cation is essentially a Gram-Schmidt orthogonalization of
the cadidate list, with at each step picks the longest vector in the null space.
Randomization works well in most cases, but on occasion will be unable to ¯nd
a starting design. Mixture problems are frequently of this nature. For example,
the following will frequently produce singular designs for the default number of
random starts,

dat<-gen.mixture(4,5)
optFederov(~-1+.^2,dat)

but one can be assured of obtaining a design with

34

Figure 1: Plot of a constrained design.

-10 -5 0 5 10

-1
0

 -
5

0

5

 1
0

-10

 -5

 0

 5

 10

A

B

C

O

O

O

O
O

O

O

O
O

O

O

O

O

O

O
O O

O

O

O

O

OO
O

O

O

O

O

O

O

optFederov(~-1+.^2,dat,nullify=TRUE)

or with

optFederov(~-1+.^2,dat,nullify=2)

where the second version introduces some randomness in the process. After a
starting design is found with the number of trials equal to the number of terms,
additonal trials will be selected at random to reach the value of nTerms selected.

4.3 Blocked designs
The blocking of expermental designs has always been important, and most ta-
bles of classical designs indicate ways in which this may be done. AlgDesign
implements several types of blocking: (A) It will block an existing design, or

35

construct a blocked design from a candidate set. (B) It will also block a de-
sign in which whole plot variables interact with within plot variables, or (C)
it will block designs with multiple levels of blocking. Cook and Nachsheim
(6) and Atkinson and Donev (1) have developed methods for (A). Goos and
Vandebroek (9) and Trinca and Gilmour [20], [21] have investigated (B), and
Trinca and Gilmour [21] have shown how to do (C). The methodologies used in
AlgDesign are di®erent from these, although they make use of a fundamential
idea from Cook and Nachsheim (loc.cit.). The methodologies are detailed in
Appendix B.

4.3.1 Balanced and partially balanced designs

One can create a balanced incomplete block design for 7 treatments in 7 blocks
of size 3 as may be seen from the level by level table produced by crossprod().
This is a permutation of Plan 11.7 in Cochran and Cox [5]. Note how withinData
is recycled to ¯ll out the blocksize requirements.

BIB<-optBlock(~.,withinData=factor(1:7),blocksize=rep(3,7))
crossprod(table(c(rep(1:7, rep(3,7))),BIB$design[,1]))

1 2 3 4 5 6 7
1 3 1 1 1 1 1 1
2 1 3 1 1 1 1 1
3 1 1 3 1 1 1 1
4 1 1 1 3 1 1 1
5 1 1 1 1 3 1 1
6 1 1 1 1 1 3 1
7 1 1 1 1 1 1 3

A partially balanced incomplete block design with two associate classes:

tr<-factor(1:9)
PBIB<-optBlock(~.,withinData=tr,blocksizes=rep(3,9))
crossprod(table(c(rep(1:9, rep(3,9))),PBIB$rows))

1 2 3 4 5 6 7 8 9
1 3 0 1 0 1 1 1 1 1
2 0 3 1 0 1 1 1 1 1
3 1 1 3 1 1 1 0 1 0
4 0 0 1 3 1 1 1 1 1
5 1 1 1 1 3 0 1 0 1
6 1 1 1 1 0 3 1 0 1
7 1 1 0 1 1 1 3 1 0
8 1 1 1 1 0 0 1 3 1
9 1 1 0 1 1 1 0 1 3

36

4.3.2 Blocking illustration

A di±cult two level factorial will be used to illustrate blocking. The usual
methods for constructing half fractions of a 27 completely confound some second
order e®ects. In the following design, all second order e®ects are estimable, but
the design is not particulary orthogonal.

dat<-gen.factorial(2,7)
desF<-optFederov(~.^2,dat,nTrials=32,nRepeats=100)
desF[1:4]
$D
[1] 0.8868

$A
[1] 1.296784

$Ge
[1] 0.412

$Dea
[1] 0.241

The 32 trials of the design may be blocked into four blocks of eight, as
follows:

desFBlk<-optBlock(~.^2,desF$design,rep(8,4),nRepeats=20)
desFBlk[1:3]
$D
[1] 0.8049815

$diagonality
[1] 0.842

$Blocks
$Blocks$B1

X1 X2 X3 X4 X5 X6 X7
22 1 -1 1 -1 1 -1 -1
32 1 1 1 1 1 -1 -1
39 -1 1 1 -1 -1 1 -1
68 1 1 -1 -1 -1 -1 1
83 -1 1 -1 -1 1 -1 1
88 1 1 1 -1 1 -1 1
105 -1 -1 -1 1 -1 1 1
116 1 1 -1 -1 1 1 1
...

This is a good blocking with high diagonality. A further evaluation can be
found from:

37

eval.blockdesign(~.^2,desFBlk$design,rep(8,4))
$determinant.all.terms.within.terms.centered
[1] 0.8868

$within.block.efficiencies

rho 1.000
lambda.det 0.926
lambda.trace 0.901

$comment
[1] "Too few blocks to recover interblock information."

$block.centered.properties
constant whole within

df 1 1 28
determinant 0.804982
gmean.variance 1.000000 1.000000 1.476160
gmean.efficiencies 1.000000 1.000 0.875

The most important measure of the blocking is the within blocking e±ciency,
which shows that the blocking is quite successful in decoupling the whole and
within block e®ects. The within.blocking.efficiencies table shows the
e±ciency for rho=1, when the whole and within block errors are equal. Other
choices for rho may be made when running the eval.blockdesign() program.
It is good that there is little interblock information to recover, since the number
of blocks is too small to enable such an analysis.

The gmean.efficiencies for the within terms measures the ratio of vari-
ances of centered to block centered designs, and indicates that there is some loss
due to blocking.

One can input the entire candidate set to optBlock(), but sometimes, as in
the present case, the optimum blocked design is hard to ¯nd, and the results
will be disappointing as the following illustrates.

desFBlkD<-optBlock(~.^2,dat,rep(8,4),nRepeats=20)
desFBlkD[1:2]
$D
[1] 0.7619454

$diagonality
[1] 0.777

In this case it is better to start optBlock() with a good existing design, as
follows.

rr<-as.numeric(rownames(desF$design))
desFBlkD<-optBlock(~.^2,dat,rows=rr,rep(8,4),nRepeats=20)

38

desFBlkD[1:2]
$D
[1] 0.8049815

$diagonality
[1] 0.838

4.3.3 Improving individual blocks with the Dp criterion

Two fractions of a 24 will be obtained from

dat<-gen.factorial(2,4)
od<-optBlock(~.,dat,c(8,8))
od

$D
[1] 1

$diagonality
[1] 1

$Blocks
$Blocks$B1

X1 X2 X3 X4
1 -1 -1 -1 -1
2 1 -1 -1 -1
7 -1 1 1 -1
8 1 1 1 -1
9 -1 -1 -1 1
12 1 1 -1 1
14 1 -1 1 1
15 -1 1 1 1

$Blocks$B2
X1 X2 X3 X4

3 -1 1 -1 -1
4 1 1 -1 -1
5 -1 -1 1 -1
6 1 -1 1 -1
10 1 -1 -1 1
11 -1 1 -1 1
13 -1 -1 1 1
16 1 1 1 1

This is an optimal design. It is orthogonal:

bk<-data.matrix(od$design)

39

t(bk)%*%bk

X1 X2 X3 X4
X1 16 0 0 0
X2 0 16 0 0
X3 0 0 16 0
X4 0 0 0 16

However the individual blocks are not orthogonal:

bk<-data.matrix(od$Blocks$B1)
t(bk)%*%bk

X1 X2 X3 X4
X1 8 0 0 0
X2 0 8 4 0
X3 0 4 8 0
X4 0 0 0 8

One can optimize with the Dp criterion to improve this situation. Either
criterion="Dp" or criterion="Dpc" may be used.

od1<-optBlock(~.,dat,c(8,8),criterion="Dpc")
bk<-data.matrix(od1$Blocks$B1)
t(bk)%*%bk

X1 X2 X3 X4
X1 8 0 0 0
X2 0 8 0 0
X3 0 0 8 0
X4 0 0 0 8

The Dp criterion may be used to ¯nd standard fractions; however, there
are many optimal designs in additon to the standard fractions, and these are
the most likely result. For example, the following will sometimes produce half
fractions with the de¯ning contrast -X2X3X4, but more often the cross-product
matrix will be cluttered, although still representing an optimum design. Note,
the model now contains second order terms.

od2<-optBlock(~.^2,dat,c(8,8),criterion="Dpc",nR=1000)
od2[1:2]
$D
[1] 1

$Dpc
[1] 1

40

dt<-model.matrix(~.^2,od2$Blocks$B1)
t(dt)%*%dt

(Intercept) X1 X2 X3 X4 X1:X2 X1:X3 X1:X4 X2:X3 X2:X4 X3:X4
(Intercept) 8 0 0 0 0 0 0 0 0 0 0
X1 0 8 0 0 0 0 0 0 0 0 0
X2 0 0 8 0 0 0 0 0 0 0 -8
X3 0 0 0 8 0 0 0 0 0 -8 0
X4 0 0 0 0 8 0 0 0 -8 0 0
X1:X2 0 0 0 0 0 8 0 0 0 0 0
X1:X3 0 0 0 0 0 0 8 0 0 0 0
X1:X4 0 0 0 0 0 0 0 8 0 0 0
X2:X3 0 0 0 0 -8 0 0 0 8 0 0
X2:X4 0 0 0 -8 0 0 0 0 0 8 0
X3:X4 0 0 -8 0 0 0 0 0 0 0 8

4.3.4 Orthogonal Blocking { Nguyen's ideas

Orthogonal blocking occurs when the means of the variables within the blocks
equal the means of the variables over all blocks, or what is the same that the
means of the variables are the same within each block. This is \orthogonal"
because if one subtracts the means from the variables, then their sums within
each block will be zero. Nguyen's [11] algorithm successively switches trials
between blocks until their means become equal. His criterion is the sum of
squares of the centered data. His idea has been extended in optBlock() to
allow for interactions between whole and split block factors and to allow new
points from a candidate list to be exchanged with those in the design { Nguyen
considered only rearranging the trials in a ¯xed design.

A simple example will illustrate the method. The blocks are orthogonal
in this example, but as in previous examples the variables are not mutually
orthogonal within blocks. Note that the minimim value of the sums of squares
of the S matrix is reported.

dat<-gen.factorial(2,4)
ob<-optBlock(~.,dat,c(8,8),criterion="OB")
ob[1:3]
$D
[1] 1

$SS
[1] 0

$Blocks
$Blocks$B1

X1 X2 X3 X4
1 -1 -1 -1 -1

41

4 1 1 -1 -1
5 -1 -1 1 -1
8 1 1 1 -1
10 1 -1 -1 1
12 1 1 -1 1
13 -1 -1 1 1
15 -1 1 1 1
...

> bk<-data.matrix(ob$Blocks$B1)
> t(bk)%*%bk

X1 X2 X3 X4
X1 8 4 -4 0
X2 4 8 0 0
X3 -4 0 8 0
X4 0 0 0 8

A more instructive example follows. In this example, a standard fractional
factorial with de¯ning contrast ¡X1X3X4 is found.

ob2<-optBlock(~.^2,dat,c(8,8),crit="OB")
dt<-model.matrix(~.^2,ob2$Blocks$B1)
t(dt)%*%dt

(Intercept) X1 X2 X3 X4 X1:X2 X1:X3 X1:X4 X2:X3 X2:X4 X3:X4
(Intercept) 8 0 0 0 0 0 0 0 0 0 0
X1 0 8 0 0 0 0 0 0 0 0 -8
X2 0 0 8 0 0 0 0 0 0 0 0
X3 0 0 0 8 0 0 0 -8 0 0 0
X4 0 0 0 0 8 0 -8 0 0 0 0
X1:X2 0 0 0 0 0 8 0 0 0 0 0
X1:X3 0 0 0 0 -8 0 8 0 0 0 0
X1:X4 0 0 0 -8 0 0 0 8 0 0 0
X2:X3 0 0 0 0 0 0 0 0 8 0 0
X2:X4 0 0 0 0 0 0 0 0 0 8 0
X3:X4 0 -8 0 0 0 0 0 0 0 0 8

4.3.5 Blocking with whole plot factors (split plots)

The blocks are often interesting, representing transitory manufacturing or other
constraint conditions on the experiment. If for example, one must block an
experiment because only a subset of the trials may be performed each day, then
there is little reason to be interested in the average response on a particular day.
Sometimes, however, blocks are more interesting, and can comprise variables of
importance in a study. A common problem occurs when a variable is di±cult

42

or expensive to change, such as a temperature setting that requires hours to
come to equilibrium. In such cases, the experiment can be quite lengthy if
one insists on a full randomization; and it is usual to compromise and repeat
a substantial fraction of the experiment without changing the setting of the
\di±cult" variable. Split plot experiments represent a similar structure, where
the experimental factors are divided into \whole plot" and \within plot" groups.
In these cases, the whole plot variables are in and of themselves interesting and
must be studied with the rest.

Unfortunately, whole plot main e®ects seldom have su±cient replication and
thus have low power, but this is another problem. The problem of interest is
the structure of the within plot factors and their interactions with the whole
plot factors. A design for a quadratic model is given in Goos and Vandebroek
[9] for a problem of this nature.

data(GVTable1)
GVTable1

w s1 s2 s3 s4
[1,] -1 1 -1 -1 1
[2,] -1 1 1 1 -1
[3,] -1 -1 0 -1 -1
[4,] -1 1 1 -1 1
[5,] -1 -1 1 1 1
...

[38,] 1 1 -1 -1 1
[39,] 1 -1 1 1 -1
[40,] 1 1 -1 1 -1
[41,] 1 -1 1 -1 1
[42,] 1 1 -1 -1 -1

An evaluation of this design reveals the following. There is one whole plot
factor, \w," and four within plot factors \s1" through \s4." Thus there are
three df for whole plots and 18 for within plots.

eval.blockdesign(~quad(.),GVTable1,rep(2,21))
$determinant.all.terms.within.terms.centered
[1] 0.4814902

$within.block.efficiencies

rho 1.000
lambda.det 0.732
lambda.trace 0.745

$block.centered.properties
constant whole within

df 1 2 18
determinant 0.279146

43

gmean.variance 7.000000 3.086710 4.351714
gmean.efficiencies 1.347614 1.234 0.500

This design has a non-uniform allocation for the whole plot factor as shown
below. This is due to the fact that the algorithm used, optimized the D criterion
for both the whole and within factors. The whole plot allocation is not optimal
for a single factor, which means that a tradeo® in e±ciencies has occurred
between the whole and within parts in the design construction. In view of the
replication di±culty for whole plot factors, mentioned above, one wonders about
the wisdom of this.

table(GVTable1[,1])

-1 0 1
18 6 18

The optBlock() design for this problem may be obtained as follows. Note:
the whole plot design used is the optimum design for a single quadratic factor.
It may be seen that the various properties for the two designs are quite similar:
the centered determinant for the GVTable1 design is larger, but the variances
are a bit better for the optBlock() design.

within<-gen.factorial(3,4,varNames=c("s1","s2","s3","s4"))
whole<-data.frame(w=rep(c(-1,0,1),rep(7,3)))
desProt<-optBlock(~quad(.),withinData=within,

wholeBlockData=whole,blocksizes=rep(2,21),nR=100)
eval.blockdesign(~quad(.),desProt$design,rep(2,21))
$determinant.all.terms.within.terms.centered
[1] 0.4559886

$within.block.efficiencies

rho 1.000
lambda.det 0.738
lambda.trace 0.734

$block.centered.properties
constant whole within

df 1 2 18
determinant 0.268965
gmean.variance 3.000000 2.598076 4.055509
gmean.efficiencies 1.107215 1.209 0.581

One can of course, optimize the within design before blocking, and as may
be seen from the following, it does not do quite as well in this case as the above.

dat<-gen.factorial(3,5,varNames=c("w","s1","s2","s3","s4"))

44

des<-optFederov(~quad(.),dat,nT=42,nR=100)
od<-optBlock(~quad(.),with=des$design,who=whole,rep(2,21),nR=100)
eval.blockdesign(~quad(.),od$design,rep(2,21))
$determinant.all.terms.within.terms.centered
[1] 0.4660674

$within.block.efficiencies

rho 1.000
lambda.det 0.718
lambda.trace 0.704

$block.centered.properties
constant whole within

df 1 2 18
determinant 0.267203
gmean.variance 3.000000 2.598076 4.306051
gmean.efficiencies 1.450530 1.434 0.532

A second example from Goos and Vanderbroek [9] is available as \GVTable3,"
as well as a design, produced by the Trinca and Gilmour [21] methodology
for this problem, in the ¯le\TGTable5" The reader may like to compare the
GVTable3 design with one generated by optBlock().

4.3.6 Multistratum blocking

Most tabled designs are provided with more than one level of blocking. For
example the incomplete block designs given in Chapter 11 of Cochran and Cox
[5] have both blocks and replicates, with a set of blocks being allocated to each
replicate. It is not obvious how this may be achieved algorithmically without
considerable complications. Trinca and Gilmour [21] have shown, however, that
it is quite easy with the repeated running of standard algorithms. In essence,
they observed that a multidimensional blocking problem may be viewed in a
sequential fashion in which at each step in the sequence one need only consider
the blocking resulting from all previous steps and the current step. Subsequent
steps can be ignored, and the current problem requires only a speci¯cation of
whole and within block factors using existing algorithms.

This is perhaps best explained by giving an example. The partially balanced
incomplete block design on page 453 of Cochran and Cox (loc cit) is as follows.
This is available as data set CCTable11.1a.

There are two levels of blocking, Rep, and Block, and the trials are nested
in both. The idea is to construct a blocked design using the ¯rst two variables,
Rep and Block, and then construct the ¯nal design using this to describe the
whole block structure. Thus

Rep<-gen.factorial(3,1,factor=1,varName="Rep")
Block<-gen.factorial(3,1,factor=1,varName="Block")

45

Table 6: A 3£ 3 Tripple Lattice

Block Rep. I Rep. II Rep. III
(1) 1 2 3 (4) 1 4 7 (7) 1 6 9
(2) 4 5 6 (5) 2 5 8 (8) 7 2 6
(3) 7 8 9 (6) 3 6 9 (9) 4 8 3

firstDesign<-optBlock(~.,within=Block,whole=Rep,blocks=rep(3,3))
firstDesign$Blocks
$B1

Rep Block
1 1 1
1.1 1 2
1.2 1 3

$B2
Rep Block

2 2 1
2.1 2 2
2.2 2 3

$B3
Rep Block

3 3 1
3.1 3 2
3.2 3 3

Of course we could have written this down at once, but the above illustrates
the method. Now a design is created using the ¯rstDesign to describe the whole
blocks structure.

Runs<-gen.factorial(9,1,factor=1,varName="Runs")
finalDesign<-optBlock(~.,within=Runs,whole=firstDesign$design,rep(3,9))

I have tabled the ¯nal design in the same form as in Table 6. The ¯nalDesign
is not as symmetrical as the one from Cochran and Cox, in which there are no
duplicate runs in a replicate, but that aside, its properties seem as good.

For the Cochran and Cox design, one has:

data(CCTable11a.1a)
eval.blockdesign(~.,CCTable11.1a,rep(3,9),rho=c(0.5,1,10))
$determinant.all.terms.within.terms.centered
[1] 0.2430429

$within.block.efficiencies

46

Table 7: A 3 £ 3 Algorithmic blocking

Block Rep. I Rep. II Rep. III
(1) 5 6 8 (4) 2 4 7 (7) 1 2 6
(2) 3 4 6 (5) 1 5 7 (8) 4 5 9
(3) 1 3 9 (6) 2 8 9 (9) 3 7 8

rho 0.500 1.000 10.000
lambda.det 0.808 0.783 0.744
lambda.trace 0.800 0.774 0.734

$comment
[1] "Too few blocks to recover interblock information."

$block.centered.properties
constant whole within

df 1 4 8
determinant 0.107887
gmean.variance 1.000000 2.000000 11.000000
gmean.efficiencies 1.000000 1.225 0.815

Both designs are partially balanced, but it is not possible to recover interblock
information on all terms.

eval.blockdesign(~.,finalDesign$design,rep(3,9),rho=c(.5,1,10))
$determinant.all.terms.within.terms.centered
[1] 0.2400636

$within.block.efficiencies

rho 0.500 1.000 10.000
lambda.det 0.800 0.778 0.743
lambda.trace 0.791 0.768 0.733

$comment
[1] "Too few blocks to recover interblock information."

$block.centered.properties
constant whole within

df 1 4 8
determinant 0.107887
gmean.variance 1.000000 2.000000 11.000000
gmean.efficiencies 1.000000 1.315 0.834

47

Trinca and Gilmore (loc.cit.) give more substantial examples. An evaluation
of their example given in the data set TGTable3 follows. In this problem there
are four three level variables, and three levels of blocking. The ¯rst blocking is
into ¯ve blocks. The second introduces two of the variables with a quadratic
model and creates three sub-blocks in each of the ¯ve blocks. The ¯nal blocking
introduces two more variables in a quadratic model interacting with the ¯rst
two and themselves in three sub-sub blocks, for a 45 trial design.

data(TGTable3)
eval.blockdesign(~Block+quad(X1,X2,X3,X4),TGTable3,rep(3,15))
$determinant.all.terms.within.terms.centered
[1] 0.3808839

$within.block.efficiencies

rho 1.000
lambda.det 0.944
lambda.trace 0.939

$comment
[1] "Too few blocks to recover interblock information."

$block.centered.properties
constant whole within

df 1 9 9
determinant 0.385155
gmean.variance 3.857143 3.906399 2.602162
gmean.efficiencies 1.000000 1.018 0.938

which may be compared with the following produced by optBlock

Blocks<-data.frame(Block=factor(1:5))
firstVars<-gen.factorial(3,2)
secondVars<-gen.factorial(3,2,varNames=c("X3","X4"))
firstDesign<-optBlock(~Block+quad(X1,X2),

within=firstVars,whole=Blocks,block=rep(3,5),nR=100)
secondDesign<-optBlock(~Block+quad(X1,X2,X3,X4),

within=secondVars,whole=firstDesign$design,rep(3,15),nR=100)
eval.blockdesign(~Block+quad(X1,X2,X3,X4),

secondDesign$design,rep(3,15))
$determinant.all.terms.within.terms.centered
[1] 0.3951278

$within.block.efficiencies

rho 1.000
lambda.det 0.924

48

lambda.trace 0.907

$comment
[1] "Too few blocks to recover interblock information."

$block.centered.properties
constant whole within

df 1 9 9
determinant 0.408619
gmean.variance 7.145839 3.426712 2.457743
gmean.efficiencies 1.126339 1.061 0.970

5 Appendix A: Federov's algorithm
This is a rephrasing of the material in Federov [13] in the form used by optFederov().
Its primary use is as an aid in maintaining the package. Those interested in the
general ideas will be better served by reading Federov's book.

Let M be the k £ k dispersion matrix of a design, and consider the update
involving removing the k vector y and replacing it with the k vector x. This
can be represented as M + F FT , where F = (x; iy), giving rise to the usual
representations:

M¡1
1 = (M + FFT)¡1;

M¡1
1 = M¡1¡ M¡1F (I2 + FTM¡1F)¡1FTM¡1;

jM + F FT j = jM jjI2 + F TM¡1F j:

If duv = uTM¡1v, and du ´ duu, then jI2 + FTM¡1F j = (1 + dx)(1¡dy)+
d2
xy = 1 + [dx ¡ (dxdy ¡ d2

xy)¡ dy] = 1 + ¢D . For the D criterion, max¢D
over the candidate vectors is used in choosing points to add in the sequential
algorithm.

For linear criteria, things are more complicated. A linear criterion, L(), is
a function such that for two dispersion matrices A and B one has L(A + B) =
L(A) + L(B). The A and I criteria are linear. For such criteria, one has

L(M¡1
1) = L(M¡1)¡ L(M¡1F (I2 + FTM¡1F)¡1F TM¡1);

or

L(M¡1)¡ L(M¡1
1) = ¢L = L(M¡1F (I2 + F TM¡1F)¡1F TM¡1);

and the sequential algorithm uses ¢L in choosing points to add in the sequen-
tial algorithm. This representation assumes that it is desired to decrease the
criterion value by the addition of new points.

First note that

(I2 + FTM¡1F)¡1 =
µ

1 ¡ dy ¡idxy
¡idxy 1 + dx

¶
=(1 + ¢D):

49

Then let Áuv = L(M¡1uvTM¡1), and Áu ´ Áuu, and from this one can see
that

¢L = f(1¡ dy)Áx + dxy[Áxy + Áyx]¡ (1 + dx)Áyg=(1 + ¢D):

The linear algorithm chooses points to maximize ¢L, and thereby decreases
the criterion.

For the A criterion, one has Áuv = trace(M¡1uvTM¡1) = vTM¡2u, and for
the I criterion, one has Áuv = trace(BM¡1uvTM¡1) = vTM¡1BM¡1u, where
B = XTX=N , and the N £ k matrix X is the matrix of candidate vectors.

6 Appendix B: Blocking designs

6.1 Background
6.1.1 Blocking models

One starts with the usual model:

Y = X¯ + ²;

where Y is an N £1 vector of observations, X is an N £k design matrix, ² is an
N £1 vector of iid errors with common variance ¾2, and ¯ is a k£ 1 parameter
vector.

In general the rows of X are randomized. Blocking occurs when this ran-
domization is restricted in a way that causes disjoint sets of the rows of X to
be randomized within sets. As Lorenzen and Anderson [15] show, this has the
e®ect of changing the model to

Y = X¯ + Zµ + ²; (3)

where Z is anN£b matrix of block indicator variables, each column containing 1
or 0 as the corresponding observation appears or not in the block represented by
the column, and µ a b element random vector whose elements are uncorrelated
with ², and are mutually uncorrelated and identically distributed, with common
variance ¾2

b .
For this model, the variance of Y is V = ¾2(I+½ZZT), where ½ = ¾2

b =¾
2, and

thus the generalized least squares estimate of ¯ is ^̄ = (XTV ¡1X)¡1XTV ¡1Y ,
and the covariance matrix of the estimates is

var(^̄) = (XTV ¡1X)¡1; (4)

which unfortunately depends on ¾2
b in an essential way.

The aim of algorithmic design is the optimization of some aspect of var(^̄),
which becomes di±cult when var(^̄) depends on an unknown parameter. A
straightforward approach to this problem in which the designs are dependent
on the unknown variance parameter, may be found in Goos and Vanderbroek
[9], where the block factors are \slow" factors which may not easily be changed,
and thus in a sense, force the design process into a split-plot type model.

50

In order to deal with the blocking problem it is necessary to inquire more
closely into the structure of the model. The key to the problem is the treatment
of intrablock and interblock information. Intrablock information involves ¾2,
while interblock information involves both ¾2 and ¾2

b . Indeed, as will be seen,
choosing a design that maximizes intrablock information will in many cases solve
the problem. A design in which the blocks are orthogonal cleanly separates the
two types of information

An attractive formulation for this problem uses a rewritten version of (3)
which decouples the within and between block variables. The idea is due to
Cook and Nachtsheim [6].

The columns ofX may be divided into three types, X = [Xb; Xwb; Xw]. The
rows in Xb are constant within blocks and represent block factors. The rows in
Xw vary within blocks, and the rows in Xwb represent interactions between the
block factors and the within block factors. It is convenient to rewrite the model
(3) as

Y = Xa¯a + Xb¯c + Zµ + ²;

where Xa = [Xw ; Xwb], and the parameters are conformably partitioned as ¯a
and ¯c. The matrix Xb often contains only the constant column.

A better representation of the model for our purposes, is the block centered
form:

Y = ~Xa¯a +Xb¯b + Zµ + ²: (5)

Here ~Xa is the block centered form of Xa obtained by subtracting block means
from each row of Xa. In this, the parameter ¯a is unchanged, but the second
parameter changes to ¯b, representing the change due to absorbing the block
means from Xa : the space spanned by the columns of X is unchanged. It is
assumed that no columns of ~Xa are identically zero. In this form ~XT

a Z ´ 0,
and ~Xa

T
Xb ´ 0, and it is easy to see that

var(^̄
a) = (~Xa

T ~Xa)¡1¾2;

because ¾2V ¡1 = I ¡ Z(I=½ + ZT Z)¡1ZT .
Thus the estimates ~̄

a and their covariances do not depend on ½.
The interesting thing, is that something similar occurs for ¯b. Let ¾2V = I¡

ZGZT , where G = (I=½+D)¡1, and D = ZTZ . Assume that the block sizes are
all of size n, then G is a constant times the identity, and ¾2V ¡1 = I¡ ½

1+½nZZ
T .

Noting that nXT
b Xb = X T

b ZZTXb , one has

var(^̄
b) = ¾2(X T

b Xb ¡
½

1 + ½n
XT
b ZZ

TXb)¡1 = ¾2(1 + ½n)(XT
b Xb)¡1: (6)

Thus, designs which optimize a criterion for both var(^̄
a) and var(^̄

b) may
be found without reference to ½. When the block sizes are not constant, this

51

conclusion is no longer precise, but only approximate. There is considerable
merit in keeping the block sizes constant, since in the analysis the usual residual
mean squares may be used to estimate both variances.

Goos and Vandebroek choose the D criterion, and maximized jXTV ¡1X j.
In their formulation the maximizing design depends on ½. In the model (5) the
determinant is j ~XT

a
~XajjXT

b Xbj=¾4(1+ ½n), and the maximizing design does not
depend on ½.

The value of j ~XT
a

~Xa j depends on Xb , which means that simply choosing Xb
to maximize jXT

b Xb j, may not lead to a maximal product, and indeed it does
not; however, numerical comparisons show that the e®ect is small, and a good
strategy would seem to be to use an Xb that maximizes jXT

b Xb j. An additional
point worth noting, is that the variance for the whole block factors is larger than
for the within block factors, and that a design which does not make jXT

b Xb j as
large as possible represents a questionable tradeo®.

6.1.2 Interblock, intrablock information and optimal blocking.

The matrix ~XT
a

~Xa represents what has traditionally been called, intrablock
information. It is maximized when all the block means are equal. Let ·Xa be Xa
centered about the grand mean vector g, then ·XT

a
·Xa = XT

a Xa ¡NggT , where
N = §ni and the ni are the block sizes. For mi the block means, this gives

~XT
a

~Xa = XT
a Xa ¡ §(nimimT

i) = ·XT
a

·Xa ¡ §[ni(mi ¡ g)(mi ¡ g)T]:

If g is ¯xed, then clearly the trace of ~XT
a

~Xa is maximized when all mi are equal
to g. A similar argument can be made about the determinant since j ~XT

a
~Xa j > 0,

j ·XT
a

·Xa j > 0 and §[ni(mi ¡ g)(mi ¡ g)T] is non-negative de¯nite.
When the block means are all equal to the grand mean, ·Xa is orthogonal to

Z , and all information about ¯a is intrablock.
The distinction between interblock and intrablock is best understood in

terms of the analysis. When the block means di®er, it is sometimes possible
to use the block means to form an additional estimate of ¯a , say ^̄0

a . Such an
estimate is referred to as an interblock estimate, see Sche®¶e [17] p170®. The in-
trablock estimate is ^̄

a = (~XT
a

~Xa)¡1 ~XT
a Y , with the estimate ¾̂2 obtained from

the residual variance. The interblock estimate is formed from the block means
of the several matrices, X̂a ; X̂b, and Ŷ in a similar fashion, to obtain (^̄0

a ; ^̄
b)

and the estimate ^́2 from the residual variance: equation (6) applies when the
block sizes are equal, and of course, there must be at least as many blocks as
parameters. These estimates are independent when Y is normally distributed.
The ¯nal estimate is (^̄a ^́2+ ^̄0

a ¾̂2)=(^́2+¾̂2), where E(^́2) = ¾2(1+½n). Sche®¶e
suggests that approximate tests may be made by substituting the estimates for
their expectations. Since the variance of the ¯nal estimate, using this approx-
imation, is ¾2´2=(¾2 + ´2), the precision of the combined estimate is always
smaller than the variance of the intrablock estimate alone.

52

6.1.3 Measuring intrablock information

The quality of a blocking design may be measured by the amount of interblock
information absorbed by the block means. Measures of this quality have been
used to develop algorithms for orthogonal blocking, Nguyen [11].

Consider the model

Y = ·Xa¯a +Xb¯b + Zµ + ²: (7)

which is similar to (5) except that ·Xa is Xa centered about the grand mean
instead of being block centered. We will use the same symbol ¯b for the block
parameter, since in the case of orthogonal blocking, it is the same as in equation
(5). If the block means contain no information about ¯a , then residuals of ·Xa
regressed on Xb will be equal to ·Xa, and thus a measure of the magnitude of
these residuals can be used to assess the quality of the design. The following
makes this explicit.

First observe that for non-singular C , the upper left partition of the inverse
appears as follows:

µ
A
B

BT

C

¶¡1

=
µ

(A ¡BTC¡1B)¡1

:
:
:

¶
(8)

Noting that V ¡1 = I¡Z(I=½+D)¡1ZT = I ¡ZGZT with G = (I=½+D)¡1

and D = ZT Z , one can write the following expressions for the covariance matrix
of the estimates:

C = ¾2
µ ·XT

a V ¡1 ·Xa
XT
b V

¡1 ·Xa

·XT
a V ¡1Xb

XT
b V

¡1Xb

¶¡1

= ¾2
µ

M ¡ STGS
HT ¡ T TGS

H ¡ STGT
N ¡ TTGT

¶¡1

;

where M = ·XT
a

·Xa , N = XT
b Xb, S = ZT ·Xa , T = ZTXb, H = ·XT

a Xb .
For orthogonal blocking S ´ 0 and H ´ 0, and thus6

C0 = ¾2
µ

M
0

0
N ¡ TTGT

¶¡1

:

A measure of the degree of orthogonal blocking is the ratio of criterion values
for the within block portions of C and C0. Using equation (8) one has the
following ratio ¸D, for the determinant criterion. (It may help to note that the
quantity in the numerator of ¸D represents a measurement of the residuals of
·Xa regressed on Xb.)

¸D = (jM ¡ STGS ¡ (H ¡ STGT)(N ¡ TTGT)¡1(H T ¡ T TGS)j=jM j)1=k

Here k is the dimension of M .
When Xb ´ Z , this simpli¯es to

6It is useful to note, from equation (6), that when all blocks have the same size, n, that
N ¡TTGT = N

(1+½n) .

53

¸D = (jM ¡ 2STD¡1S + STD¡1GDSj=jM j)1=k;

and to

¸D = (jM ¡ STD¡1Sj=jM j)1=k;

when ½ is in¯nite; that is when the whole blocks are uninformative.
If one interprets ¸D as a measure of intrablock information, then 1 ¡ ¸D

is a measure of the interblock information that remains to be recovered by a
interblock analysis.

It may be seen that ¸D is maximized by minimizing S. This is the essence of
the orthogonal blocking algorithm of Nguyen [11], which he does by minimizing
the sum of squares of S. The idea is easily extended to the case where whole
block factors are present.

6.2 Alternative criteria
The D criterion minimizes the determinant of var(^̄

a) or equivalently, maximizes
j ~Maj, where ~Ma = ~XT

a
~Xa. This is an attractive criterion for blocking. Among

other attributes is the fact that D-optimum blocking also tends make the design
as orthogonal as possible. The D criterion minimizes the overall variance of
the estimates, but this does not guarantee that the individual blocks will be
maximal in any sense. In situations where only a subset of the blocks are to be
run, the parameters should be well estimated from the individual blocks. This
suggests a criterion like

Dpc =

Ã
bY

i

j ~Mi=nij1=k
!1=b

;

with ~Mi = ~XT
i

~Xi, where (~Xi ji = 1 : : : b) are the ni £ k sub-matrices of ~Xa
corresponding to the b blocks of size (ni ; i = 1 : : : b). One can also consider the
alternative criterion:

Dp =

Ã
bY

i

jMi=nij1=k
!1=b

;

where Mi = XT
i Xi, and where (Xi ji = 1 : : : b) are the ni £ k sub-matrices of

Xa corresponding to the b blocks of size (ni; i = 1 : : : b). Depending on one's
viewpoint, this may or may not seem as attractive from a theoretical point of
view.

Of course singularity can occur, but this may be dealt with by taking the
determinants of the largest leading, non-singular submatrices. This will usually
mean the leading (ni £ ni) submatrix of Mi and the leading (ni ¡ 1 £ ni ¡ 1)
submatrix of ~Mi when ni · k .

54

6.3 Updating equations for the Dpc criterion.
In this section, it is assumed that X ´ Xw . Let X be the unadjusted matrix
from which ~X is obtained by subtracting block means. Let the means of the
columns of Xi be ¹xi = 1

ni
XT
i 1ni , where 1ni is a column vector of ni unities,

then ~Xi = Xi ¡ 1ni¹xTi .
Let xTri be a row of Xi and xTrj be a row in some other block. I will develop

equations for updating ~Xi and the corresponding information matrix, when xri
is swapped with xrj .

Let Xi;rirj be Xi after the swap, then Xi;rirj = Xi + ®ri(xrj ¡ xri)T , where
®ri is a column vector of ni elements all of which are zero except the one
corresponding to xri , which is unity. Similarly, the new block mean is ¹xi;rirj =
1
ni
XT
i;rirj1ni = ¹xi + 1

ni
(xrj ¡ xri).

Combining these expressions gives an expression for the updated centered
matrix:

~Xi;rirj = ~Xi + (®ri ¡
1
ni

1ni)(xrj ¡ xri)
T : (9)

From this one obtains,

~XT
i;rirj

~Xi;rirj = ~XT
i

~Xi + (xri ¡ ¹xi)(xrj ¡ xri)T + (xrj ¡ xri)(xri ¡ ¹xi)T +

(
ni ¡ 1
ni

)(xrj ¡ xri)(xrj ¡ xri)T ; (10)

or

~XT
i;rirj

~Xi;rirj = ~XT
i

~Xi + (xrj ¡ ¹xi)[2] ¡ (xri ¡ ¹xi)[2] ¡
1
ni

(xrj ¡ xri)[2] ; (11)

where a[2] ´ aaT .
In an obvious fashion we can write the right hand side as

~XT
i

~Xi + ViBiV T
i ; (12)

where Vi is a k by 3 matrix and Bi is diagonal. Let Si = ViB iV T
i be the

adjustment, and note that the columns of Vi are linearly dependent, and can be
written as Vi = WiHi where Wi = [(xrj ¡ ¹xi); (xri ¡ ¹xi)], and

Hi =
µ

1 0 1
0 1 ¡1

¶
;

giving Si = Wi(HiBiHT
i)W T

i = WiGiW T
i , with Gi a non-singular matrix with

determinant -1:

Gi =
1
ni

µ
(ni ¡ 1) 1

1 ¡(ni + 1)

¶
; (13)

and of course,

55

G¡1
i =

¡1
ni

µ ¡(ni + 1) ¡1
¡1 (ni ¡ 1)

¶
:

Letting ~Mi = ~XT
i

~Xi , and ~Mi;rirj = ~XT
i;rirj

~Xi;rirj, one has

~Mi;rirj = ~Mi + WiGiWT
i ; (14)

and from this (see [13], p99), assuming ~Mi is non-singular,

~M¡1
i;rirj = ~M¡1

i ¡ ~M¡1
i Wi(G¡1

i +W T
i

~M¡1
i Wi)¡1W T

i
~M¡1
i); (15)

and

j ~Mi;rirj j = ¡j ~Mi jjG¡1
i +WT

i
~M¡1
i Wij = j ~Mi jj¢i(ri; rj)j; (16)

which is a trivial computation since j¢i(ri; rj)j is the determinant of a 2 by 2
matrix.

One thus has
Qb

1 j ~Mi;rirj j =
³Qb

1 j ~Mij
´
j¢ i(ri ;rj)jj¢j(rj ; ri)j for an ex-

change involving blocks i and j.

6.4 Updating equations for the D criterion.
In this section, it is assumed that X ´ Xw . In a similar fashion to the above,
one can treat the D criterion. If ~Xj is the other block involved in the swap, the
adjustment Sij is, from equation (10),

[(xri ¡ ¹xi)¡ (xrj ¡ ¹xj)](xrj ¡ xri)T + (xrj ¡ xri)[(xri ¡ ¹xi)¡ (xrj ¡ ¹xj)]T +

(xrj ¡ xri)(xrj ¡ xri)
T (
ni ¡ 1
ni

+
nj ¡ 1
nj

);

which can be made symmetric by completing the square, giving:

Sij = (¹xj ¡ ¹xi)[2] ¡ [(¹xj ¡ ¹xi)¡ (xrj ¡ xri)][2] + (1 ¡ ni + nj
ninj

)(xrj ¡ xri)[2];

or

Sij = VijBijV T
ij ; (17)

where Vij is a k by 3 matrix and Bij is diagonal and note that the columns of
Vij are linearly dependent, and can be written as Vij = WijHij where Wij =
[(¹xj ¡ ¹xi); (xrj ¡ xri)], and

Hij =
µ

1 1 0
0 ¡1 1

¶
;

56

giving Sij = Wij (HijBijHT
ij)W T

ij = WijGijW T
ij , with Gij a non-singular matrix

with determinant -1:

Gij =
µ

0 1
1 ¡C

¶
;

where C = ni+nj
ninj

.

Letting ~M = ~XT ~X , one has after the swap, ~Mij;rirj = ~M + Sij = ~M +
WijGijWT

ij , and from this

~M¡1
ij;rirj = ~M¡1 ¡ ~M¡1Wij(G¡1

ij + WT
ij

~M¡1Wij)¡1W T
ij

~M¡1); (18)

and

j ~Mij;rirjj = ¡j ~M jjG¡1
ij +W T

ij
~M¡1Wij j = j ~M jj¢ij (ri; rj)j: (19)

One thus has D = j ~Mij;rirj j = j ~M jj¢ij (ri; rj)j for an exchange involving
blocks i and j .

6.5 Updating equations for theD criterion when there are
interactions between block factors and within block
factors.

In this case, the row elements of X = [Xwb; Xrj] must be modi¯ed during
exchanges, since Xwb depends on the block factors. One may represent row r of
X in the ith block as xr;i = ±ixr , where xr involves only within block factors,
and ±i is a diagonal matrix involving only block factors. For example, if ui is a
factor in block i, and v, w are within block factors, one might have,

xTr;i = (v; w; uiv; uiw; vw);
= (v; w; v; w; vw)diag(1; 1;ui ;ui; 1)
= xTr ±i :

Splitting xr;i into two multiplicative factors is simple if the factors are con-
tinuous variables. Setting the whole block factors to unity will produce xr , and
setting the within block factors to unity will produce ±i . For a categorical factor,
the same may be done by coding the ¯rst level as a vector of unities. Nesting
presents a problem, since the contrast matrix for a nesting factor is the identity
matrix, thus it is not possible to code a level as a vector of unities; however, if
Xn is X with nesting factors, and Xm is X in which the same factors are mul-
tiplied, then Xn = XmT , where T is a non-singular matrix with ¯rst column
(1; 0; : : : ; 0)T . Thus j ~Xn

T ~Xnj = j ~Xm
T ~Xm j £ constant, which means that the

optimal design is the same for both codings.
The arguments in section (6.3) leading to equation (14) may be used. The

updating equation for exchanging rows r1 and r2 between blocks i and j is

57

~Mr1r2 = ~M +WiGiWT
i + WjGjWT

j ; (20)

where for l=i,j, Wl = ±l[(xr2 ¡ ¹xl); (xr1 ¡ ¹xl)], with ¹xl being the means of the
xl's in each block, and

Gi =
1
ni

µ
(ni ¡ 1) 1

1 ¡(ni + 1)

¶
;

Gj =
1
nj

µ
¡(nj + 1) 1

1 (nj ¡ 1)

¶
:

Applying equations (15) and (16), and using di;j = WiT ~M¡1Wj, one has

j ~Mr2;r1 j = j ~M jj¢ijj¢j ¡ dj;i¢¡1
i di;jj;

where ¢l = G¡1
l + dl;l for l = i; j .

6.6 Computational note
A useful numerical method for dealing with matrix problems is to reduce the
cross product matrices to products of triangular matrices. Thus ~M = ~XT ~X =
T TT , where T is upper triangular. The inverse ~M¡1 = T¡1(TT)¡1 is also the
product of triangular matrices. For such, products of the form vT ~M¡1v, where
v is a conformable vector, become (vT T¡1) [2] with some saving in computation.
Moreover, the algorithm that reduces ~X to T is such that additional weighted
rows may be included or removed with small e®ort.

It follows that one can update either with equations like (12) or with equa-
tions like (14).

BIBLIOGRAPHY
1. Atkinson, A.C. and Donev, A.N. (1992). Optimum experimental designs.

Oxford, N.Y.

2. Cox, D.R. and Reid, N. (2000). The theory of the design of experiments.
Chapman & Hall, N.Y.

3. Donev, A.N. and Atkinson, A.C. (1988). An adjustment algorithm for the
construction of exact D-optimum experimental designs. Technometrics.
30. 429-33.

4. Elfving, G. (1952). Optimum allocation in linear regression theory. Ann.
Math. Stat. 23. 255-262.

5. Cochran, W.G. and Cox, G.M. (1950). Experimental designs. Wiley, N.Y.

58

6. Cook, R.D. and Nachtsheim, C. (1989). Computer-aided blocking of fac-
torial and response-surface designs. Technometics. 31-3. 339-346.

7. Cox, D.R. (1971). A note on polynomial response functions for mixtures.
Biometrika. 58,1. 155-159.

8. Finney, D.J. (1945). The fractional replication of factorial arrangements.
Ann. Eugen. 12. 291-301.

9. Goos, P. and Vandebroek, M. (2003). D-Optimal split-plot designs with
given numbers and sizes of whole plots. Technometrics. 45-3. 235-245.

10. Gorman, J.W. and Hinman, J.E. (1962). Simplex lattice designs for mul-
ticomponent systems. Technometrics. 4-4. 463-487.

11. Nguyen, Nam-Ky. (2001). Cutting experimental designs into blocks.
AusNZJSt. 43-3. 367-374.

12. Peirce, C.S. and Jastrow, J. (1884). On small di®erences of sensation.
Memoirs of the National Academy of Sciences. 3. 75-83.

13. Federov, V.V. (1972). Theory of optimal experiments. Academic Press,
N.Y.

14. Gentleman, W.M. (1973). Least squares computations by Givens trans-
formations without square roots. J. Inst. Maths Applics. 12. 329-336.

15. Lorenzen, T.J. and Anderson, V.L. (1993). Design of experiments, a no-
name approach. Dekker, N.Y.

16. Pukelsheim, F. and Rieder, Sabine. (1992). E±cient rounding of approx-
imate designs. Biometrika 79-4. 763-770.

17. Sche®¶e, H. (1959). The Analysis of Variance. Wiley, N.Y.

18. Sche®¶e H. (1958). Experiments with mixtures. Jour. Roy. Statist. Soc
(B). 20. 344-360.

19. Silvey, S.D. (1980). Optimal Design. Chapman and Hall, N.Y.

20. Trinca, L.A. and Gilmour, S.G. (2000). An algorithm for arranging re-
sponse surface designs in small blocks. Computational Statistics and Data
Analysis. 33. 25-43.

21. Trinca, L.A. and Gilmour, S.G. (2001). Multistratum response surface
designs. Technometrics. 43-1. 25-33.

59

