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Abstract

This paper describes the R add-on package BradleyTerry, which facilitates the specification
and fitting of Bradley-Terry logit models to pair-comparison data. Included are the standard
‘unstructured’ Bradley-Terry model, structured versions in which the parameters are related
through a linear predictor to explanatory variables (with some values possibly missing), and the
possibility of an order or ‘home advantage’ effect. Model fitting is either by maximum likelihood
or by bias-reduced maximum likelihood in which the first-order asymptotic bias of parameter
estimates is eliminated. Also provided are suitably-defined residuals for diagnostic checking of
the linear predictor.
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1 Bradley-Terry model

1.1 Introduction

The Bradley-Terry model (Bradley and Terry, 1952) assumes that in a ‘contest’ between any
two ‘players’, say player i and player j (i, j ∈ {1, . . . ,K}), the odds that i beats j is αi/αj ,
where αi and αj are positive-valued parameters which might be thought of as representing
‘ability’. For a good general introduction see Agresti (2002). Applications are many, ranging
from experimental psychology to the analysis of sports tournaments to genetics (for example,
the allelic transmission/disequilibrium test of Sham and Curtis (1995) is based on a Bradley-
Terry model in which the ‘players’ are alleles). The model can alternatively be expressed in the
logit-linear form

logit[pr(i beats j)] = λi − λj , (1)

where λi = log αi for all i. Thus, assuming independence of all contests, the parameters
λi, λj , etc., can be estimated by maximum likelihood using standard software for generalized
linear models, with a suitably specified model matrix. The primary purpose of the BradleyTerry
package, implemented in the R statistical computing environment (Ihaka and Gentleman, 1996),
is to facilitate the specification and fitting of such models, including special cases in which the
ability parameters are related to available explanatory variables through a linear predictor of the
form λi =

∑p
r=1 βrxir.

1.2 Example: analysis of journal citations

The following comes from page 448 of Agresti (2002), extracted from the larger table of Stigler
(1994). The data are counts of citations among four prominent journals of statistics:
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> journal <- c("Biometrika", "Comm Statist", "JASA", "JRSS-B")
> citedata <- matrix(c( NA, 33, 320, 284,
+ 730, NA, 813, 276,
+ 498, 68, NA, 325,
+ 221, 17, 142, NA),
+ 4,4,
+ dimnames = list(winner = journal, loser = journal))

The data need to be re-structured as a data frame:

> citedata <- as.data.frame.table(citedata)
> citedata

winner loser Freq
1 Biometrika Biometrika NA
2 Comm Statist Biometrika 33
3 JASA Biometrika 320
4 JRSS-B Biometrika 284
5 Biometrika Comm Statist 730
6 Comm Statist Comm Statist NA
7 JASA Comm Statist 813
8 JRSS-B Comm Statist 276
9 Biometrika JASA 498
10 Comm Statist JASA 68
11 JASA JASA NA
12 JRSS-B JASA 325
13 Biometrika JRSS-B 221
14 Comm Statist JRSS-B 17
15 JASA JRSS-B 142
16 JRSS-B JRSS-B NA

Here ‘winner’ means the cited journal, ‘loser’ the journal in which the citation appears; thus, for
example, Biometrika was cited 498 times by papers in JASA during the period under study. The
Bradley-Terry model can now be fitted by using function BTm from the BradleyTerry package.
Here we fit the model and store the result as an object named citemodel:

> print(citemodel <- BTm(citedata ~ ..))

Call: BTm(formula = citedata ~ ..)

Coefficients:
..Comm.Statist ..JASA ..JRSS.B

-2.9491 -0.4796 0.2690

Degrees of Freedom: 6 Total (i.e. Null); 3 Residual
Null Deviance: 1925
Residual Deviance: 4.293 AIC: 46.39

The coefficients hare are maximum likelihood estimates of λ2, λ3, λ4, with λ1 (the log-ability
for Biometrika) set to zero as an identifying convention.

Note the use of the special right-hand-side formula ‘..’, which is used to specify the linear
predictor λi − λj of the standard Bradley-Terry model.

If a different ‘reference’ journal is required, this can be achieved using the optional refcat
argument: for example, making use of the generic update to avoid re-specifying the whole
model,
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> update(citemodel, . ~ ., refcat = "JASA")

Call: BTm(formula = citedata ~ .., refcat = "JASA")

Coefficients:
..Biometrika ..Comm.Statist ..JRSS.B

0.4796 -2.4695 0.7485

Degrees of Freedom: 6 Total (i.e. Null); 3 Residual
Null Deviance: 1925
Residual Deviance: 4.293 AIC: 46.39

— the same model in a different parameterization.
The use of the standard Bradley-Terry model for this application is of course rather question-

able — for example, citations within a published paper can hardly be considered independent,
and the model discards potentially important information on self-citation. Stigler (1994) pro-
vides arguments to defend the model’s use despite such concerns.

2 Abilities predicted by explanatory variables

In some application contexts there may be ‘player-specific’ explanatory variables available, and
it is then natural to consider model simplification of the form

λi =
p∑

r=1

βrxir, (2)

in which ability of each player i is related to explanatory variables xi1, . . . , xip through a linear
predictor with coefficients β1, . . . , βp. See, for example, Springall (1973). The BTm function
allows such models to be specified in a natural way using the standard S-language model
formulae.

As a very simple illustration with just one predictor, consider the citations model above but
with ability determined by the journal’s country of origin:

> journaldata <- data.frame(journal, origin = c("UK", "USA", "USA", "UK"),
+ row.names = journal)
> print(citemodel2 <- BTm(citedata ~ origin, data = journaldata))

Call: BTm(formula = citedata ~ origin, data = journaldata)

Coefficients:
originUSA

-1.273

Degrees of Freedom: 6 Total (i.e. Null); 5 Residual
Null Deviance: 1925
Residual Deviance: 1139 AIC: 1177

The UK journals have an estimated advantage in (log) ability of 1.273 over the USA journals.
This model saves two parameters, but at the expense of severe lack of fit: clearly journals’
ability to be cited varies significantly within at least one of the two countries of origin.

The ‘standard’ Bradley-Terry model from §1.2 above could have been specified in the same
way:

> BTm(citedata ~ journal, data = journaldata)

Call: BTm(formula = citedata ~ journal, data = journaldata)
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Coefficients:
journalComm.Statist journalJASA journalJRSS.B

-2.9491 -0.4796 0.2690

Degrees of Freedom: 6 Total (i.e. Null); 3 Residual
Null Deviance: 1925
Residual Deviance: 4.293 AIC: 46.39

The special model formula ‘..’ used in §1.2 provides a convenient shorthand for the specification
of this model.

3 Missing values

The NA values in the journal-citation data above appear in data rows that are not used in the
Bradley-Terry model. Such rows in the data frame of contest results (i.e., the left-hand side of
the model formula) are simply discarded by BTm.

Where there are missing values in player-specific predictor (or explanatory) variables which
appear on the right-hand side of the model formula, it will typically be very wasteful to discard
all contests involving players for which some values are missing. Instead, such cases are accom-
modated by the inclusion of one or more parameters in the model. If, for example, player 1 has
one or more of its predictor values x11, . . . , x1p missing, then the combination of (1) and (2)
above yields

logit[pr(1 beats j)] = λ1 −
p∑

r=1

βrxjr,

for all other players j. This results in the inclusion of a ‘direct’ ability parameter for each
player having missing predictor values, in addition to the common coefficients β1, . . . , βp — an
approach which will be appropriate when the missingness mechanism is unrelated to contest
success.

As a simple illustration, consider the previous citations model in which country of origin is
unknown for one of the journals (say, Communications in Statistics):

> is.na(journaldata$origin[2]) <- TRUE
> journaldata

journal origin
Biometrika Biometrika UK
Comm Statist Comm Statist <NA>
JASA JASA USA
JRSS-B JRSS-B UK
> update(citemodel2, . ~ .)

Call: BTm(formula = citedata ~ origin, data = journaldata)

Coefficients:
..Comm.Statist originUSA

-3.0317 -0.5726

Degrees of Freedom: 6 Total (i.e. Null); 4 Residual
Null Deviance: 1925
Residual Deviance: 18.86 AIC: 58.96

The fit of this model — which in effect allows distinct abilities for JASA and Communications
in Statistics, is better (as evidenced by the much-reduced deviance) than the previous model,
but is still unacceptable. The two UK journals differ significantly in ability, as may be seen from
a summary of the original three-parameter fit:
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> summary(citemodel)

Call:
BTm(formula = citedata ~ ..)

Deviance Residuals:
Comm.Statist vs Biometrika JASA vs Biometrika

-0.8476 0.5198
JASA vs Comm.Statist JRSS.B vs Biometrika

0.0930 -0.2022
JRSS.B vs Comm.Statist JRSS.B vs JASA

-1.6201 0.7941

Coefficients:
Estimate Std. Error z value Pr(>|z|)

..Comm.Statist -2.94907 0.10255 -28.759 < 2e-16

..JASA -0.47957 0.06059 -7.915 2.47e-15

..JRSS.B 0.26895 0.07083 3.797 0.000146

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1925.2329 on 6 degrees of freedom
Residual deviance: 4.2934 on 3 degrees of freedom
AIC: 46.394

Number of Fisher Scoring iterations: 4

The estimated difference of 0.269 between JRSS-B and the ‘reference’ journal Biometrika is
highly significant (although the correlations likely in this dataset have probably caused the
significance of all such comparisons to be overstated in these results).

4 Order effect

In certain types of application some or all contests have an associated ‘bias’, related to the order
in which items are presented to a judge or with the location in which a contest takes place, for
example. A natural extension of the Bradley-Terry model (1) is then

logit[pr(i beats j)] = λi − λj + δz,

where z = 1 if i has the supposed advantage and z = −1 if j has it. (If the ‘advantage’ is in
fact a disadvantage, δ will be negative.) The scores λi then relate to ability in the absence of
any such advantage.

As an example, consider the baseball data given in Agresti (2002), p438:

> baseball
winner loser Freq home.adv

1 Milwaukee Milwaukee NA 1
2 Milwaukee Detroit 4 1
3 Milwaukee Toronto 4 1
4 Milwaukee New York 4 1
5 Milwaukee Boston 6 1
6 Milwaukee Cleveland 4 1
7 Milwaukee Baltimore 6 1
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8 Detroit Milwaukee 3 1
9 Detroit Detroit NA 1
10 Detroit Toronto 4 1
...
48 Baltimore Cleveland 3 1
49 Baltimore Baltimore NA 1
50 Milwaukee Milwaukee NA -1
51 Milwaukee Detroit 3 -1
52 Milwaukee Toronto 5 -1
...
97 Baltimore Cleveland 4 -1
98 Baltimore Baltimore NA -1

Here there are 7 teams, and for example Milwaukee beat Detroit 4 times at home (home.adv
is 1) and 3 times away from home (home.adv is −1). The ‘standard’ Bradley-Terry model
without a home-advantage parameter is fitted as before:

> baseball.model <- BTm(baseball ~ ..)
> summary(baseball.model)

Call:
BTm(formula = baseball ~ ..)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.50067 -0.52962 -0.02198 0.32184 2.06170

Coefficients:
Estimate Std. Error z value Pr(>|z|)

..Boston 1.1077 0.3339 3.318 0.000908

..Cleveland 0.6839 0.3319 2.061 0.039345

..Detroit 1.4364 0.3396 4.230 2.34e-05

..Milwaukee 1.5814 0.3433 4.607 4.09e-06

..New.York 1.2476 0.3359 3.715 0.000203

..Toronto 1.2945 0.3367 3.845 0.000121

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 49.699 on 21 degrees of freedom
Residual deviance: 15.737 on 15 degrees of freedom
AIC: 87.324

Number of Fisher Scoring iterations: 4

The reference team is Baltimore, estimated to be the weakest of these seven, with Milwaukee
and Detroit the strongest.

Now add the home-advantage effect:

> baseball.model <- update(baseball.model, order.effect = baseball$home.adv)
> summary(baseball.model)

Call:
BTm(formula = baseball ~ .., order.effect = baseball$home.adv)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.0381908 -0.3143223 0.0007748 0.7621586 2.2600074
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

..Boston 1.1438 0.3378 3.386 0.000710

..Cleveland 0.7047 0.3350 2.104 0.035417

..Detroit 1.4754 0.3446 4.282 1.85e-05

..Milwaukee 1.6196 0.3474 4.662 3.13e-06

..New.York 1.2813 0.3404 3.764 0.000167

..Toronto 1.3271 0.3403 3.900 9.64e-05

.order 0.3023 0.1309 2.308 0.020981

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 78.015 on 42 degrees of freedom
Residual deviance: 38.643 on 35 degrees of freedom
AIC: 137.11

This reproduces the results given on page 438 of Agresti (2002): the home team has an estimated
odds-multiplier of exp(0.3023) = 1.35 in its favour.

5 Ability scores

The function BTabilities extracts estimates and standard errors for the log-ability scores
λ1, . . . , λK . These will either be ‘direct’ estimates, as in the standard Bradley-Terry model or
for players with one or more missing predictor values, or ‘model-based’ estimates of the form
λ̂i =

∑p
r=1 β̂rxir for players whose ability is predicted by explanatory variables.

As a simple illustration, estimates in the origin-predicts-ability model for journal citation
data are obtained by:

> BTabilities(citemodel2)
ability s.e.

Biometrika 0.0000 0.00000000
Comm.Statist -1.2732 0.04999872
JASA -1.2732 0.04999872
JRSS.B 0.0000 0.00000000

Here precision is of course overstated (the reported standard errors are too small), since this
particular model was a poor fit to the data.

6 Residuals

There are two main types of residual available for a Bradley-Terry model object.
First, there are residuals obtained by the standard methods for models of class glm. These

all deliver one residual for each contest or type of contest. For example, Pearson residuals for
the model citemodel2 can be obtained simply by

> residuals(citemodel2)
Comm.Statist vs Biometrika JASA vs Biometrika

-13.741187 11.121312
JASA vs Comm.Statist JRSS.B vs Biometrika

27.245984 2.807120
JRSS.B vs Comm.Statist JRSS.B vs JASA

7.624182 -4.286953

— from which the lack of fit is immediately apparent!
More useful for diagnostics on the linear predictor

∑
βrxir are ‘player’-level residuals, ob-

tained by using the function BTresiduals:
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> BTresiduals(citemodel2)
Biometrika Comm.Statist JASA JRSS.B
-0.09767683 -1.38124450 1.25835736 0.15117998
attr(,"weights")
Biometrika Comm.Statist JASA JRSS.B

396.4048 400.6950 439.8255 256.1157

These residuals estimate the error in the linear predictor; they are obtained by suitable aggrega-
tion of the so-called ‘working’ residuals from the glm fit. From these residuals it is immediately
evident, for example, that the origin-predicts-ability model understates the ability of JASA
and overstates the ability of Communications of Statistics (and similarly for JRSS-B versus
Biometrika). The weights attribute indicates the relative information in these residuals —
weight is roughly inversely proportional to variance — which may be useful for plotting and/or
interpretation; for example, a large residual may be of no real concern if based on very little
information. Weighted least-squares regression of these residuals on any variable already in the
model is null. For example:

> resids <- BTresiduals(citemodel2)
> journaldata$origin[2] <- "USA" ## ie the previous value is restored
> lm(resids ~ origin, weights = attr(temp, "weights"), data = journaldata)

Call:
lm(formula = resids ~ origin, weights = attr(temp, "weights"), data = journaldata)

Coefficients:
(Intercept) originUSA
1.690e-16 -4.391e-16

7 Bias-reduced estimates

Model-fitting in BTm is by default computed by maximum likelihood, using an internal call to the
glm function. An alternative is to fit by bias-reduced maximum likelihood (Firth, 1993): this
requires additionally the brlr package, and is specified by the optional argument br = TRUE.
The resultant effect, namely removal of first-order asymptotic bias in the estimated coefficients,
is often quite small. One notable feature of bias-reduced fits is that all estimated coefficients
and standard errors are necessarily finite, even in situations of ‘complete separation’ where MLEs
take infinite values (Heinze and Schemper, 2002).

8 Model search

In addition to update() as illustrated above, methods for the generic functions add1() and
drop1() are provided. These can be used in the standard way for model elaboration or special-
ization, and their availability also allows the use of step() for automated exploration of a set
of candidate player-specific predictors.

9 Setting up the data

9.1 Contest results

The left-hand side of the model formula supplied to BTm is a data frame with at least two
columns. The citedata object shown in §1 above is an example; baseball in §4 is another.
Each row represents a contest result. One column (either named "winner", or the first column
if no column has that name), is a factor indicating contest winners; another (either "loser",
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or column 2) indicates contest losers. An optional numeric column named "Freq" contains the
frequency of each result; if this column is absent, all frequencies are taken to be 1.

If order.effect is specified, it should be a numeric vector of the same length as the
number of rows in the contest-results data frame. It may be convenient to store such a vector
in the same data frame, as was done in the baseball dataset above. Values should be 1 where
the winner is advantaged by the effect, -1 where the loser is advantaged, and 0 where neither
player is advantaged.

To use only certain rows of the data in the analysis, the subset argument may be used in
the call to BTm. This should either be a logical vector of the same length as the number of rows
in the contest-results data frame, or a numeric vector containing the indices of rows to be used.

9.2 Predictors

Variables which appear in the right-hand side of the model formula are ‘player’-level predictor
variables. The safest approach is to put all potential predictor (explanatory) variables —including
factors and any offset term — into a data frame like journaldata above, with one row per
(potential) player, and with row names the names of players exactly as used in the "winner" and
"loser" columns of the contest-results data frame. The data argument to BTm, which applies
only to right-hand side variables, is then used to identify the data frame in which predictors
(and any offset) can be found.

An offset in the model can be specified using the offset argument to BTm, which should
be a vector of length equal to that of the other right-hand side variables (and which should, for
tidiness, come from the same data frame as other predictors).

10 What is not in the BradleyTerry package?

The BradleyTerry package does not provide:

• any methods for dealing with ties, i.e., contests in which neither player wins.

• any facilities either for handling contest-specific (as opposed to player-specific) predictor
variables, except for the possibility of an order effect as described above.

These extensions to the Bradley-Terry model can be achieved in R (or elsewhere) by fitting
suitably constructed log-linear models — see, for example, Critchlow and Fligner (1991) and
Dittrich et al. (1998). They are outside the scope of the BradleyTerry package, whose purpose
is to simplify the specification and fitting of Bradley-Terry models with player-specific predictors
(including of course the ‘saturated’ case of the standard Bradley-Terry model (1)).

A useful extension of the BradleyTerry package would be to allow the inclusion of a player-
specific random effect, as in

λi =
p∑

r=1

βrxir + Ui,

with the {Ui} distributed independently as N(0, σU ) for example, to allow for imperfect repre-
sentation of ability by the linear predictor

∑
βrxir. Work on this is in progress.
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