
dse2 Guide

In R, the functions in this package are made available with

> library("dse2")

The next code lines are here to initialize results from examples in dse1 that
are used in dse2 examples.

> data(egJofF.1dec93.data, package = "dse1")

> eg4.DSE.data <- egJofF.1dec93.data

> eg4.DSE.model <- estVARXls(eg4.DSE.data)

> outputData(eg4.DSE.data) <- outputData(eg4.DSE.data, series = c(1,

2, 6, 7))

> eg4.DSE.model <- estVARXls(eg4.DSE.data)

> new.data <- TSdata(input = ts(rbind(inputData(eg4.DSE.data),

matrix(0.1, 10, 1)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)),

output = ts(rbind(outputData(eg4.DSE.data), matrix(0.3, 5,

4)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)))

> if (require("padi") & require("dsepadi")) eg4.DSE.data.names <- TSPADIdata(input = "B14017",

input.transforms = "diff", input.names = "R90", output = c("P100000",

"V2036138", "V2062811", "b3400"), output.transforms = c("percentChange",

"percentChange", "percentChange", "percentChange"), output.names = c("CPI",

"GDP", "employment", "PFX"), server = "ets")

1 Forecasting

The TSestModel object returned by estimation is a TSmodel with TSdata and
some estimation information. To use different data, the new data needs to be in
a variable which is a TSdata object. For example, suppose a model is estimated
by

> eg4.DSE.model <- estVARXls(eg4.DSE.data)

and suppose new data becomes available. If you have direct database access
this might be done with something like

> if (require("padi") && checkPADIserver("ets")) new.data <- freeze(eg4.DSE.data.names)

If database access is not available then, for example purposes, new.data can
be generated with

> new.data <- TSdata(input = ts(rbind(inputData(eg4.DSE.data),

matrix(0.1, 10, 1)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)),

output = ts(rbind(outputData(eg4.DSE.data), matrix(0.3, 5,

4)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)))

1

This simply appends ten observations of 0.1 onto the input and five obser-
vations of 0.3 onto the outputs. The function ts assigns time series attributes
which are taken from eg4.DSE.data. The model can be evaluated with the new
data by

> z <- l(TSmodel(eg4.DSE.model), trimNA(new.data))

Recall that TSmodel() extracts the TSmodel from the TSestModel. If database
access is available the above can be done in one step:

> if (require("padi") && checkPADIserver("ets")) z <- l(TSmodel(eg4.DSE.model),

trimNA(freeze(eg4.DSE.data.names)))

trimNA on a TSdata object removes NAs from the ends and truncates both
input and output to the same sub-sample. l() does not easily give forecasts
beyond the period where all data is available. (Optional arguments can be used
to achieve this, but the function forecast is more convenient.)

Forecasts are conditioned on input so it must be supplied for periods for
which forecasts are to be calculated. (That is, input is not forecast by the
model.) When more data is available for input than for output, as in new.data
generated above, then forecast() will use input data and produce a forecast of
output.

> z <- forecast(TSmodel(eg4.DSE.model), new.data)

The input data can also be specified as a separate argument. For example,
the same result will be achieved with

> z <- forecast(TSmodel(eg4.DSE.model), trimNA(new.data), conditioning.inputs = inputData(new.data))

The conditioning.inputs override input in the TSdata supplied in the second
argument to the function.

To see plots of the forecasts use

> tfplot(z, start = c(1990, 6))

2

1991 1992 1993 1994

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

C
P

I

Predictions (dotted) and actual data (solid)

1991 1992 1993 1994

−
1.

0
−

0.
5

0.
0

0.
5

G
D

P

1991 1992 1993 1994

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

em
pl

oy
m

en
t

1991 1992 1993 1994

−
1

0
1

2

P
F

X

Sometimes a forecast for input data comes from another source, perhaps
another model. Rather than construct the conditioning.inputs as described
above, another way to combine this forecast with the historical input data is to
use the argument conditioning.inputs.forecasts:

> z <- forecast(eg4.DSE.model, conditioning.inputs.forecasts = matrix(0.5,

6, 1))

This would use the input data from eg4.DSE.model and append 6 periods of
0.5 to it.

> if (require("padi") && checkPADIserver("ets")) z <- forecast(TSmodel(eg4.DSE.model),

freeze(eg4.DSE.data.names), conditioning.inputs.forecasts = matrix(0.5,

6, 1))

retrieves new data and appends 6 periods of 0.5 to the input series
Some generic functions which work with the structure returned by forecast:

> summary(z)

> print(z)

> tfplot(z)

> tfplot(z, start = c(1990, 1))

3

If you actually want the numbers from the forecast they can be extracted
with

> forecasts(z)[[1]]

The [[1]] indicates the first forecast (in this example there is only one, but
the same structures are used for other purposes discussed below. To see a subset
of the data use tfwindow :

> tfwindow(forecasts(z)[[1]], start = c(1994, 1), warn = FALSE)

This prints values starting in the first period of 1994.
The horizon for the forecast is determined by the available input data (condi-

tioning.inputs or conditioning.inputs.forecasts). If neither of these are supplied
then the argument horizon, which has a default value of 36, is used to repli-
cate the last period of data to the indicated horizon. For models with no input
variables the argument horizon controls the length of the forecast.

2 Evaluating Forecasting Models

How well does the model do at forecasting? The first thing to check is that model
forecasts actually track the data more or less. The generic function tfplot()
works with results from the following functions. Recall that the function l()
applies a TSmodel to TSdata and returns a TSestModel which includes one-step
ahead forecasts. It can be used with any TSmodel and TSdata of corresponding
dimension. So

> z <- l(TSmodel(eg4.DSE.model), new.data)

applies the previously estimated model to the new data, and

> tfplot(z)

would plot the one-step ahead forecasts. The function forecast discussed in
the previous section calculates multi-step ahead forecasts from the end of the
data. For evaluating forecasting models it is more useful to calculate forecasts
within the sample of available data. This is for two reasons. First, the forecast
can be compared against the actual outcome. Second, if the model has an input
then the forecast is conditioned on it. If data is available then the actual input
data can be used. (But beware that this is not a true test of the model’s ability
to forecast if the whole sample has been used to estimate the model.) There
are two methods to calculate multi-step ahead forecasts within the data sample.
featherForecasts produces multiple period ahead forecasts beginning at specified
periods. The name comes from the fact that the graph sometimes looks like a
feather (although it will not if the forecasts are good).

> z <- featherForecasts(TSmodel(eg4.DSE.model), new.data)

> tfplot(z)

4

In the example above the forecasts begin by default every tenth period. In
the following example the forecasts begin at periods 20, 50, 60, 70 and 80 and
forecast for 150 periods.

> z <- featherForecasts(TSmodel(eg4.DSE.model), new.data, from.periods = c(20,

50, 60, 70, 80), horizon = 150)

The plot looks like this:

> tfplot(z)

1975 1980 1985 1990

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

C
P

I

Predictions (dotted) and actual data (solid)

1975 1980 1985 1990

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

G
D

P

1975 1980 1985 1990

−
1.

0
−

0.
5

0.
0

0.
5

em
pl

oy
m

en
t

1975 1980 1985 1990

−
2

−
1

0
1

2
3

P
F

X

The second method, horizonForecasts, produces forecasts from every period
for specified horizons.

> z <- horizonForecasts(TSmodel(eg4.DSE.model), new.data, horizons = c(1,

3, 6))

produces forecasts 1, 3 and 6 steps ahead. The plot looks like this:

> tfplot(z)

5

1975 1980 1985 1990

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

C
P

I

Predictions (dotted) and actual data (solid)

1975 1980 1985 1990

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

G
D

P

1975 1980 1985 1990

−
1.

0
−

0.
5

0.
0

0.
5

em
pl

oy
m

en
t

1975 1980 1985 1990

−
2

−
1

0
1

2
3

P
F

X

The result is aligned so that the forecast for a particular period is plotted
against the actual outcome for that period. Thus, in the last example, the plot
will show the data for each period along with the forecast produced from 1, 3,
and 6 periods prior. This plot is particularly useful for illustrating when models
do well and when they do not. A common experience with economic data is
that models do well during periods of expansion and contraction, but miss the
turning points. The forecast covariance, to be discussed next, averages over all
periods. It is quite possible that a model can indicate turning points well but
not do so well on average, and thus be overlooked if only forecast covariance is
considered. It is always useful to keep in mind the intended use of the model.

The numbers which generate the above plot can be extracted from the result
of horizonForecasts with forecasts(). This gives an array with the first dimen-
sion corresponding to the horizons and the time frame aligned to correspond to
the data. So forecasts(z)[2,30,] from the above example will be the prediction
made for the 30th period from 3 periods previous (the second element indicated
in horizons is 3) and forecasts(z)[3,30,] will be the prediction made for the 30th
period from 6 periods previous (horizons[3] is 6). Remember that these fore-
casts are conditioned on the supplied input data, which means that the output
variables here are forecast 1, 3 and 6 periods ahead, but true, not forecasted,
input data is used.

6

If the forecasts look reasonable then examine the forecast errors more system-
atically. The following calculates the forecast covariances at different horizons.

> fc <- forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data)

> tfplot(fc)

> tfplot(forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data,

horizons = 1:4))

The last example calculates for horizons from 1 to 4 rather than the default
1 to 12. To see how the model forecasts relative to a zero forecast and a trend
forecast:

> fc <- forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data,

zero = T, trend = T)

> tfplot(fc)

This is a very useful check (and often very humbling).
You can also get out-of-sample forecast covariances. This will be discussed

in the next section.
There is not yet implemented in DSE any measure of forecast errors which

can be compared across models - inevitably the covariance of the error is smaller
for less variable series and is also affected by scaling of the series. This may just
mean that the series is easier to predict or has a different scale, not that the
forecast equation is more brilliant. MAPE may be implemented sometime.

3 Evaluating Estimation Methods

One way to test estimation techniques is to specify a ”true”model which is used
to produce simulated data and then examine how well an estimation technique
finds the true model. This is not as general as theoretical results, since it is
really only valid at the ”true” parameter values and for the sample size tested,
however, it can be illustrative and theoretical results for small samples are very
difficult to obtain. It also provides a very good cross check of the simulation and
estimation code. Also, equivalent representations may have effects which are not
yet fully appreciated in the literature. The following models from Gilbert (1995)
will be used to illustrate.

> mod1 <- ARMA(A = array(c(1, -0.25, -0.05), c(3, 1, 1)), B = array(1,

c(1, 1, 1)))

> mod2 <- ARMA(A = array(c(1, -0.8, -0.2), c(3, 1, 1)), B = array(1,

c(1, 1, 1)))

> mod3 <- ARMA(A = array(c(1, -0.06, 0.15, -0.03, 0, 0.02, 0.03,

-0.02, 0, -0.02, -0.03, -0.02, 0, -0.07, -0.05, 0.12, 1,

0.2, -0.03, -0.11, 0, -0.07, -0.03, 0.08, 0, -0.4, -0.05,

-0.66, 0, 0, 0.17, -0.18, 1, -0.11, -0.24, -0.09), c(4, 3,

3)), B = array(diag(1, 3), c(1, 3, 3)))

7

mod2 has a unit root, as can be verified with roots(mod2) or stability(mod2).
The function MonteCarloSimulations runs simulate repeatedly to give many

data samples.

> z <- MonteCarloSimulations(mod1, simulation.args = list(sampleT = 100))

> tfplot(z)

> distribution(z)

Usually it is not necessary to use MonteCarloSimulations and actually save
all the simulations since the seed and other information about the random num-
ber generator (RNG) can be used to reproduce the samples. Thus functions
for testing estimation methods can produce the same samples when they are
needed.

The function EstEval simulates and then estimates models:

> e.ls.mod1 <- EstEval(mod1, replications = 100, simulation.args = list(sampleT = 100,

sd = 1), estimation = "estVARXls", estimation.args = list(max.lag = 2),

criterion = "TSmodel")

In this example simulation and estimation will be repeated 100 times with
samples of size 100 and the standard deviation of the model noise will be set
to 1. simulation.args are passed to the function simulate, which may take dif-
ferent arguments depending on the class of the model. Estimation is done with
the function estVARXls and estimation.args are passed to it. The argument
criterion specifies what should be returned from the estimation. In this case the
model is returned (An object of class TSmodel) but not additional information
as is usually returned in the object TSestModel. It is also possible to spec-
ify coef or roots to return only that specific information, but that information
can be extracted from the TSmodel as illustrated below. In general EstEval will
work with any estimation method which will take the results of simulate applied
to the supplied model and returns something that criterion can extract. That
is, if criterion(estimation(simulate(model))) returns something (with criterion
and estimation replaced by the functions you supply and model replaced by the
model you supply), then EstEval should work with your functions. This does
not mean that plots described below will necessarily work or make sense.

An optional argument rng can be specified here and in examples below. If
supplied, the RNG and seed will be set. This is useful if an experiment is to
be reproduced. Using Splus 3.2 and 3.3 the settings indicated by comments in
the examples in this section will reproduce the results in Gilbert (1995). It is
possible to generate similar random experiments in S and in R, but not using
the Splus default generator. If the argument rng above is given as

> rng = list(kind = "Wichmann-Hill", seed = c(979, 1479, 1542),

normal.kind = "Box-Muller")

then the uniform RNG is set to Wichmann-Hill, the normal transformation
is set to Box-Muller, and the initial seed is set. With the RNG set in this way

8

both Splus and R will produce similar results. These settings are reset to their
previous values when the function completes. They can be set so that they do
not revert using the function

> setRNG(kind = "Wichmann-Hill", seed = c(979, 1479, 1542), normal.kind = "Box-Muller")

The argument seed is optional (and other values can be supplied but they
should be consistent with the generator). An initial seed will be generated if
it is omitted. Typically the seed should be set only when trying to reproduce
previous results.

The following uses mod2 as the true model.

> e.ls.mod2 <- EstEval(mod2, replications = 100, simulation.args = list(sampleT = 100,

sd = 1), estimation = "estVARXls", estimation.args = list(max.lag = 2),

criterion = "TSmodel")

To plot a line chart of the cumulative average of the estimated parameters
use coef to extract the parameters (coefficients) from the TSmodel:

> par(mfcol = c(2, 1))

> tfplot(coef(e.ls.mod1))

The plot from mod2 looks like this:

> tfplot(coef(e.ls.mod2))

9

0 20 40 60 80 100

−
0.

90
−

0.
85

−
0.

80
−

0.
75

−
0.

70

pa
rm

 1

0 20 40 60 80 100

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10

pa
rm

 2

The straight line indicates the true value. To plot a line chart of the esti-
mated parameters use coef to extract the parameters from the TSmodel:

> par(mfcol = c(2, 1))

> tfplot(coef(e.ls.mod1), cumulate = FALSE, bounds = FALSE)

bounds controls whether or not estimated one standard deviation bounds
are plotted. The plot from mod2 looks like this:

> tfplot(coef(e.ls.mod2), cumulate = FALSE, bounds = FALSE)

10

0 20 40 60 80 100

−
1.

1
−

1.
0

−
0.

9
−

0.
8

−
0.

7
−

0.
6

pa
rm

 1

0 20 40 60 80 100

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

pa
rm

 2

To plot the distribution of estimates:

> distribution(coef(e.ls.mod1), bandwidth = 0.2)

The plot from mod2 looks like this:

> distribution(coef(e.ls.mod2), bandwidth = 0.2)

11

−1.5 −1.0 −0.5 0.0

0.
0

0.
5

1.
0

1.
5

parameter 1

de
ns

ity

−1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

parameter 2

de
ns

ity

To plot the roots of the estimated model use roots to extract the roots from
the TSmodel:

> e.ls.mod1.roots <- roots(e.ls.mod1)

> plot(e.ls.mod1.roots)

> plot(e.ls.mod1.roots, complex.plane = F)

> plot(roots(e.ls.mod2), complex.plane = F)

> distribution(e.ls.mod1.roots, bandwidth = 0.2)

bandwidth is an argument passed to the kernel estimator used to generate
the plot. The plot from mod2 looks like this:

> distribution(roots(e.ls.mod2), bandwidth = 0.1)

12

0.6 0.8 1.0 1.2

0
1

2
3

4

density(x = r[, i], bw = bandwidth)

Mod root 1

de
ns

ity

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

density(x = r[, i], bw = bandwidth)

Mod root 2

de
ns

ity

Some attention to the equivalence of different model representations is nec-
essary when evaluating estimation methods. For example, if the state space
equivalent of a VAR model is used as the true model for simulation and est-
VARXls is used for estimation then parameter estimates will be very different
from those of the state space model (but root estimates should still be similar).
Many estimation techniques may also do some model selection (such as estBlack-
Box does), so the returned models may have different numbers of parameters
and/or lags.

Evaluating models based on their forecast performance avoids some of these
difficulties. In any case, since forecasting is often the end objective, it is useful
to evaluate models directly on their forecasting performance. The function
forecastCovEstimatorsWRTtrue() evaluates estimation methods using a given
true model for simulation. It calculates the covariance of forecast errors of the
estimated models relative to the output of the true model:

> pc <- forecastCovEstimatorsWRTtrue(mod3, estimation.methods = list(estVARXls = list(max.lag = 6)),

est.replications = 2, pred.replications = 10)

The names of the elements in the list estimation.methods specify the esti-
mation methods and their value is a list of the arguments to the method. If no
arguments are required then the value should be specified as NULL. The covari-

13

ance for forecasts of zero and a simple trend are also calculated. These are useful
benchmarks. est.replications controls the number of times a sample is generated
and used for estimating a model with each estimation method. pred.replications
controls how many times the forecasts from the estimated model are compared
with output from the true model. Thus the total number of simulations is
est.replications + est.replications * pred.replications, so 22 in the above exam-
ple.

A similar function is available which applies a model reduction procedure
after the estimation:

> pc.rd <- forecastCovReductionsWRTtrue(mod3, estimation.methods = list(estVARXls = list(max.lag = 3)),

est.replications = 2, pred.replications = 10)

The reduction procedure used is MittnikReducedModels.. An optional ar-
gument criteria can be specified. This controls the model selection criteria used
by the reduction technique.

It is possible to compare different estimation techniques on the basis of their
out-of-sample forecasting error with respect to a data sample. In the following
example estimation.sample controls the portion of the sample used for estima-
tion. It can be a fraction indicating a portion of the sample, or it can be an
integer in which case it will be treated as the number of periods to use for
estimation.

> data(eg1.DSE.data, package = "dse1")

> z <- outOfSample.forecastCovEstimatorsWRTdata(trimNA(eg1.DSE.data),

estimation.sample = 0.5, estimation.methods = list(estVARXar = NULL,

estVARXls = NULL), trend = T)

The plot looks like this:

> tfplot(z)

14

2 4 6 8 10 12

0.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

2.
0e

+
08

2.
5e

+
08

horizon

M
1

Prediction variance relative to given data.

2 4 6 8 10 12

0.
0e

+
00

5.
0e

+
09

1.
0e

+
10

1.
5e

+
10

2.
0e

+
10

2.
5e

+
10

horizon

G
D

P
l2

2 4 6 8 10 12

0
50

0
10

00
15

00

horizon

C
P

I

trend
estVARXar NULL
estVARXls NULL

In the example below the number of lags is limited (the default is 12 for
estBlackBox4) and printing of intermediate results is suppressed.

> z <- outOfSample.forecastCovEstimatorsWRTdata(trimNA(eg1.DSE.data),

estimation.sample = 0.5, estimation.methods = list(estBlackBox4 = list(max.lag = 3,

verbose = F), estVARXls = list(max.lag = 3)), trend = T,

zero = T)

> tfplot(z)

The object returned by outOfSample.forecastCovEstimatorsWRTdata() con-
tains the estimated models so it is possible to extract the models and use l, hori-
zonForecasts and featherForecasts. In the above example the model estimated
with estBlackBox4 is the first model and that estimated with estVARXls is the
second, so

> zz <- horizonForecasts(TSmodel(z, select = 1), TSdata(z), horizons = c(1,

3, 6))

would generate an object with the actual forecasts for the model estimated
with estBlackBox4 (rather than the covariance of the forecast errors) and fore-
casts(zz)[3,30,] will then be the prediction made for the 30th period from 6 (the

15

third element of horizons) periods previous. The generic function horizonFore-
casts() can also be applied directly to z and the appropriate information will be
extracted to generate forecasts for all the estimated models.

4 Adding New TSdata Classes

Data used by functions in this library are objects of class TSdata. The default
methods assume that this is a list with an element output and optionally an
element input, each of which is a (multivariate) time series object. New classes
of time series can be defined and the DSE library should work as long as the
methods describe in the tframe library are implemented for the new time series
class. This usually will not require any changes to TSdata methods (or anything
else in the DSE library). The time series class tfPADIdata defined in the tframe
library is an object which does not contain data, but only a description of where
to get the data. The generic function freeze() calls freeze.tfPADIdata() which
uses the location descriptor in order to get a fixed copy of the data as a time
series matrix.

More generally, it is possible to define new specific classes of TSdata. The
TSPADIdata object described in the appendix on database interfaces is an ob-
ject of class TSdata and specific class TSPADIdata. The input and output
for this class are time series location descriptors of class tfPADIdata. Many
functions in this library require matrices for input and output in order to do
calculations. In this case they use the function freeze() before doing any cal-
culations. The method freeze.TSPADIdata() uses freeze.tfPADIdata() on each
element.

5 Adding New TSmodel Classes

Models used in the library are of class ”TSmodel”with secondary classes to indi-
cate specific types of models. The original library supported subclass ”ARMA”
and ”SS”. The current version also support subclass ”troll”. (*** The inter-
face for running troll models is broken at present. Another, more easily avail-
able example is under construction) To run models in this subclass requires
the Troll software from Intex Solutions, Inc. It also requires the TSPADI in-
terface. The main methods which will be necessary for a new class of mod-
els ”xxx” are print.xxx, is.xxx, l.xxx, simulate.xxx, seriesNamesInput.xxx, se-
riesNamesOutput.xxx, checkConsistentDimensions.xxx, and MonteCarloSimu-
lations.xxx. Also, the method to.xxx is useful for converting models from ex-
isting classes to this new class where possible. Models should inherit from
TSmodel.

The troll class of models is fairly interesting from a programming perspec-
tive, since the data is not native to S/R and the models are not run within S/R.
One reason for wanting to do this is to use all of the other tools in the library
to analyze models which have already been built and are running in other envi-

16

ronments. Troll has very good algorithms for running ”forward looking models”
which are currently popular in economics. The tools in the DSE library (e.g.
functions for analyzing forecasting properties) can be used as if the troll models
were run directly in S/R, even though they are actually run with completely
separate software.

The troll TSmodels provide an example of how to implement additional
classes of models.

17

