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Abstract

The multi-state Markov model is a useful way of describing a process in which an individual
moves through a series of stages in continuous time. Themsmpackage for R allows a general
multi-state model to be fitted to longitudinal data. Data consist of observations of the process at
arbitrary times, so that the exact times when the state changes are unobserved. For example, the
progression of chronic diseases is often described by stages of severity, and the state of the patient
may only be known at doctor or hospital visits. Features ofmsminclude the ability to model
transition rates between stages in terms of covariates. A form of hidden Markov model can also
be fitted in which the states are misclassified. This manual introduces the theory behind multi-
state models and gives a tutorial in the typical use of themsmpackage. Multi-state models with
misclassification are covered in the final section.
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1 Multi-state models

1.1 Introduction

Figure 1.1 illustrates a multi-state model in continuous time. Its four states are labelled1, 2, 3, 4. At
a timet the individual is in stateS(t). The arrows show which transitions are possible between states.
The next state to which the individual moves, and the time of the change, are governed by a set of
transition intensitiesqrs(t, z(t)) for each pair of statesr ands. The intensities may also depend on
the time of the processt, and a set of individual-specific or time-varying explanatory variablesz(t).
The intensity represents the instantaneous risk of moving from stater to states:

qrs(t, z(t)) = lim
δt→0

P (S(t + δt) = s|S(t) = r)/δt (1)

The intensities form a matrixQ whose rows sum to zero, so that the diagonal entries are defined by
qrr = −∑

s 6=r qrs. To fit a multi-state model to data, we estimate this transition intensity matrix. We
concentrate onMarkovmodels here. The Markov assumption is that future evolution only depends
on the current state. That is,qrs(t, z(t),Ft) is independent ofFt, the observation historyFt of the
process up to the time precedingt. See, for example, Cox and Miller[1] for a thorough introduction
to the theory of continuous-time Markov chains.

1.2 Disease progression models

Many chronic diseases have a natural interpretation in terms of staged progression. Multi-state
Markov models in continuous time are often used to model the course of diseases. A commonly-
used model is illustrated in figure 2. This represents a series of successively more severe disease
stages, and an ‘absorbing’ state, often death. The patient may advance into or recover from adjacent
disease stages, or die at any disease stage. Observations of the stageSi(t) are made on a number of
individualsi at arbitrary timest, which may vary between individuals. The stages of disease may be
modelled as a homogeneous continuous-time Markov process, with a transition matrixQ, pictured
below figure 2.

A commonly-used model is theillness-deathmodel, with three states representing health, illness
and death (figure 3). Transitions are permitted from health to illness, illness to death and health to
death. Recovery from illness to health is sometimes also considered.

A wide range of medical situations have been modelled using multi-state methods, for exam-
ple, screening for abdominal aortic aneurysms (Jacksonet al.[2]), problems following lung trans-
plantation (Jackson and Sharples[3]), problems following heart transplantation (Sharples[4], Klotz
and Sharples[5]), hepatic cancer (Kay[6]), HIV infection and AIDS (Longiniet al.[7], Satten and
Longini[8], Guihenneuc-Jouyauxet al.[9], Gentlemanet al.[10]), diabetic complications (Marshall
and Jones[11], Andersen[12]), breast cancer screening (Duffy and Chen[13], Chenet al.[14]), cer-
vical cancer screening (Kirby and Spiegelhalter[15]) and liver cirrhosis (Andersenet al.[16]). Many
of these references also describe the mathematical theory, which will be reviewed in the following
sections.

1.3 Arbitrary observation times

Longitudinal data from monitoring disease progression are often incomplete in some way. Usually
patients are seen at intermittent follow-up visits, at which monitoring information is collected, but
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Figure 1: General multi-state model
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Figure 2: General model for disease progression
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information from the periods between visits is not available. Often the exact time of disease onset is
unknown. Thus, the changes of state in a multi-state model usually occur at unknown times. Also a
subject may only be followed up for a portion of their disease history. A fixed observation schedule
may be specified in advance, but in practice times of visits may vary due to patient and hospital
pressures. The states of disease progression models often include death. Death times are commonly
recorded to within a day.

A typical sampling situation is illustrated in figure 4. The individual is observed at four occasions
through 10 months. The final occasion is the death date which is recorded to within a day. The only
other information available is the occupation of stages 2, 2, and 1 at respective times 1.5, 3.5 and 5.
The times of movement between stages and the stage occupancy in between the observation times are
unknown. Although the patient was in stage 3 between 7 and 9 months this was not observed at all.

Informative sampling times To fit a model to longitudinal data with arbitrary sampling times we
must consider the reasons why observations were made at the given times. This is analogous to the
problem of missing data, where the fact that a particular observation is missing may implicitly give
information about the value of that observation. Possible observation schemes include:

• fixed. Each patient is observed at fixed intervals specified in advance.

• random. The sampling times vary randomly, independently of the current stage of the disease.

• doctor’s care. More severely ill patients are monitored more closely. The next sampling time
is chosen on the basis of the current disease state.

• patientself-selection. A patient may decide to visit the doctor on occasions when they are in a
poor condition.

Grügeret al. [17] discussed conditions under which sampling times areinformative. If a multi-
state model is fitted, ignoring the information available in the sampling times, then inference may
be biased. Mathematically, because the sampling times are often themselves random, they should
be modelled along with the observation processXt. However the ideal situation is where the joint
likelihood for the times and the process is proportional to the likelihood obtained if the sampling
times were fixed in advance. Then the parameters of the process can be estimated independently of
the parameters of the sampling scheme.

In particular, they showed that fixed, random and doctor’s care observation policies are not infor-
mative, whereas patient self-selection is informative.

1.4 Likelihood for the multi-state model

Kay [6] described a general method for evaluating the likelihood for a general multi-state model in
continuous time, applicable to any form of transition matrix. The only available information is the
observed state at a set of times, as in figure 4. The sampling times are assumed to be non-informative.

The likelihood is calculated from the transition probability matrixP (t). For a time-homogeneous
process, the(r, s) entry ofP (t) is the probability of being in states at a timet+u in the future, given
the state at timeu is r. It does not say anything about the time of transition fromr to s, indeed the
process may have entered other states between timesu andt + u. P (t) can be calculated by taking
the matrix exponential of the transition intensity matrix (see, for example, Cox and Miller [1]).

P (t) = exp(tQ) (2)
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Figure 4: Evolution of a multi-state model. The process is observed on four occasions
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Supposei indexesM individuals. The data for individuali consist of a series of times(ti1, . . . , tini)
and corresponding states(S(ti1), . . . , S(tini

)). Consider a general multi state model, with a pair of
successive observed disease statesS(tj), S(tj+1) at timestj , tj+1. The contribution to the likelihood
from this pair of states is

Li,j = pS(tj)S(tj+1)(tj+1 − tj) (3)

This is the entry of the transition matrixP (t) at theS(tj)th row andS(tj+1)th column, evaluated at
t = tj+1 − tj .

The full likelihoodL(Q) is the product of all such termsLi,j over all individuals and all transi-
tions. It depends on the unknown transition matrixQ, which was used to determineP (t).

Death states In observational studies of chronic diseases, it is common that the time of death is
known, but the state on the previous instant before death is unknown. IfS(tj+1) = D is such a death
state, then the contribution to the likelihood is summed over the unknown statem on the day before
death:

Li,j =
∑

m 6=D

pS(tj),m(tj+1 − tj)qm,D (4)

assuming a time unit of days. The sum is taken over all possible statesm which can be visited
betweenS(tj) andD.

Exactly observed transition times If the times(ti1, . . . , tini) had been theexacttransition times
between the states, with no transitions between the observation times, then the contributions would
be of the form

Li,j = pS(tj)S(tj)(tj+1 − tj)qS(tj)S(tj+1) (5)

since the state is assumed to beS(tj) throughout the interval betweentj and tj+1 with a known
transition to stateS(tj+1) at tj+1.

1.5 Covariates

The relation of constant or time-varying characteristics of individuals to their transition rates is often
of interest in a multi-state model. Explanatory variables for a particular transition intensity can be
investigated by modelling the intensity as a function of these variables. Marshall and Jones [11]
described a form of aproportional hazardsmodel, where the transition intensity matrix elementsqrs

which are of interest can be replaced by

qrs(z(t)) = q(0)
rs exp(βT

rsz(t))

The newQ is then used to determine the likelihood. If the covariatesz(t) are time dependent, the
contributions to the likelihood of the formprs(t− u) are replaced by

prs(t− u, z(u))

although this requires that the value of the covariate is known at every observation timeu. Sometimes
covariates are observed at different times to the main response, for example recurrent disease events
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or other biological markers. In some of these cases it could be assumed that the covariate is a step
function which remains constant between its observation times. Marshall and Jones [11] described
likelihood ratio and Wald tests for covariate selection and testing hypotheses, for example whether
the effect of a covariate is the same for all forward transitions in a disease progression model.

1.6 Multi-state models with misclassification

Hidden Markov models In a hidden Markov model(HMM) the states of the Markov chain are
not observed. The observed data are governed by some probability distribution conditionally on the
unobserved state. The evolution of the underlying Markov chain is still governed by a transition
intensity matrixQ (figure 5). This class of model is commonly used in areas such as speech and
signal processing [18] and the analysis of biological sequence data [19]. In engineering and biological
sequencing applications, the Markov process usually evolves over an equally-spaced, discrete ‘time’
space. Therefore most of the theory of HMM estimation was developed for discrete-time models.
HMMs have less frequently been used in medicine, where continuous time processes are often more
suitable. A disease process evolves in continuous time, and patients are often monitored at irregular
and differing intervals.

Themsmpackage can fit continuous-time multi-state models with misclassification, which are a
special case of HMM. In these models the observed data are states, assumed to be misclassifications
of the true, underlying states.

Time

ti1 ti2 ti,n−1 ti,n

Underlying

Observed

Si1 Si2 Si,n−1 Si,n

Oi1 Oi2 Oi,n−1 Oi,n

. . .
Q

E

Figure 5: A hidden Markov model in continuous time. Observed states are generated conditionally
on an underlying Markov process.

Screening tests with misclassification Consider a Markov model with at least a disease-free and a
disease state. When screening for the presence of the disease, the screening process can sometimes
be subject to error. Then the Markov disease processSi(t) for individual i is not observed directly,
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but through realisationsOi(t). The quality of a diagnostic test is often measured by the probabilities
that the true and observed states are equal,Pr(Oi(t) = r|Si(t) = r). Wherer represents a ‘positive’
disease stage, this is thesensitivity, or the probability that a true positive is detected by the test. Where
r represents a ‘negative’ or disease-free stage, this represents thespecificity, or the probability that,
given the condition of interest is absent, the test produces a negative result.

General misclassification model As an extension to the simple multi-state model described in sec-
tion 1, we describe a general multi-state model with misclassification. For patienti, observation time
tij , observed statesOij are generated conditionally on true statesSij according to amisclassification
matrixE. This is an× n matrix, whose(r, s) entry is

ers = Pr(O(tij) = s|S(tij) = r), (6)

which we first assume to be independent of timet. Analogously to the entries ofQ, some of the
ers may be fixed to reflect knowledge of the diagnosis process. For example, the probability of
misclassification may be negligibly small for non-adjacent states of disease. Thus the progression
through underlying states is governed by the transition intensity matrixQ, while the observation
process of the underlying states is governed by the misclassification matrixE.

To investigate explanatory variablesw(t) for the probability of misclassificationers for each pair
of stagesr ands, a logistic model can be used,

log
ers(t)

1− ers(t)
= γT

rsw(t). (7)

Maximum likelihood estimation A type of EM algorithm known as theBaum-Welchor forward-
backwardalgorithm [20, 21], is commonly used for hidden Markov model estimation in discrete-time
applications. See, for example, Durbinet al. [19], Albert [22]. A generalisation of this algorithm to
continuous time was described by Bureauet al. [23].

Themsmpackage uses a direct method of calculating likelihoods in discrete or continuous time
based on matrix products. This type of method has been described by Macdonald and Zucchini [24,
pp. 77–79], Lindsey [25, p.73] and Guttorp [26]. Satten and Longini [8] used this method to cal-
culate likelihoods for a hidden Markov model in continuous time with observations of a continuous
marker generated conditionally on underlying discrete states. The matrix-product method is now il-
lustrated for the misclassification model. However it can be generalised to any form of data generated
conditionally on states of a hidden Markov process.

Patienti’s contribution to the likelihood is

Li = Pr(Oi1, . . . , Oimi) (8)

=
∑

Pr(Oi1, . . . , Oimi |Si1, . . . , Simi)Pr(Si1, . . . , Simi)

where the sum is taken over all possible paths of underlying statesSi1, . . . , Simi . Assume that the
observed states are conditionally independent given the values of the underlying states. Also assume
the Markov property,Pr(Sij |Si,j−1, . . . , Si1) = Pr(Sij |Si,j−1). Then the contributionLi can be
written as a product of matrices, as follows. To derive this matrix product, decompose the overall
sum in equation 9 into sums over each underlying stage. The sum is accumulated over the unknown
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first state, the unknown second state, and so on until the unknown final state:

Li =
∑

Si1

Pr(Oi1|Si1)Pr(Si1)
∑

Si2

Pr(Oi2|Si2)Pr(Si2|Si1)
∑

Si3

Pr(Oi3|Si3)Pr(Si3|Si2)

. . .
∑

Simi

Pr(Oimi |Simi)Pr(Simi |Sini−1) (9)

wherePr(Oij |Sij) is the misclassification probabilityeSijOij
. Pr(Si,j+1|Sij) is the(Sij , Si,j+1)

entry of the Markov chain transition matrixP (t) evaluated att = ti,j+1 − tij . Let f be the vector of
initial stage occupation probabilitiesPr(Si1), and let1 be a column vector consisting of ones. For
j = 2, . . . , mi let Tij be then× n matrix with (r, s) entry

esOij
prs(tij − ti,j−1)

Then subjecti’s likelihood contribution is

Li = fTi2Ti3, . . . Timi
1 (10)

If S(tj) = D is an absorbing state such as death, measured without error, whose entry time
is known exactly, then the contribution to the likelihood is summed over the unknown state at the
previous instant before death. the day before entry. The(r, s) entry ofTij is then

prs(tj − tj−1)qs,D
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2 Fitting multi-state models with msm

msmis a package of functions for multi-state modelling using the R statistical software. Themsm
function itself implements maximum-likelihood estimation for general multi-state models with op-
tional covariates or misclassification. We illustrate its use with a set of data from monitoring heart
transplant patients. Throughout this section “>” indicates the R command prompt,slanted typewriter
text indicates R commands, andtypewriter text R output.

2.1 Installing msm

The easiest way to install themsmpackage on a computer connected to the Internet is to run the R
command:

> install.packages(msm)

This downloadsmsmfrom the CRAN archive of contributed R packages (cran.r-project.org
or one of its mirrors) and installs it to the default R system library. To install to a different location,
for example if you are a normal user with no administrative privileges, create a directory in which R
packages are to be stored, say,/your/library/dir , and run

> install.packages(msm, library = "/your/library/dir")

After msmhas been installed, its functions can be made visible in an R session by

> library(msm)

or, if it has been installed in a location outside the default library path,

> library(msm, lib.loc = "/your/library/dir")

2.2 Getting the data in

The data can be specified as a series of observations, grouped by patient. At minimum it should be a
data frame with variables indicating

• the subject identification number,

• the time of the observation,

• the observed state of the process.

The subject ID does not need to be numeric, but data must be grouped by subject, and observations
must be ordered by time within subjects. An example data set, taken from monitoring a set of heart
transplant recipients, is provided withmsm. This data set can be made available to the current R
session by issuing the command

> data(heart)
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The first three patient histories are shown below. There are 622 patients in all.PTNUMis the
subject identifier. Approximately each year after transplant, each patient has an angiogram, which
detects coronary allograft vasculopathy (CAV), a deterioration of the arterial walls. The result of
the test is in the variablestate , with possible values 1, 2, 3 representing CAV-free, mild CAV and
moderate or severe CAV respectively. A value of 4 is recorded at the date of death.years gives the
time of the test in years since the heart transplant. Other variables includeage (age at screen),dage
(donor age),sex (0=male, 1=female),pdiag (primary diagnosis, or reason for transplant - IHD
represents ischaemic heart disease, IDC represents idiopathic dilated cardiomyopathy), andcumrej
(cumulative number of rejection episodes).

> heart[1:21, ]

PTNUM age years dage sex pdiag cumrej state
1 100002 52.49589 0.000000 21 0 IHD 0 1
2 100002 53.49863 1.002740 21 0 IHD 2 1
3 100002 54.49863 2.002740 21 0 IHD 2 2
4 100002 55.58904 3.093151 21 0 IHD 2 2
5 100002 56.49589 4.000000 21 0 IHD 3 2
6 100002 57.49315 4.997260 21 0 IHD 3 3
7 100002 58.35068 5.854795 21 0 IHD 3 4
8 100003 29.50685 0.000000 17 0 IHD 0 1
9 100003 30.69589 1.189041 17 0 IHD 1 1
10 100003 31.51507 2.008219 17 0 IHD 1 3
11 100003 32.49863 2.991781 17 0 IHD 2 4
12 100004 35.89589 0.000000 16 0 IDC 0 1
13 100004 36.89863 1.002740 16 0 IDC 2 1
14 100004 37.90685 2.010959 16 0 IDC 2 1
15 100004 38.90685 3.010959 16 0 IDC 2 1
16 100004 39.90411 4.008219 16 0 IDC 2 1
17 100004 40.88767 4.991781 16 0 IDC 2 1
18 100004 41.91781 6.021918 16 0 IDC 2 2
19 100004 42.91507 7.019178 16 0 IDC 2 3
20 100004 43.91233 8.016438 16 0 IDC 2 3
21 100004 44.79726 8.901370 16 0 IDC 2 4

The data can also be specified as a list oftransitions, rather than observations. See, for, example,
the aneurysm screening data setaneur supplied with themsmpackage. Each row of the data file
then represents a pair of observations. Columns indicate the starting state, the finishing state, and
the time difference between the two observations. Additional variables may be given, representing
the covariate value which is assumed to be constant within this time interval. However, this form of
data can not be used for multi-state models with misclassification (section 1.6), which do not assume
successive transitions within the same individual are independent. It also discards potentially useful
information about individual histories. Therefore we recommend storing data as lists of observations,
rather than transitions.

A useful way to summarise multi-state data is as a frequency table of pairs of consecutive states.
This counts over all individuals, for each stater ands, the number of times an individual had an
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observation of stater followed by an observation of states. The functionstatetable.msm can
be used to produce such a table, as follows,

> statetable.msm(state, PTNUM, data = heart)

to
from 1 2 3 4

1 1367 204 44 148
2 46 134 54 48
3 4 13 107 55

Thus there were 148 CAV-free deaths, 48 deaths from state 2, and 55 deaths from state 3. On only
four occasions was there an observation of severe CAV followed by an observation of no CAV.

2.3 Specifying a model

We now specify the multi-state model to be fitted to the data. A model is governed by a transition
intensity matrixQ. For the heart transplant example, there are four possible states through which
the patient can move, corresponding to CAV-free, mild/moderate CAV, severe CAV and death. We
assume that the patient can advance or recover from consecutive states while alive, and die from any
state. Thus the model is illustrated by figure 2 with four states, and we have

Q =




−(q12 + q14) q12 0 q14

q21 −(q21 + q23 + q24) q23 q24

0 q32 −(q32 + q34) q34

0 0 0 0




It is important to remember that this defines whichinstantaneoustransitions can occur in the
Markov process, and that the data aresnapshotsof the process (see section 1.3). Although there were
44 occasions on which a patient was observed in state 1 followed by state 3, the underlying model
specifies that the patient must have passed through state 2 in between. If your data represent the exact
and complete transition times of the process, then you must specifyexacttimes=TRUE in the call
to msm.

To tell msmwhat the allowed transitions of our model are, we define a matrix of the same size as
Q, containing ones in the positions where the entries ofQ are non-zero. The diagonal entries of this
matrix do not matter, as the diagonal entries ofQ are defined as minus the sum of all the other entries
in the row. This matrix will eventually be used as an argument to themsmfunction.

> twoway4.q <- rbind(c(0, 1, 0, 1), c(1, 0, 1, 1),
+ c(0, 1, 0, 1), c(0, 0, 0, 0))

Fitting the model is a process of finding values of the seven unknown transition intensities:q12,
q14, q21, q23, q24, q32, q34, which maximise the likelihood.

2.4 Specifying initial values

The likelihood is maximised by numerical methods, which need a set of initial values to start the
search for the maximum. For reassurance that the true maximum likelihood estimates have been
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found, models should be run repeatedly starting from different initial values. However a sensible
choice of initial values can be important for unstable models with flat or multi-modal likelihoods.
For example, the transition rates for a model with misclassification could be initialised at the corre-
sponding estimates for an approximating model without misclassification. Initial values for a model
without misclassification could be set by supposing that transitions between stages take place only at
the observation times. If we observenrs transitions from stater to states, and a total ofnr transitions
from stater, thenqrs/qrr can be estimated bynrs/nr. Then, given a total ofTr years spent in state
r, the mean sojourn time1/qrr can be estimated asTr/nr. Thus,nrs/Tr is a crude estimate ofqrs.
Themsmpackage provides a functioncrudeinits.msm for calculating initial values in this way.

> crudeinits.msm(state, years, PTNUM, data = heart,
+ qmatrix = twoway4.q)

1-2 1-4 2-1 2-3 2-4
0.06798932 0.04932559 0.11681788 0.13713403 0.12189692

3-2 3-4
0.04908401 0.20766310

However, if there are are many changes of state in between the observation times, then this crude
approach may fail to give sensible initial values. For the heart transplant example we could also
guess that the mean period in each state before moving to the next is about 2 years, and there is
an equal probability of progression, recovery or death. This givesqrr = −0.5 for r = 1, 2, 3, and
q12 = q14 = 0.25, q21 = q23 = q24 = 0.166, q32 = q34 = 0.25.

> inits1 <- c(0.25, 0.25, 0.166, 0.166, 0.166, 0.25,
+ 0.25)

2.5 Runningmsm

To fit the model, call themsmfunction with the appropriate arguments. For our running example, we
have defined a data setheart , a matrixtwoway4.q indicating the allowed transitions, and a vector
of initial valuesinits1 . We are ready to runmsm.

Model 1: simple bidirectional model

> heart.msm <- msm(state ~ years, subject = PTNUM,
+ data = heart, qmatrix = twoway4.q, inits = inits1,
+ death = 4, control = list(trace = 2, REPORT = 1))

In this example the day of death is assumed to be recorded exactly, as is usual in studies of chronic
diseases. At the previous instant before death the state of the patient is unknown. Thus we specify
death = 4 , to indicate tomsmthat state 4 is a “death” state. In terms of the multi-state model, a
“death” state is assumed to have a known entry time, but the individual is in an unknown transient
state at the previous instant. If the model had five states and states 4 and 5 were two competing causes
of death with death times recorded exactly, then we would specifydeath = c(4,5) .

While the msmfunction runs, it searches for the maximum of the likelihood of the unknown
parameters. Internally, it uses the R functionoptim to minimise the minus log-likelihood. When
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the data set, the model, or both, are large, then this may take a long time. It is then useful to see the
progress of the optimisation algorithm. To do this, we specify acontrol argument, which is passed
internally to theoptim function. See the help page foroptim ,

> help(optim)

for more options to control the optimisation. When completed, themsmfunction returns a value.
This value is a list of the important results of the model fitting, including the parameter estimates and
their covariances. To keep these results for post-processing, we store them in an R object, here called
heart.msm . When running several similarmsmmodels, it is recommended to store the respective
results in informatively-named objects.

2.6 Showing results

To show the maximum likelihood estimates and their standard errors, type the name of the fitted
model object at the R command prompt.1

> heart.msm

Multi-state Markov models in continuous time

Maximum likelihood estimates:

* Matrix of transition intensities

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 -0.1702183 0.1276873 0.0000000 0.04253093
Stage 2 0.2244044 -0.6061764 0.3405681 0.04120391
Stage 3 0.0000000 0.1312478 -0.4361194 0.30487158
Stage 4 0.0000000 0.0000000 0.0000000 0.00000000

corresponding standard errors

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 0.009591235 0.009011503 0.00000000 0.004766354
Stage 2 0.033839353 0.047507655 0.03943857 0.026048798
Stage 3 0.000000000 0.033126540 0.05232290 0.039311099
Stage 4 0.000000000 0.000000000 0.00000000 0.000000000

* No covariates on transition intensities

* Mean sojourn times in transient states

$estimate

1This is equivalent to typingprint.msm(heart.msm) . The functionprint.msm formats the important information
in the model object for printing on the screen.
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Stage 1 Stage 2 Stage 3
5.874810 1.649685 2.292950

$SE
Stage 1 Stage 2 Stage 3

0.3310261 0.1292902 0.2750939

-2 * log-likelihood: 3968.803

From the estimated intensity matrix, we see patients are three times as likely to develop symptoms
than die without symptoms (first row). After disease onset (stage 2), progression to severe symptoms
(stage 3) is 50% more likely than recovery, and death from the severe disease stage is rapid (mean of
2.32 years in stage 3).

Section 2.9 describes various functions that can be used to obtain summary information from the
fitted model.

2.7 Covariates on the transition rates

We now model the effect of explanatory variables on the rates of transition, using a proportional
intensities model. Now we have an intensity matrixQ(z) which depends on a covariate vectorz.
For each entry ofQ(z), the transition intensity for patienti at observation timej is qrs(zij) =
q
(0)
rs exp(βT

rszij). The covariatesz are specified through thecovariates argument tomsm. If zij is
time-dependent, we assume it is constant in between the observation times of the Markov process. By
defaultmsmcalculates the probability for a state transition from timesti,j−1 to tij using the covariate
value at timeti,j−1, but this can be changed toti,j by specifying an argumentcovmatch="next"
to msm.

We consider a model with just one covariate, female sex. Out of the 622 transplant recipients,
535 are male and 87 are female. We give an extra seven initial values of zero, one for the linear effect
of sex on each intensity on the log scale.

Model 2: sex as a covariate

> inits2 <- c(0.25, 0.25, 0.166, 0.166, 0.166, 0.25,
+ 0.25, 0, 0, 0, 0, 0, 0, 0)
> heartsex.msm <- msm(state ~ years, subject = PTNUM,
+ data = heart, qmatrix = twoway4.q, inits = inits2,
+ death = 4, covariates = ~sex)

Themsmobject will now include the estimated covariate effects and their standard errors.

> heartsex.msm

Multi-state Markov models in continuous time

Maximum likelihood estimates:
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* Matrix of transition intensities with covariates set to their means

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 -0.1725700 0.1308243 0.0000000 0.04174566
Stage 2 0.2429489 -0.6811473 0.3794389 0.05875954
Stage 3 0.0000000 0.1748329 -0.4813113 0.30647840
Stage 4 0.0000000 0.0000000 0.0000000 0.00000000

corresponding standard errors

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 0.009861878 0.009330237 0.00000000 0.004796208
Stage 2 0.036009814 0.055421172 0.04446338 0.025496156
Stage 3 0.000000000 0.047381133 0.06043816 0.039572377
Stage 4 0.000000000 0.000000000 0.00000000 0.000000000

* Linear effects on log transition intensities of sex
Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 0.00000000 -0.6276312 0.0000000 0.2141289
Stage 2 -0.01686394 0.0000000 0.4473718 0.5854001
Stage 3 0.00000000 0.7750932 0.0000000 0.6701311
Stage 4 0.00000000 0.0000000 0.0000000 0.0000000

corresponding standard errors

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 0.0000000 0.2596304 0.0000000 0.2940437
Stage 2 0.5264277 0.0000000 0.4808718 0.9448464
Stage 3 0.0000000 1.3722379 0.0000000 0.4245680
Stage 4 0.0000000 0.0000000 0.0000000 0.0000000

* Mean sojourn times in transient states with covariates set to their means

$estimate
Stage 1 Stage 2 Stage 3

5.794751 1.468111 2.077657

$SE
Stage 1 Stage 2 Stage 3

0.3311533 0.1194521 0.2608910

-2 * log-likelihood: 3961.345

Comparing the estimated log-linear effects of age and their standard errors, we see that the disease on-
set rate is smaller for females, whereas none of the other effects are large with respect to their standard
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errors. The first matrix shown in the output of printingheartsex.msm is the estimated transition
intensity matrixqrs(z) = q

(0)
rs exp(βT

rsz) with the covariatez set to its mean value in the data. This
represents an average intensity matrix for the population of 535 male and 87 female patients. To
extract separate intensity matrices for male and female patients (z = 0 and1 respectively), use the
functionqmatrix.msm , as shown below. This and similar summary functions will be described in
more detail in section 2.9.

> qmatrix.msm(heartsex.msm, covariates = list(sex = 0))

$estimates
Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 -0.1817581 0.1410729 0.0000000 0.04068518
Stage 2 0.2434417 -0.6577886 0.3595788 0.05476804
Stage 3 0.0000000 0.1592840 -0.4420497 0.28276567
Stage 4 0.0000000 0.0000000 0.0000000 0.00000000

$SE
Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 0.01090040 0.01038033 0.00000000 0.00510312
Stage 2 0.03743910 0.05314155 0.04205737 0.02631547
Stage 3 0.00000000 0.03930374 0.05532671 0.03848095
Stage 4 0.00000000 0.00000000 0.00000000 0.00000000

> qmatrix.msm(heartsex.msm, covariates = list(sex = 1))

$estimates
Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 -0.1257126 0.07531247 0.0000000 0.05040009
Stage 2 0.2393708 -0.90016988 0.5624516 0.09834748
Stage 3 0.0000000 0.34577278 -0.8984365 0.55266369
Stage 4 0.0000000 0.00000000 0.0000000 0.00000000

$SE
Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 0.02112043 0.01875171 0.0000000 0.01340388
Stage 2 0.12051421 0.31215974 0.2623446 0.08001062
Stage 3 0.00000000 0.46674836 0.4691708 0.22226296
Stage 4 0.00000000 0.00000000 0.0000000 0.00000000

We may also want to constrain the effect of age to be equal for certain transition rates, to reduce
the number of parameters in the model, or to investigate hypotheses on the covariate effects. A
constraint argument can be used to indicate which of the transition rates have common covariate
effects.

Model 3: constrained covariate effects
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> inits3 <- c(0.25, 0.25, 0.166, 0.166, 0.166, 0.25,
+ 0.25, 0, 0, 0)
> heart3.msm <- msm(state ~ years, subject = PTNUM,
+ data = heart, qmatrix = twoway4.q, inits = inits3,
+ death = 4, covariates = ~sex, constraint = list(sex = c(1,
+ 2, 3, 1, 2, 3, 2)))

This constrains the effect of age to be equal for the progression ratesq12, q23, equal for the death rates
q14, q24, q34, and equal for the recovery ratesq21, q32. The intensity parameters are assumed to be or-
dered by reading across the rows of the transition matrix, starting at the first row: (q12, q14, q21, q23, q24, q32, q34),
giving constraint indicators(1,2,3,1,2,3,2) . Any vector of increasing numbers can be used
for the indicators. Notice we have four fewer parameters in the model, therefore we give four fewer
initial values.

In a similar manner, we can constrain some of the baseline transition intensities to be equal to one
another, using theqconstraint argument. For example, to constrain the ratesq12 andq23 to be
equal, andq24 andq34 to be equal, specifyqconstraint = c(1,2,3,1,4,5,4) .

2.8 Fixing parameters at their initial values

For exploratory purposes we may want to fit a model assuming that some parameters are fixed, and
estimate the remaining parameters. This may be necessary in cases where there is not enough in-
formation in the data to be able to estimate a proposed model, and we have strong prior information
about a certain transition rate. To do this, use thefixedpars argument tomsm. For model 1, the
following statement fixes the parameters numbered 2, 5, 7, that is,q14, q24, q34, to their initial values
(0.25, 0.166 and 0.25, respectively).

Model 4: fixed parameters

> inits4 <- c(0.25, 0.25, 0.166, 0.166, 0.166, 0.25,
+ 0.25)
> heart4.msm <- msm(state ~ years, subject = PTNUM,
+ data = heart, qmatrix = twoway4.q, inits = inits4,
+ death = 4, control = list(trace = 2, REPORT = 1),
+ fixedpars = c(2, 5, 7))

A fixedpars statement can also be useful for fixing covariate effect parameters to zero, that is
to assume no effect of a covariate on a certain transition rate.

2.9 Extractor functions

We may want to extract some of the information from themsmmodel fit for post-processing, for ex-
ample for plotting graphs or generating summary tables. A set of functions is provided for extracting
interesting features of the fitted model.

Intensity matrices The functionqmatrix.msm extracts a transition intensity matrix and the cor-
responding standard errors for a given set of covariate values, as shown in section 2.7. Standard
errors are obtained by the delta method. Themsmpackage provides a general-purpose function

19



deltamethod for estimating the variance of a function of a random variableX given the
expectation and variance ofX. Seehelp(deltamethod) for further details.

Transition probability matrices The functionpmatrix.msm extracts the estimated transition prob-
ability matrixP (t) within a given time. For example, for model 1, the 10 year transition prob-
abilities are given by:

> pmatrix.msm(heart.msm, t = 10)

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 0.30959690 0.09780067 0.08775948 0.5048430
Stage 2 0.17187999 0.06588634 0.07810046 0.6841332
Stage 3 0.05943821 0.03009829 0.04705873 0.8634048
Stage 4 0.00000000 0.00000000 0.00000000 1.0000000

Thus, a typical person in stage 1, disease-free, has a probability of 0.5 of being dead ten years
from now, a probability of 0.3 being still disease-free, and probabilities of 0.1 of being alive
with mild/moderate or severe disease, respectively.

This assumesQ is constant within the desired time interval. For non-homogeneous processes,
whereQ varies with time-dependent covariates but can be approximated as piecewise constant,
there is an equivalent functionpmatrix.piecewise.msm . Consult its help page for further
details.

Mean sojourn times The functionsojourn.msm extracts the estimated mean sojourn times in
each transient state, for a given set of covariate values.

> sojourn.msm(heart.msm)

$estimate
Stage 1 Stage 2 Stage 3

5.874810 1.649685 2.292950

$SE
Stage 1 Stage 2 Stage 3

0.3310261 0.1292902 0.2750939

Total length of stay Mean sojourn times describe the average period in a single stay in a state. For
processes with successive periods of recovery and relapse, we may want to forecast the total
time spent healthy or diseased, before death. The functiontotlos.msm estimates the fore-
casted total length of time spent in each transient states between two future time pointst1 and
t2, for a given set of covariate values. This defaults to the expected amount of time spent in
each state between the start of the process (time 0, the present time) and death or a specified
future time. This is obtained as

Ls =
∫ t2

t1

P (t)r,sdt

wherer is the state at the start of the process, which defaults to 1. This is calculated using
numerical integration. For model 1, each patient is forecasted to spend 9 years disease free, 2.2
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years with mild or moderate disease and 1.8 years with severe disease. Notice that there are
currently no estimates of error available fromtotlos.msm , however bootstrap methods may
be feasible for simpler models.

> totlos.msm(heart.msm)

Stage 1 Stage 2 Stage 3
8.823770 2.236885 1.746796

Ratio of transition intensities The functionqratio.msm estimates a ratio of two entries of the
transition intensity matrix at a given set of covariate values, together with a standard error
estimated using the delta method. For example, we may want to estimate the ratio of the
progression rateq12 into the first stage of disease to the corresponding recovery rateq21. For
example in model 1, recovery is 1.8 times as likely as progression.

> qratio.msm(heart.msm, ind1 = c(2, 1), ind2 = c(1,
+ 2))

$estimate
[1] 1.757452

$se
[1] 0.2455929

Hazard ratios for transition The functionhazard.msm gives the estimated hazard ratios corre-
sponding to each covariate effect on the transition intensities. 95% confidence limits are com-
puted by assuming normality of the log-effect. For example, for model 2 with female sex as a
covariate, the following hazard ratios show more clearly that the only transition on which the
effect of sex is significant at the 5% level is the 1-2 transition.

> hazard.msm(heartsex.msm)

$sex
HR L95 U95

Stage 2 - Stage 1 0.9832775 0.3504128 2.7591300
Stage 1 - Stage 2 0.5338549 0.3209412 0.8880165
Stage 3 - Stage 2 2.1707943 0.1474238 31.9646322
Stage 2 - Stage 3 1.5641957 0.6094980 4.0143008
Stage 1 - Stage 4 1.2387824 0.6961528 2.2043748
Stage 2 - Stage 4 1.7957093 0.2818262 11.4417045
Stage 3 - Stage 4 1.9544936 0.8504353 4.4918704

Setting covariate values All of these extractor functions take an argument calledcovariates .
If this argument is omitted, for example,

> qmatrix.msm(heart.msm)
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then the intensity matrix is evaluated asQ(x̄) with all covariates set to their mean valuesx̄ in the
data. Alternatively, setcovariates to 0 to return the resultQ(0) with covariates set to zero. This
will usually be preferable for categorical covariates, where we wish to see the result for the baseline
category.

> qmatrix.msm(heartsex.msm, covariates = 0)

Alternatively, the desired covariate values can be specified explicitly as a list,

> qmatrix.msm(heartsex.msm, covariates = list(sex = 1))

If a covariate is categorical, that is, an Rfactor with k levels, then we use its internal representation
as a set ofk − 1 0/1 indicator functions. For example, consider a covariatecov , with three levels,
VAL1, VAL2, VAL3 , where the baseline level isVAL1. To set the value ofcov to beVAL1,
VAL2 or VAL3, respectively, use statements such as

> qmatrix.msm(example.msm, covariates = list(age = 60,
+ covVAL2 = 0, covVAL3 = 0))
> qmatrix.msm(example.msm, covariates = list(age = 60,
+ covVAL2 = 1, covVAL3 = 0))
> qmatrix.msm(example.msm, covariates = list(age = 60,
+ covVAL2 = 0, covVAL3 = 1))

respectively. (This procedure is likely to be simplified in future versions of the package.)

2.10 Survival plots

In studies of chronic disease, an important use of multi-state models is in predicting the probability
of survival for patients in increasingly severe stages of disease, for some timet in the future. This
can be obtained directly from the transition probability matrixP (t).

The functionplot.msm produces a plot of the expected probability of survival against time,
from each transient state. Survival is defined as not entering the final absorbing state.

> plot.msm(heart.msm, legend.pos = c(8, 1))
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This shows that the 10-year survival probability with severe CAV is approximately 0.1, as opposed
to 0.3 with mild CAV and 0.5 without CAV. With severe CAV the survival probability diminishes very
quickly to around 0.3 in the first five years after transplant.

A more sophisticated analysis of these data might explore competing causes of death from causes
related or unrelated to the disease under study.

2.11 Convergence failure

Inevitably if over-complex models are applied with insufficient data then the parameters of the model
will not be identifiable. This will result in the optimisation algorithm failing to find the maximum
of the log-likelihood, or even failing to evaluate the likelihood. For example, it will commonly be
inadvisable to include several covariates in a model simultaneously.

Initial values Make sure that a sensible set of initial values have been chosen. The optimisation may
only converge within a limited range of ‘informative’ initial values.

Scaling It is often necessary to apply a scaling factor to normalise the likelihood (fnscale ), or cer-
tain individual parameters(parscale) . This may prevent overflow or underflow problems
within the optimisation. For example, if the value of the -2× log-likelihood is around 5000,
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then the following option leads to an minimisation of the -2× log-likelihood on an approximate
unit scale:options = list(fnscale = 5000)

Convergence criteria Sometimes the optimisation may report convergence, but fail to calculate any
standard errors. In these cases, the Hessian of the log-likelihood at the converged solution is
not positive definite. Thus the reported solution is probably close to the maximum, but not the
maximum. This type of problem can sometimes be solved by tightening the criteria (reltol ,
defaults to1e-08 ) for reporting convergence of the optimisation. For example,options =
list(reltol = 1e-16) .

Alternatively consider using smaller step sizes for the numerical approximation to the gradient,
used in calculating the Hessian. This is given by the control parameterndeps . For example,
for a model with 5 parameters,options = list(ndeps = rep(1e-6, 5))

Model simplification If none of these numerical adjustments lead to convergence, then the model
is probably over-complicated. There may not be enough information in the data on a certain
transition rate. It is always recommended to count all the pairs of transitions between states in
successive observation times, making a frequency table of previous state against current state
(functionstatetable.msm ). Although the data are a series of snapshots of a continuous-
time process, and the actual transitions take place in between the observation times, this type
of table may still be helpful. If there are not many observed ‘transitions’ from state 2 to state
4, for example, then the data may be insufficient to estimateq24.

For a staged disease model (figure 2), the number of disease states should be low enough that
all transition rates can be estimated. Consecutive stages of disease severity should be merged
if necessary. If it is realistic, consider applying constraints on the intensities or the covariate
effects so that the parameters are equal for certain transitions, or zero for certain transitions.

2.12 Model assessment

Observed and expected prevalenceTo compare the relative fit of two nested models, it is easy
to compare their likelihoods. However it is not always easy to determine how well a fitted multi-
state model describes an irregularly-observed process. Ideally we would like to compare observed
data with fitted or expected data under the model. If there were times at which all individuals were
observed then the fit of the expected numbers in each state orprevalencescan be assessed directly at
those times. Otherwise, some approximations are necessary. We could assume that an individual’s
state at an arbitrary timet was the same as the state at their previous observation time. This might
be fairly accurate if observation times are close together. This approach is taken by the function
prevalence.msm , which constructs a table of observed and expected numbers and percentages of
individuals in each state at a set of times.

A set of expected counts can be produced if the process begins at a common time for all indi-
viduals. Suppose at this time, each individual is in state 0. Then givenn(t) individuals are under
observation at timet, the expected number of individuals in stater at timet is n(t)P (t)0,r.

For example, we calculate the observed expected numbers and percentages at two-yearly inter-
vals up to 20 years after transplant, for the heart transplant modelheart.msm . The number of
individuals still alive and under observation decreases from 622 to 251 at year 20.

> options(digits = 3)
> prevalence.msm(heart.msm, times = seq(0, 20, 2))
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Calculating approximate observed state prevalences...
Forecasting expected state prevalences...
$Observed

Stage 1 Stage 2 Stage 3 Stage 4 Total
0 622 0 0 0 622
2 507 20 7 54 588
4 330 37 24 90 481
6 195 43 28 129 395
8 117 44 21 161 343
10 60 25 22 189 296
12 26 11 12 221 270
14 11 3 6 238 258
16 4 0 3 245 252
18 0 0 2 249 251
20 0 0 0 251 251

$Expected
Stage 1 Stage 2 Stage 3 Stage 4 Total

0 622.0 0.00 0.00 0.0 622
2 437.0 74.51 23.70 52.8 588
4 279.8 68.66 38.66 93.9 481
6 184.2 52.07 37.95 120.8 395
8 129.9 39.41 32.84 140.9 343
10 91.6 28.95 25.98 149.4 296
12 68.7 22.21 20.80 158.3 270
14 54.0 17.73 17.02 169.2 258
16 43.5 14.41 14.05 180.0 252
18 35.8 11.92 11.72 191.6 251
20 29.6 9.88 9.77 201.8 251

$"Observed percentages"
Stage 1 Stage 2 Stage 3 Stage 4

0 100.00 0.00 0.000 0.00
2 86.22 3.40 1.190 9.18
4 68.61 7.69 4.990 18.71
6 49.37 10.89 7.089 32.66
8 34.11 12.83 6.122 46.94
10 20.27 8.45 7.432 63.85
12 9.63 4.07 4.444 81.85
14 4.26 1.16 2.326 92.25
16 1.59 0.00 1.190 97.22
18 0.00 0.00 0.797 99.20
20 0.00 0.00 0.000 100.00

$"Expected percentages"
Stage 1 Stage 2 Stage 3 Stage 4
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0 100.0 0.00 0.00 0.00
2 74.3 12.67 4.03 8.97
4 58.2 14.27 8.04 19.51
6 46.6 13.18 9.61 30.57
8 37.9 11.49 9.57 41.07
10 31.0 9.78 8.78 50.48
12 25.4 8.23 7.70 58.64
14 20.9 6.87 6.60 65.59
16 17.3 5.72 5.57 71.43
18 14.3 4.75 4.67 76.32
20 11.8 3.94 3.89 80.38

Comparing the observed and expected percentages in stages 1, 2 and 3, we see that the predicted
number of individuals who die is under-estimated by the model from year 8 onwards. Similarly the
number of individuals sill alive and free of CAV (Stage 1) is over-estimated by the model for year 10
onwards.

Such discrepancies could have many causes. One possibility is that the transition rates vary with
the time since the beginning of the process, the age of the patient, or some other omitted covariate, so
that the Markov model isnon-homogeneous. This could be accounted for by modelling the intensity
as a function of age, for example, such as a piecewise-constant function. In this example, it is likely
that the hazard of death increases with age, so the model underestimates the number of deaths when
forecasting far into the future.

Another cause of poor model fit may sometimes be the failure of the Markov assumption. That is,
the transition intensities may depend on the time spent in the current state (a semi-Markov process)
or other characteristics of the process history. Accounting for the process history is difficult as the
process is only observed through a series of snapshots. For a multi-state model with one-way pro-
gression through states, and frequent observations, we may be able to estimate the time spent in each
state by each individual.

2.13 Fitting misclassification models withmsm

In fact, in the heart transplant example from section 2.2, it is not medically realistic for patients
to recover from a diseased state to a healthy state. Progression of coronary artery vasculopathy is
thought to be an irreversible process. The angiography scan for CAV is actually subject to error,
which leads to some false measurements of CAV states and apparent recoveries. Thus we account
for misclassification by fitting ahidden Markov modelusingmsm. Firstly we replace the two-way
multi-state model by a one-way model with transition intensity matrix

Q =




−(q12 + q14) q12 0 q14

0 −(q23 + q24) q23 q24

0 0 −q34 q34

0 0 0 0




We also assume that true state 1 (CAV-free) can be classified as state 1 or 2, state 2 (mild/moderate
CAV) can be classified as state 1, 2 or 3, while state 3 (severe CAV) can be classified as state 2 or 3.
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Recall that state 4 represents death. Thus our matrix of misclassification probabilities is

E =




1− e12 e12 0 0
e21 1− e21 − e23 e23 0
0 e32 1− e32 0
0 0 0 0




with underlying states as rows, and observed states as columns.
To model observed states with misclassification, we define an indicator matrixematrix for

the states that can be misclassified. We then callmsmas before, but setmisc=TRUE and spec-
ify the ematrix . We also need initial values for five unknown transition intensities (given in
the orderq12, q14, q23, q24, q34) and four unknown misclassification probabilities (given in the order
e12, e21, e23, e32). The indicator matrixqmatrix for the permitted transition intensities also changes
to correspond to the newQ representing the progression-only model for the underlying states.

We use an alternative quasi-Newton optimisation algorithm(method="BFGS") which can of-
ten be faster than the default Nelder-Mead simplex-based algorithm. An optional argumentinitprobs
could also have been given here, representing a vectorf of the probabilities of occupying each true
state at the initial observation. If not given, all individuals are assumed to be in true state 1 at their
initial observation.

Model 5: multi-state model with misclassification

> oneway4.q <- rbind(c(0, 1, 0, 1), c(0, 0, 1, 1),
+ c(0, 0, 0, 1), c(0, 0, 0, 0))
> ematrix <- rbind(c(0, 1, 0, 0), c(1, 0, 1, 0),
+ c(0, 1, 0, 0), c(0, 0, 0, 0))
> miscinits <- c(0.148, 0.0171, 0.202, 0.081, 0.126,
+ 0.1, 0.1, 0.1, 0.1)
> heartmisc.msm <- msm(state ~ years, misc = TRUE,
+ subject = PTNUM, data = heart, inits = miscinits,
+ qmatrix = oneway4.q, ematrix = ematrix, death = 4,
+ method = "BFGS")
> heartmisc.msm

Multi-state Markov models in continuous time

Maximum likelihood estimates:

* Matrix of transition intensities

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 -0.142 0.101 0.000 0.0407
Stage 2 0.000 -0.261 0.227 0.0339
Stage 3 0.000 0.000 -0.308 0.3085
Stage 4 0.000 0.000 0.000 0.0000

corresponding standard errors
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Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 0.0086 0.00812 0.0000 0.00464
Stage 2 0.0000 0.02567 0.0340 0.02378
Stage 3 0.0000 0.00000 0.0371 0.03714
Stage 4 0.0000 0.00000 0.0000 0.00000

* No covariates on transition intensities

* Matrix of misclassification probabilities

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 0.992 0.00766 0.000 0
Stage 2 0.245 0.70393 0.051 0
Stage 3 0.000 0.12438 0.876 0
Stage 4 0.000 0.00000 0.000 1

corresponding standard errors

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 0.00334 0.00334 0.0000 0
Stage 2 0.03835 0.03619 0.0140 0
Stage 3 0.00000 0.04200 0.0420 0
Stage 4 0.00000 0.00000 0.0000 0

* No covariates on misclassification probabilities

* Mean sojourn times in transient states

$estimate
Stage 1 Stage 2 Stage 3

7.04 3.84 3.24

$SE
Stage 1 Stage 2 Stage 3

0.426 0.378 0.390

-2 * log-likelihood: 3952

Thus there is an estimated probability of 0.01 that mild/moderate CAV will be diagnosed erro-
neously, but a rather higher probability of 0.24 that underlying mild/moderate CAV will be diagnosed
as CAV-free. Between the two CAV stages, the mild stage will be misdiagnosed as severe with a
probability of 0.05, and the severe state will be misdiagnosed as mild with a probability of 0.12.

The model also estimates the progression rates through underlying stages. An average of 7 years
is spent disease-free, an average of 3.8 years is spent with mild/moderate disease, and periods of
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severe disease last 3.2 years on average before death.

2.14 Effects of covariates on misclassification rates

We can investigate how the probabilities of misclassification depend on covariates in a similar way
to the transition intensities, using amisccovariates argument tomsm. For example, we now
include female sex as a covariate for the misclassification probabilities. This requires an extra four
initial values for the linear effect for each of the logit-probabilities, which we set to zero.

Model 6: misclassification model with misclassification probabilities modelled on sex

> miscinits <- c(0.148, 0.0171, 0.202, 0.081, 0.126,
+ 0.1, 0.1, 0.1, 0.1, 0, 0, 0, 0)

> heartmiscsex.msm <- msm(state ~ years, misc = TRUE,
+ subject = PTNUM, data = heart, inits = miscinits,
+ qmatrix = oneway4.q, ematrix = ematrix, death = 4,
+ misccovariates = ~sex, control = list(trace = 1,
+ REPORT = 1), method = "BFGS")

> heartmiscsex.msm

Multi-state Markov models in continuous time

Maximum likelihood estimates:

* Matrix of transition intensities

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 -0.144 0.104 0.000 0.0394
Stage 2 0.000 -0.281 0.229 0.0525
Stage 3 0.000 0.000 -0.303 0.3030
Stage 4 0.000 0.000 0.000 0.0000

corresponding standard errors

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 0.009 0.00862 0.0000 0.00458
Stage 2 0.000 0.02744 0.0303 0.01943
Stage 3 0.000 0.00000 0.0349 0.03486
Stage 4 0.000 0.00000 0.0000 0.00000

* No covariates on transition intensities

* Matrix of misclassification probabilities with covariates set to their means

Stage 1 Stage 2 Stage 3 Stage 4
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Stage 1 0.991 0.0092 0.0000 0
Stage 2 0.256 0.6945 0.0493 0
Stage 3 0.000 0.1443 0.8557 0
Stage 4 0.000 0.0000 0.0000 1

corresponding standard errors

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 0.00346 0.00346 0.0000 0
Stage 2 0.04661 0.04418 0.0140 0
Stage 3 0.00000 0.04589 0.0459 0
Stage 4 0.00000 0.00000 0.0000 0

* Linear effects on logit misclassification probabilities of sex
Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 0.00 -0.796 0.000 0
Stage 2 1.19 0.000 -0.855 0
Stage 3 0.00 1.562 0.000 0
Stage 4 0.00 0.000 0.000 0

corresponding standard errors

Stage 1 Stage 2 Stage 3 Stage 4
Stage 1 0.00 1.14 0.00 0
Stage 2 1.02 0.00 1.19 0
Stage 3 0.00 1.35 0.00 0
Stage 4 0.00 0.00 0.00 0

* Mean sojourn times in transient states

$estimate
Stage 1 Stage 2 Stage 3

6.97 3.56 3.30

$SE
Stage 1 Stage 2 Stage 3

0.437 0.347 0.380

-2 * log-likelihood: 3948

Considering the large standard errors relative to their estimates, we do not see any significant effect
of sex on the fitted misclassification probabilities, so that men a no more or less likely than women to
have an inaccurate angiography scan.
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2.15 Extractor functions

As well as the functions described in section 2.9 for extracting useful information from fitted models,
there are a number of extractor functions specific to models with misclassification.

Misclassification matrix The functionematrix.msm gives the estimated misclassification prob-
ability matrix at the given covariate values. For illustration, the fitted misclassification proba-
bilities for men and women in model 6 are given by

> ematrix.msm(heartmiscsex.msm, covariates = list(sex = 0))

$estimates
Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 0.99 0.0101 0.0000 0
Stage 2 0.23 0.7158 0.0543 0
Stage 3 0.00 0.1226 0.8774 0
Stage 4 0.00 0.0000 0.0000 1

$SE
Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 0.00405 0.00405 0.0000 0
Stage 2 0.03927 0.03704 0.0154 0
Stage 3 0.00000 0.03928 0.0393 0
Stage 4 0.00000 0.00000 0.0000 0

> ematrix.msm(heartmiscsex.msm, covariates = list(sex = 1))

$estimates
Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 0.995 0.00458 0.0000 0
Stage 2 0.495 0.48074 0.0238 0
Stage 3 0.000 0.39989 0.6001 0
Stage 4 0.000 0.00000 0.0000 1

$SE
Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 0.00489 0.00489 0.0000 0
Stage 2 0.25639 0.25361 0.0268 0
Stage 3 0.00000 0.32073 0.3207 0
Stage 4 0.00000 0.00000 0.0000 0

although these are not useful in this situation as there was no significant gender difference in
angiography accuracy. The standard errors for the estimates for women are higher, since there
are only 87 women in this set of 622 patients.

Odds ratios for misclassification The functionodds.msm gives the estimated odds ratios corre-
sponding to each covariate effect on the misclassification probabilities.
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> odds.msm(heartmiscsex.msm)

$sex
OR L95 U95

Obs Stage 1 | Stage 2 3.288 0.4459 24.25
Obs Stage 2 | Stage 1 0.451 0.0480 4.24
Obs Stage 2 | Stage 3 4.769 0.3357 67.75
Obs Stage 3 | Stage 2 0.425 0.0414 4.37

underlining the lack of any significant

Observed and expected prevalencesThe functionprevalence.msm is intended to assess the
goodness of fit of the hidden Markov model for theobservedstates to the data. Tables of ob-
served prevalences of observed states are calculated as described in section 2.12, by assuming
that observed states are retained between observation times.

The expected numbers of individuals in each observed state are calculated similarly. Suppose
the process begins at a common time for all individuals, and at this time, the probability of
occupyingtrue stater is fr. Then givenn(t) individuals under observation at timet, the ex-
pected number of individuals in true stater at timet is therth element of the vectorn(t)fP (t).
Thus the expected number of individuals inobservedstater is therth element of the vector
n(t)fP (t)E, whereE is the misclassification probability matrix.

The expecter prevalences (not shown) for this example are similar to those forecasted by the
model without misclassification, with underestimates of the rates of death from 8 years on-
wards. To improve this model’s long-term prediction ability, it is probably necessary to account
for the natural increase in the hazard of death from any cause as people become older.

2.16 Recreating the path through underlying states

In speech recognition and signal processing,decodingis the procedure of determining the underlying
states that are most likely to have given rise to the observations. The most common method of
reconstructing the most likely state path is theViterbi algorithm. Originally proposed by Viterbi [27],
it is also described by Durbinet al. [19] and Macdonald and Zucchini [24] for discrete-time hidden
Markov chains. For continuous-time models it proceeds as follows. Suppose that a hidden Markov
model has been fitted and a Markov transition matrixP (t) and misclassification matrixE are known.
Let vi(k) be the probability of the most probable path ending in statek at timeti.

1. Estimatevk(t1) using known or estimated initial-state occupation probabilities.

2. For i = 1 . . . N , calculatevl(ti) = el,Oti
maxk vk(ti−1)Pkl(ti − ti−1). Let Ki(l) be the

maximising value ofk.

3. At the final time pointN , the most likely underlying stateS∗N is the value ofk which maximises
vk(TN ).

4. Retrace back through the time points, settingS∗i−1 = Ki(S∗i ).
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The computations should be done in log space to prevent underflow. Themsmpackage provides
the functionviterbi.msm to implement this method. For example, the following is an extract from
a result of callingviterbi.msm to determine the most likely underlying states for all patients. The
results for patient 100103 are shown, who appeared to ‘recover’ to a less severe stage of disease while
in stage 3. We assume this is not biologically possible for the true states, so we expect that either
the observation of state 3 at time 4.98 was an erroneous observation of state 2, or their apparent state
2 at time 5.94 was actually state 3. According to the expected path constructed using the Viterbi
algorithm, it is the observation at time 5.94 which is most probably misclassified.

> vit <- viterbi.msm(heartmisc.msm)
> vit[vit$subject == 100103, ]

subject time observed fitted
567 100103 0.00 1 1
568 100103 2.04 1 1
569 100103 4.08 2 2
570 100103 4.98 3 3
571 100103 5.94 2 3
572 100103 7.01 3 3
573 100103 8.05 3 3
574 100103 8.44 4 4
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3 msmreference guide

The R help page formsmgives details of all the allowed arguments and options to themsmfunction.
To view this online in R, type:

> help(msm)

Similarly all the other functions in the package have help pages, which should always be con-
sulted in case of doubt about how to call them. The web-browser based help interface may often be
convenient - type

> help.start()

and navigate toPackages . . . msm, which brings up a list of all the functions in the package with
links to their documentation, and a link to this manual in PDF format.
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