
CGIwithR: Facilities for processing web forms using R

David Firth
Nuffield College, Oxford, United Kingdom

http://www.stats.ox.ac.uk/~firth

Version 0.50 (5 May 2003)

Abstract

CGIwithR is a package for use with the R statistical computing environment, to facilitate
processing of information from web-based forms, and reporting of results in the Hypertext
Markup Language (HTML), through the Common Gateway Interface (CGI). CGIwithR permits
the straightforward use of R as a CGI scripting language. This paper serves as an extended user
manual for CGIwithR, supplementary to the R help pages installed with the package.

Key words: online calculator.

1 Introduction

Information entered on web-based forms is often processed by a CGI script, a program called by
the web server which takes the data from the form as its input and typically returns its output
encoded in HTML for display on the client browser. CGI scripts can be written in any suitable
programming language; Perl is especially popular. The purpose of CGIwithR is to enable use
of the S language, as implemented in the open-source R project (Ihaka and Gentleman, 1996),
to write CGI scripts. This is useful for at least two reasons: (i) to make easily available the
extensive statistical facilities of R in CGI scripts, and (ii) to allow statisticians and others familiar
with the S language to write form-handlers without having first to learn another language such
as Perl.

The CGIwithR package has two main components:

• a set of R functions for decoding the form data and for report-writing in HTML;

• a ‘wrapper’ shell script, R.cgi, which is called by the web server, and which in turn calls
R to process the form data and compose the resulting HTML page.

The R.cgi wrapper should work on most Unix-like operating systems. It ought to be possible
to adapt it for use also in conjunction with web servers running under Windows NT and its
successors, but the author has no plans for that. The R functions for handling CGI data and
for writing output in HTML are platform-independent.

At least two other existing projects, Rcgi and Rweb, make R available via a web interface;
see ‘R Web Interfaces’ in R’s Frequently Asked Questions document for more information. The
emphasis of CGIwithR is on making R available as a scripting language, rather than on providing
a user interface to R: see section 5.3 below for some further related remarks.

The CGIwithR software is provided free under the terms of the Gnu Public License, version
2 or later. There is absolutely no warranty: CGIwithR is not fit for any purpose, and any use
made of it is entirely at the risk of the user.

1

http://www.stats.ox.ac.uk/~firth/
http://stats.mth.uea.ac.uk/Rcgi/
http://www.math.montana.edu/Rweb/
http://cran.r-project.org/faqs.html

2 Configuration and installation

The CGIwithR package is available on the Comprehensive R Archive Network (CRAN), and
should be installed locally in the same way as other R packages. Various methods are available
for this; see R’s “Installation and Administration” documentation for up-to-date information.

The inst subdirectory of the CGIwithR package contains the further subdirectories

cgi-bin

doc

examples

To make CGI scripts written in R available to the local web server, the files cgi-bin/.Rprofile
and cgi-bin/R.cgi must be moved or copied to a directory in which the web server is permitted
to look for CGI executables (such directories are often named cgi-bin); this may need the
help of a system administrator. The first few lines of R.cgi should be edited to set certain
configuration options, in particular to locate R on the local system, and to locate the local
installation of Ghostscript if graphical output is to be allowed. Full configuration instructions
are contained in R.cgi itself. File permissions should be set such that .Rprofile is readable
by the web server, and R.cgi is both readable and executable by the web server. For example,
if those two files have been placed in directory /var/www/cgi-bin, the necessary permissions
can be set (by the system administrator) as follows:

chmod a+r /var/www/cgi-bin/.Rprofile
chmod a+rx /var/www/cgi-bin/R.cgi

3 Using CGIwithR

3.1 How forms call scripts

Suppose that the URL for the directory permitted to contain CGI scripts is /cgi-bin, say.
(There may be more than one such directory available at any given installation; this depends on
the local configuration of the web server.) Then any web page containing form elements can
pass its data to a script written in R (let us call such a script myscript.R) by using a <FORM>
tag like the following:

<FORM action="/cgi-bin/R.cgi/myscript.R" method="POST">

This passes the data first to the R.cgi script, which in turn passes it to R for processing by
myscript.R. Note that R.cgi here is not a directory. In general, the parts of a URL between
the slashes are not directory names, but symbols to tell the HTTP server where to find a
particular document. In most cases, the server will look for a directory of the same name as the
symbol in question, and if there is one, go into that directory and proceed to the next symbol.
But if the server sees that a particular symbol matches the name of an executable program
(here R.cgi), it will run that program and pass the remainder of the URL (which here is simply
myscript.R) to the program as an argument.

The form data are always made available in R as an object named formData, a list whose
components have the names of data items collected in the form; see section 5 below for some
examples. In most applications, each data component has a unique name which is specified
in the HTML code for the form (using NAME=). An exception to this is the use of a ‘multiple
select’ box in the HTML form, for example

<SELECT NAME="ABCpicker" SIZE=4 MULTIPLE>
<OPTION>A
<OPTION>B
<OPTION>C

</SELECT>

2

http://cran.r-project.org

where more than one of A,B,C may be chosen. In this case, formData may end up having
more than one component named "ABCpicker". Using formData$ABCpicker as normal would
extract only the first such component. To get all of the options selected in a ‘multiple select’
box, one could for example use unlist(formData[names(formData)=="ABCpicker"]) to
make a character vector containing all of the selections made.

A CGI script called by R.cgi can contain any valid R expressions, which are evaluated and
the results passed back directly to the web server.

The instance of R that is called to do the processing is either

1. a path specified on the first line of the CGI script, in the form

#! /usr/local/bin/R

2. if no such path is specified (that is, the first line of the script does not begin with “#!”),
the R specified as configuration variable R DEFAULT in the wrapper script R.cgi.

3.2 Some scripting tools

CGIwithR defines the following functions for use in accessing form entries and for writing output
in HTML. Their use is demonstrated in some examples below.

• scanText: a function for converting a free text entry into a list of words or numbers.

• tag, untag, br, mailto, linkto, img: these are all functions which output HTML tags.

• indentPrint: a print method which indents the display of an R object by a specified
number of characters.

• lf, comments: these allow some basic formatting and commenting of HTML code if
desired.

• webPNG: a graphics device wrapper for sending plots to a specified location on the web
server for display.

4 Security

CGI scripts are potentially very insecure. Only trusted users of a system should be allowed to
write and maintain CGI scripts that run on it; here ‘trusted’ implies not only lack of malevolence,
but the ability to identify potential security problems and eliminate them. CGI scripts written
in R are no less risky than those written in other languages such as Perl. An example of a script
which would almost certainly open up the host system to attack, and which therefore must not
be used, is described in section 5.3 below.

The configuration variables R NICE and MAX DATA LENGTH can be set in R.cgi to provide
some, albeit very limited, control over the system resources that may be demanded by CGI
scripts written in R.

5 Examples

The example files referred to below are all in the inst/examples directory of the CGIwithR
package.

5.1 A simple example

The screenshot in Figure 1 is a browser’s view of trivial.html, which is a form whose entries
are processed by a script called trivial.R. This script demonstrates the basic features of
CGIwithR. The output is shown in Figure 2.

A handler script such as trivial.R constructs the HTML response to a CGI request.
General HTML tags can be generated readably in R by using tag and untag, as for example

Figure 1: The form created by trivial.html, with some data entered.

tag(BODY, bgcolor = "yellow")
lf(2)
tag(h3)

cat("A large heading")
untag(h3)

Note that optional arguments to HTML tags, such as the bgcolor argument here, are specified
in an obvious way.

The form data are made available through a list in R called formData. In the example the
supplied data are just sent back with minimal processing:

tag(p)
cat("Your words in italics:")
tag(i)

cat(formData$words)
untag(i)

untag(p)
lf(2)
tag(p)

cat("Your numbers:")
tag(pre)

numbers <- as.numeric(scanText(formData$numbers))
print(numbers)

untag(pre)
untag(p)

The use of scanText here converts the form’s text field into a vector. The expression lf(2)
simply inserts two line feeds into the resultant HTML for readability.

Graphics can be included using the function img. In the example, a plot in PNG format is
constructed and displayed by

cat("Here is a graph:") ; br()

4

Figure 2: The results from trivial.html

5

graphDir <- "/Users/david/Sites/graphs/"
graphURLroot <- "/~david/graphs/"
webPNG("temp.png")
plot(numbers)
img(src = "temp.png") ; br(2)

where the br function is used to insert HTML linebreaks. The graphics device wrapper webPNG
specifies a file to which graphs are sent. In order for this to work, the web server (which owns the
R process) must be given permission to write to a web-served directory specified as graphDir.
For the example above, this could be set up by doing

mkdir /Users/david/Sites/graphs
chmod a+wx /Users/david/Sites/graphs

The additional variable graphURLroot gives the URL for HTTP access to that directory.
Two special functions linkto and mailto are provided to make hyperlinks easy. In the

example they are used as follows:

cat("The author is ")
mailto("David Firth", "david.firth@nuffield.ox.ac.uk")
cat(" and here is his ")
linkto("website.", "http://www.stats.ox.ac.uk/~firth/") ; br()

5.2 The online ‘QV calculator’

The motivation for writing CGIwithR came from a need to re-implement in R the QV Calculator
(Firth, 2000), which was written originally in Xlisp-Stat. The QV Calculator takes as its data
the estimated variance-covariance matrix for a set of parameter estimates in a statistical model,
and reports a set of ‘quasi standard errors’ which in many instances are more informative than
‘conventional’ standard errors which relate to a specific model paramaterization. For details of
the methodology see Firth (2000). The QV Calculator currently uses R, suitably equipped with
the contributed package qvcalc (also at CRAN), for its computation.

The QV calculator input form can be found online at

http://www.stats.ox.ac.uk/~firth/qvcalc

The underlying CGI script qvweb.R is provided, for reference purposes, in the inst/examples
directory of the CGIwithR package. One general feature worth noting is the use of indentPrint
to return pre-formatted output to the browser with a specified number of leading spaces
added. For example, in qvweb.R, the main table of results, which is computed as a dataframe
qv$qvframe in R, is output as

tag(pre)
indentPrint(qv$qvframe, indent = 6, digits = 3)

untag(pre)

so that it appears nicely placed on the output page.

5.3 A foolish and dangerous example

It is not difficult to write CGI scripts in R that open up the server to attack: R is very general,
and includes facilities for access to the host operating system. It would be unwise to allow
unauthorised use of such facilities.

As an example WHICH SHOULD NOT BE USED, the pair of files dangerous.html and
dangerous.R show how to implement a web-based terminal interface to R using CGIwithR.
Figures 3 and 4 show sample input and output pages. This example is provided only to show
how such an interface can be constructed. IT SHOULD NOT BE USED. Making all of the
facilities of R available in this way would most likely allow outsiders to access and/or damage
parts of the host system.

6

http://cran.r-project.org
http://www.stats.ox.ac.uk/~firth/qvcalc

Figure 3: The R input form made by dangerous.html

Figure 4: Output as delivered by dangerous.R

7

For ways of making R available via the web see instead the Rcgi and Rweb projects referred
to in the ‘R Web Interfaces’ section of R’s Frequently Asked Questions document.

6 Some technical details

6.1 System compatibility

The ‘wrapper’ shell script R.cgi should work with most Bourne-family shells (including sh,
bash, ksh, zsh) on Unix-like systems. The author is aware of success in using CGIwithR on
Mac OS X, Linux and Solaris systems with the Apache web server, and would appreciate reports
of success or failure on other systems.

6.2 Decoding form data

The data entered on HTML forms is passed in an encoded string which is not suitable for
direct manipulation in R. The formData variable made available to all CGI scripts written
in R is a decoded version created in the .First.lib function of the CGIwithR package. An
alternative and widely used decoding device is the uncgi program by Steven Grimm. The design
of CGIwithR is such that it is compatible with uncgi: if uncgi is used, no further decoding is
done by CGIwithR.

6.3 The .Rprofile file

As distributed in the inst/cgi-bin directory, the file .Rprofile contains a single R command,

library(CGIwithR, warn.conflicts=FALSE)

which makes the CGIwithR package available in the instance of R started by the web server
when responding to a CGI request. For this to work, the .Rprofile file needs to be placed in
the same location on the web server as the shell script R.cgi.

Acknowledgement

The author is grateful to pod at Oxford University Computing Services for some very helpful
insights on the workings of shell scripts, and to Henrik Bengtsson (via Jean-Pierre Müller) for
an ASCII/hexadecimal translation table. Thanks also to Steven Grimm for making available
uncgi, which gave some important clues.

References

Firth, D. (2000). Quasi-variances in Xlisp-Stat and on the web. Journal of Statistical Software
5.4, 1–13.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics 5, 299–314.

8

http://stats.mth.uea.ac.uk/Rcgi/
http://www.math.montana.edu/Rweb/
http://cran.r-project.org/faqs.html
http://www.midwinter.com/~koreth/uncgi.html
http://www.jstatsoft.org/

	Introduction
	Configuration and installation
	Using CGIwithR
	How forms call scripts
	Some scripting tools

	Security
	Examples
	A simple example
	The online `QV calculator'
	A foolish and dangerous example

	Some technical details
	System compatibility
	Decoding form data
	The .Rprofile file

