Fst {Malmig}R Documentation

Calculates the Fst from the conditional kinship matrix

Description

Calculates the Fst from a conditional kinship matrix.

Usage

Fst(rval, N)

Arguments

rval is a conditional kinship matrix, normally obtained by the function 'R' in the Malecot library.
N the vector of effective populations size, nominally obtained by dividing the total population size by three

Details

The use of the Fst function follows Harpending and Jenkins 1974, and Jorde 1982. It gives an estimate of Wright's Fst, which is a measure of between-subdivision genetic heterogeneity.

Value

Fst returns one numeric value.

Note

...

Author(s)

Federico C. F. Calboli f.calboli@ucl.ac.uk

References

Harpending, H. C. and T. jenkins. 1974. !Kung population structure. In: J. F. Crow and C. F. Denniston (eds.), Genetic distance, pp 137-161. Plenum Press, NY.

Jorde, L. B. 1982. The genetic structure of the Utah mormons: migration analysis. Human Biology 54(3): 583-597.

Examples

# Swedlund data again...
data(P); data(S); data(N)
# starting with how many cycles to equilibrium
x<-Mal.eq(S,P,N)
# calculation of phi
phi<-Phi(S,P,N,x)
# calcutaion of the conditional kinship matrix
cond<-R(phi,N)
# finally! we get the Fst value
fst<-Fst(cond,N)
fst

[Package Malmig version 0.3 Index]