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1 Introduction

This paper is a brief guide to help users exploit the R add-on package RII. It is not designed to provide
an in depth discussion of relative index of inequality estimation, nor to provide arguments in favour of
using one method of estimation over others. For more detail on the estimation method implemented in
the package and described in this paper, and for more detail on relative index of inequality estimation
in general, see Sergeant & Firth (2004).

The relative index of inequality (RII) is used to compare rates of incidence, usually of death or
disease, between those with lowest and highest socio-economic status. Suppose that every individual
in some population of interest has a socio-economic rank x, scaled to range between 0 (the lowest)
and 1 (the highest) and that the rate of incidence of the outcome of interest (per unit exposure) is
f(x) for individuals of social rank x. The RII is defined as f(0)/f(1), the ratio of incidence rates for
the (often notional) pair of individuals at the very bottom and top of the socio-economic scale. In
practice f(x) is unknown and must be estimated from available data, where individuals are typically
categorized into k ordered social classes so that x is interval-censored.

2 The Model

As well as categorized into k social classes, the population under study may also be partitioned into l
groups which represent different levels of some standardizing variable. For example, the standardizing
variable could be age and the l groups could be the age of the individuals under study in, say, five or
ten year intervals. Without loss of generality, assume that age is present as a standardizing variable.
Also, for ease of exposition, assume that the outcome of interest is death.

Suppose that the amount of exposure in age group j within social class i is tij , and that dij deaths
are observed in this class/group intersection during the period under study. Here tij could represent,
for example, the number of person-years at risk, the mid-study period population or the number of
individuals at risk at the start of the study period. The death rate for an individual of social rank
x and in age group j is modelled as f(x) exp(βj), allowing the death rate to vary multiplicatively
between age groups. With this development the RII is still meaningfully defined as f(0)/f(1); the
ratio of death rates for individuals in the same age group and at opposite ends of the social scale.
Setting β1 ≡ 0 gives a baseline group for comparative purposes.

The number of deaths in each class/age combination is modelled as a Poisson random variable
with mean equal to the average value of the age-specific death rate on that class. An estimate of
f(x) as a natural cubic spline is obtained by maximizing a penalized log likelihood arising from this
Poisson formulation, with a smoothing parameter, λ ≥ 0, controlling how severely roughness in the
estimate is penalized. Maximization of the penalized log likelihood takes place over the k coefficients
that specify the spline f(x) and the l − 1 age parameters β2, . . . , βl.

2.1 Example

The dataset LSDeaths included with the RII package is taken from Sergeant & Firth (2004) and
contains data from the UK Office for National Statistics Longitudinal Study (LS). It is a dataframe
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with 24 rows, giving the number of males dead at the end of observation and at risk at the start of
observation in six social classes and four age groups for the observation period 1996 to 2000:

> library(RII)

> data(LSDeaths)

> LSDeaths

class age Deaths AtRisk
1 V 25-34 19 1956
2 IV 25-34 36 5754
3 IIIM 25-34 66 12189
4 IIIN 25-34 21 4169
5 II 25-34 36 9778
6 I 25-34 6 2679
7 V 35-44 27 1379
8 IV 35-44 62 4515
9 IIIM 35-44 143 11160
10 IIIN 35-44 43 3139
11 II 35-44 125 11671
12 I 35-44 15 2644
13 V 45-54 72 1377
14 IV 45-54 166 4084
15 IIIM 45-54 387 9530
16 IIIN 45-54 95 2456
17 II 45-54 253 9114
18 I 45-54 59 2095
19 V 55-64 164 1289
20 IV 55-64 492 3851
21 IIIM 55-64 752 7410
22 IIIN 55-64 219 2240
23 II 55-64 504 6341
24 I 55-64 77 1397

Social class ranges from V (the lowest) to I (the highest) and was recorded, together with age, at the
1991 UK census. To estimate the RII for these data it is first necessary to produce cross-tabulations
by social class and age:

> LSdead <- xtabs(Deaths ~ class + age, data = LSDeaths)

> LSatrisk <- xtabs(AtRisk ~ class + age, data = LSDeaths)

> LSdead

age
class 25-34 35-44 45-54 55-64
V 19 27 72 164
IV 36 62 166 492
IIIM 66 143 387 752
IIIN 21 43 95 219
II 36 125 253 504
I 6 15 59 77

> LSatrisk

age
class 25-34 35-44 45-54 55-64
V 1956 1379 1377 1289
IV 5754 4515 4084 3851
IIIM 12189 11160 9530 7410
IIIN 4169 3139 2456 2240
II 9778 11671 9114 6341
I 2679 2644 2095 1397
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Now estimate the RII using a value of the smoothing parameter of 1 with the function RII.

> LSmodel1 <- RII(LSdead, LSatrisk, loglambda = 0)

> LSmodel1

RII estimate: 2.4654

Group effects:
25-34 35-44 45-54 55-64
0.0000 0.8988 1.9836 2.9625

Note that the argument loglambda = 0 rather than loglambda = 1 is supplied as loglambda is the
log of the value of the smoothing parameter λ. To fit the model with a smoothing parameter of 0,
specify loglambda = -Inf:

> LSmodel2 <- RII(LSdead, LSatrisk, loglambda = -Inf)

> LSmodel2

RII estimate: 2.4653

Group effects:
25-34 35-44 45-54 55-64
0.0000 0.8988 1.9836 2.9625

Setting loglambda = Inf will induce a linear fit and hence the component par of the model, instead
of being a vector of k spline coefficients, will be a vector of length two giving the intercept and gradient
of the linear fit:

> LSmodel3 <- RII(LSdead, LSatrisk, loglambda = Inf)

> LSmodel3$par

intercept gradient
0.006785758 -0.003593981

3 Choosing the smoothing parameter

So far it has been assumed that a value of the smoothing parameter has been provided. In practice
it is rarely obvious what value to use and so the function RII includes a data-driven mechanism for
choosing a single ‘optimum’ value. This value is chosen by cross-validation. However, for the function
to be able to find the value of λ which minimizes the cross-validation score, it must be supplied with
a region in which to begin the search. This is where the function RII.CVplot comes in. Given a
vector of values of log(λ), RII.CVplot will evaluate the cross-validation score at each value and plot
the results. For example, with the LSDeaths data it appears that the value of log(λ) which minimizes
the cross-validation score is in [5, 10]:

> RII.CVplot(LSdead, LSatrisk, loglambda = seq(-2, 18, len = 21))
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Hence, in light of this, a suitable value of the argument grid can be supplied to RII to localize
the search for an optimum λ. RII takes the element of grid which produces the smallest value of
the cross-validation score as the starting value for optimization over log(λ). The best value of log(λ)
found is returned as the component loglambda of the fitted model:

> LSmodel4 <- RII(LSdead, LSatrisk, grid = seq(5, 10, len = 6))

> LSmodel4$loglambda

[1] 8.383986

> LSmodel4

RII estimate: 2.4537

Group effects:
25-34 35-44 45-54 55-64
0.0000 0.9029 1.9877 2.9675

4 Viewing results

A method for the generic function plot() is provided for objects of class RII. For a specified age group,
the empirical death rate is plotted together with the fitted rate. The standard graphical parameters
can be exploited to produce attractive plots that illustrate the model in each age group:

> par(mfrow = c(2, 2))

> plot(LSmodel4, group = "25-34", main = "(a) age group 25-34")

> plot(LSmodel4, group = "35-44", main = "(b) age group 35-44")
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> plot(LSmodel4, group = "45-54", main = "(c) age group 45-54")

> plot(LSmodel4, group = "55-64", main = "(d) age group 55-64")
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The age parameters β1, . . . , βl are the component group.effects of the model. Taking their
exponential gives the fitted death rate for each group relative to the first group (recall that β1 ≡ 0):

> exp(LSmodel4$group.effects)

25-34 35-44 45-54 55-64
1.000000 2.466781 7.298452 19.443572

5 Standard errors

The var and var.log components of the fitted model give delta method approximations of the variance
of the RII estimate and the variance of the log of the RII estimate respectively. However, these
estimates are produced by ignoring the roughness penalty part of the penalized log likelihood and
so should be treated as first approximations only. A better way to produce a standard error is by
bootstrap methods. With the argument se = TRUE a bootstrap estimate of the standard error in the
log of RII estimate is produced using B bootstrap samples. This can then be compared with the ‘rough
and ready’ delta method approximation:

> LSmodel5 <- RII(LSdead, LSatrisk, loglambda = LSmodel4$loglambda,

+ se = TRUE, B = 1000)

> LSmodel5$se

[1] 0.1009219

5



> sqrt(LSmodel5$var.log)

[1] 0.1444773

Note that the specified loglambda, in this case the optimum value for the LSDeaths dataset, is
used with each bootstrap dataset. This is unsatisfactory. Truer to the idea of the bootstrap is to
search for a different optimum smoothing parameter for each dataset, which is done by supplying the
argument grid rather than loglambda to RII. However, choosing a single grid suitable for all of
the B bootstrap datasets plus the original data is not straightforward. Such a grid should allow the
global minimum of the cross-validation score to be found for each dataset. With a satisfactory grid
supplied, producing the standard error estimate with only a moderate value of B, e.g. 100 or 1000,
can take a very long time.
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