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Abstract

Mining frequent itemsets and association rules is a popular and well researched approach
to discovering interesting relationships between variables in large databases. The R package
arules presented in this paper provides a basic infrastructure for creating and manipulating
input data sets and for analyzing the resulting itemsets and rules. The package also includes
interfaces to two fast mining algorithms, the popular C implementations of Apriori and Eclat
by Christian Borgelt. These algorithms can be used to mine frequent itemsets, maximal
frequent itemsets, closed frequent itemsets and association rules.

1 Introduction

Mining frequent itemsets and association rules is a popular and well researched method for discov-
ering interesting relations between variables in large databases. Piatetsky-Shapiro (1991) describes
analyzing and presenting strong rules discovered in databases using different measures of inter-
est. Based on the concept of strong rules, Agrawal, Imielinski, and Swami (1993) introduced the
problem of mining association rules from transaction data as follows.
Let I = {i1, i2, . . . , in} be a set of n binary attributes called items. Let D = {t1, t2, . . . , tm} be a
set of transactions called the database. Each transaction in D contains a subset of the items in I.
A rule is defined as an implication of the from X ⇒ Y where X, Y ⊆ I and X∩Y = ∅. The sets of
items (for short itemsets) X and Y are called antecedent (left-hand-side or LHS) and consequent
(right-hand-side or RHS) of the rule.
To select interesting rules from the set of all possible rules, constraints on various measures of
significance and interest can be used. The best-known constraints are minimum thresholds on
support and confidence. Support is defined on an itemset as the proportion of transactions in the
data set which contain the itemset. All itemsets which have a support above a set minimum support
threshold are called frequent itemsets. Finding frequent itemsets can be seen as a simplification of
the unsupervised learning problem called “mode finding” or “bump hunting” (Hastie, Tibshirani,
and Friedman, 2001). For these problems each item is seen as a variable. The goal is to find
prototype values so that the probability density evaluated at these values is sufficiently large.
However, for practical applications with a large number of variables, probability estimation will
be unreliable and computationally too expensive. This is why in practice frequent itemsets are
used instead of probability estimation.
Confidence is defined on rules as conf(X ⇒ Y ) = supp(X∪Y )/supp(X). This can be interpreted as
an estimate of the probability P (Y |X), the probability of finding the RHS of the rule in transactions
under the condition that these transactions also contain the LHS (see e.g., Hipp, Güntzer, and
Nakhaeizadeh, 2000). Association rules are typically required to satisfy both constraints, minimum
support and minimum confidence, at the same time.
At medium to low support values, often a great number of frequent itemsets are found in a
database. However, since the definition of support enforces that all subsets of a frequent itemset
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have to be also frequent, it is sufficient to only mine all maximal frequent itemsets, defined as
frequent itemsets which are not proper subsets of any other frequent itemset (Zaki, Parthasarathy,
Ogihara, and Li, 1997). Another approach to reduce the number of mined itemsets is to only mine
frequent closed itemsets. An itemset is closed if no proper superset of the itemset is contained in
each transaction in which the itemset is contained (Pasquier, Bastide, Taouil, and Lakhal, 1999;
Zaki, 2004). Frequent closed itemsets are a superset of the maximal frequent itemsets. Their
advantage over maximal frequent itemsets is that in addition to be able to infer all frequent item-
sets, they also preserve the support information for all frequent itemsets which can be important
for computing additional interest measures after the mining process is finished (e.g., lift (Brin,
Motwani, Ullman, and Tsur, 1997), or all-confidence (Omiecinski, 2003)).
In the last decade research on algorithms to solve the frequent itemset problem has been abundant.
Goethals and Zaki (2004) compare the currently fastest algorithms. Among these algorithms are
the implementations of the Apriori and Eclat algorithms by Borgelt (2003) interfaced in the package
arules. The two algorithms use very different mining strategies. Apriori, developed by Agrawal
and Srikant (1994), is a level-wise, breadth-first algorithm which counts transactions. In contrast,
Eclat (Zaki et al., 1997) employs equivalence classes, depth-first search and set intersection instead
of counting. The algorithms can be used to mine frequent itemsets, maximal frequent itemsets
and closed frequent itemsets. The implementation of Apriori can additionally be used to generate
association rules.
The R package arules presented in this paper provides the infrastructure needed to create and
manipulate input data sets for the mining algorithms and for analyzing the resulting itemsets and
rules. Since it is common to work with large sets of rules and itemsets, the package uses sparse
matrix representation to minimize memory usage. The infrastructure provided by the package
was also created to explicitly facilitate easy extensions, both for interfacing new algorithms and
for adding new types of interest measures and associations.
The rest of the paper is organized as follows: In the next section we give an overview of the data
structure implemented in the package arules. In sections 3 and 4 we introduce the functionality of
the classes to handle transaction data and associations. In section 5 we describe the way mining
algorithms are interfaced in arules using the already implemented interfaces for Apriori and Eclat
as examples. We provide several examples in sections 6 to 8. The first two examples show typical
R sessions for analyzing and manipulating a transaction data set, and for mining association
rules. The third example demonstrates how arules can be extended to integrate a new interest
measure. We conclude with a summary of the features and advantage of the package arules as a
computational environment for mining association rules and frequent itemsets.

2 Data structure overview

To enable the user to represent and work with input and output data of association rule mining
algorithms in R, a well thought out structure is necessary which can deal in an efficient way with
large amounts of sparse binary data. The S4 class structure implemented in the package arules is
presented in figure 1.
For input data the class transactions is provided. The output of the mining algorithms comprises the
classes itemsets and rules representing a set of itemsets or a set of rules, respectively. Both classes
directly extend a common virtual class called associations which provides a common interface. In
this structure it is easy to add a new type of associations by adding a new class that extends
associations.
Items in associations and transactions are implemented by the itemMatrix class which provides a
facade for the sparse Matrix implementation dgCMatrix from package Matrix (Bates and Maechler,
2005). Objects of the itemMatrix class are not intended to be directly accessed by the end user
of arules. The interfaces of associations and transactions can be used without knowledge of how
the internal representation of the data works. However, the data structure in itemMatrix or even
the dgCMatrix can be directly accessed if necessary (e.g., to efficiently compute a distance matrix
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Figure 1: UML class diagram of the arules package.

between itemsets for clustering).
To control the behavior of the mining algorithms, the two classes ASparameter and AScontrol are
used. Since each algorithm can use additional algorithm-specific parameters, we implemented for
each interfaced algorithm its own set of control classes. We used the prefix ‘AP’ for Apriori and ‘EC’
for Eclat. In this way, it is easy to extend the control classes when interfacing a new algorithm.

3 Transaction data

The main application of association rules is for market basket analysis where large transaction
data sets are mined. In this setting each transaction contains the items which were purchased
at one visit to a retail store ((see e.g., Berry and Linoff, 1997)). Transaction data are normally
recorded by point-of-sale scanners and consists of tuples of the form:

< transaction ID, item ID, . . . >

All tuples with the same transaction ID form a single transaction which contains all the items given
by the item IDs in the tuples. Additional information denoted by the dots might be available.
For example, the customer ID might be available via a loyalty program in a supermarket. Further
information on transactions (e.g., time, location), on the items (e.g., category, price) or on the
customer (socio-demographic variables as age, gender, etc.) might be available.
For mining, the transaction data is first transformed into a binary purchase incidence matrix
with columns equal to the number of different items and rows equal to the number of different
transactions. The matrix entries represent the presence (1) or absence (0) of an item in a particular
transaction. An example of a binary incidence matrix is depicted in Figure 2. This format is
often called the horizontal database layout (Zaki, 2000). Alternatively, transaction data can be
represented in a vertical database layout in the form of a transaction ID list (Zaki, 2000). In this
format for each item a list of IDs of the transactions the item is contained in is stored. Depending
of the algorithm, one of the layouts is used for mining. In arules both layouts are implemented as
the classes transactions and tidList and the data can be directly transformed from one format to
the other.
Since a typical supermarket transaction only contains a small number of items compared to the
total number of available items, the binary incidence matrix will in general be very sparse with
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 i1       i2         i3        ...      in

t1         0       1         0         ...      1 
t2         0       1         0         ...      1 
t3         0       1         0         ...      0 
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.            .       .          .                   .
.            .       .          .                   .
.            .       .          .                   .
tm-1      1        0        0         ...      1 
tm         0        0        1         ...      1 

.   .   .

Figure 2: Example of a transaction data set represented as a binary incidence matrix.

many items and a very large number of transactions. A natural representation for such data is
a sparse matrix format. For our implementation we chose the dgCMatrix which is defined in the
R package Matrix implemented by Bates and Maechler (2005). The dgCMatrix is a compressed,
sparse, column-oriented matrix which contains the indices of the rows unequal to zero, the pointers
to the initial indices of elements in each column and the non-zero elements of the matrix. Since
the package Matrix does not provide subset selection functionality for dgCMatrix, we implemented
a suitable function in C and interfaced is as the subset selection method ([). Despite the column
orientation of the dgCMatrix, it is more convenient to work with incidence matrices which are row-
oriented. This makes the most important manipulation, selecting a set of transactions from a data
set for mining, more comfortable and efficient. Therefore, we implemented the class itemMatrix
providing a row-oriented facade to the dgCMatrix which stores a transposed incidence matrix.
At this level also the constraint that the incidence matrix is binary (and not real valued as the
dgCMatrix) is enforced. Additionally, itemMatrix stores item labels (e.g., name of the items) and
handles the necessary mapping between the item label and the corresponding column number in
the incidence matrix. Optionally, itemMatrix can also store additional information on items. For
example, the category hierarchy in a supermarket setting can be stored which enables the analyst
to select only transactions (or as we late see also rules and itemsets) which contain items from a
certain category (e.g., all dairy products).
For itemMatrix, basic methods including dim, subset selection ([) and coercion from and to ma-
trix and list primitives are provided. Additionally, methods specific to the needs for arules are
implemented. Since itemMatrix is used to store a set of transactions or, more general, a set of
itemsets, we implemented a length method which returns the number of elements in the set (i.e.,
the number of transactions or the number of itemsets in the set). Technically, length returns the
number of rows of the sparse matrix. The size method returns a vector with the sizes of each
element in the set (row in the matrix). For example, for a purchase incidence matrix we will get
a vector of length of the number of transactions in the matrix and each element of the vector
contains the size (number of items) of the corresponding transaction. This information can be
used to select or filter unusually long or short transactions. Finally, an image method can be used
to produce a level plot of the binary matrix useful for quick visual inspection. For transaction
data sets (e.g., point-of-sale data) a plot can be very helpful for checking if the data set contains
structural changes (e.g., items were not offered or out-of-stock during part of the observation pe-
riod) or to find abnormal transactions (e.g., transactions which contain almost all items may point
to recording problems). Spotting such problems can be very helpful for data preparation.
The class transactions directly extends itemMatrix and inherits its basic matrix functionality (e.g.,
subset selection). In addition, transactions has a slot to store additional information for each
transaction in form of a data.frame. The slot can hold arbitrary named vectors with length equal
to the number of stored transactions. In arules the slot is currently used to store transaction IDs,
however, it can easily be used to store user IDs, revenue or profit, or other information on each
transaction. With this information subsets of transactions (e.g., only transactions of a certain
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user or exceeding a set profit) can be selected. Objects of class transactions can be easily created
by coercion from matrix or list. If names are available in this data structures, they are used as
item labels or transaction IDs accordingly. To import data from a file, the read.transactions
function is provided. This function reads files structured as shown above and also the very common
format with one line per transaction and the items separated by a predefined character. Finally,
the method inspect can be used to inspect transactions (e.g., an interesting transaction selected
with subset selection).
Another important application of mining association rules has been proposed for discovering inter-
esting relationships between the values of different categorical variables. An example can be found
in Hastie et al. (2001), where questionnaire data is used. The natural format for questionnaire data
in R is a data.frame with the answers coded as ordinal, nominal and metric variables. In order to
mine associations with Apriori or Eclat this data needs to be transformed into a binary incidence
matrix with each row representing one questionnaire. To create the binary matrix, first the metric
variables are transformed into ordinal variables by building categories (e.g., the variable salary is
transformed into an ordinal variable with the three values: low, medium and high). Then, each
variable with k categories is represented by k binary dummy variables. Since it is crucial to care-
fully choose a value range for each categories, the first transformation has to be done manually by
the analyst. The result is a data.frame with all ordinal or nominal variables coded as factors. The
second step, the generation of the needed number of dummy variables, is then done automatically
by the coerce method from data.frame to transactions. In this process, the original variable names
and categories from the questionnaire are preserved as additional item information and can later
be used to select itemsets or rules which contain items referring to a certain original variable. The
resulting transactions object can be mined and analyzed the same way as market basket data, see
the example in Section 6.

4 Sets of itemsets and sets of rules

The result of mining transaction data in arules are associations. Associations are conceptually sets
of objects. Each object describes the relationship between some items (e.g., an itemset or a rule).
and has values for different measures of quality assigned. Such quality measures can be measures
of significance (e.g., support) or measures of interest (e.g., confidence, lift) or other measures (e.g.,
revenue covered by the association).
All association types have a common interface suitable for set operations. Methods for subset
extraction ([ and the subset method), getting the number of elements in the set with length,
and sorting the set using the values of different quality measures (method SORT) are available. A
summary method produces a short overview of the set and with inspect individual associations
can be inspected.
In arules currently sets of itemsets (e.g., used for frequent itemsets of their closed or maximal
subset) and sets of rules (e.g., association rules) are implemented as associations. Both itemsets
and rules directly extend the virtual class associations. Class itemsets contains one itemMatrix
object to store the items as a binary matrix where each row in the matrix represents an itemset.
In addition, it contain a transaction ID list of class tidList which is implemented as a sparse matrix
(reusing itemMatrix). A transaction ID list stores for each itemset a list of transaction ID in
which the itemset appears. Such lists are only returned by eclat. Class rules consists of two
itemMatrix objects representing the left-hand-side (LHS) and the right-hand-side (RHS) of the
rules, respectively.
The items in the associations and the quality measures can be accessed and manipulated in a
safe way using accessor and replace methods for quality, items, lhs and rhs. In addition the
association classes have built-in validity checking which ensures that all elements have a matching
dimension.
It is simple to add new quality measures to existing associations. Since the quality slot holds a
data.frame, additional columns with new quality measures can be added. These new measures can
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then be used to sort or select associations using the SORT or the subset methods. Adding a new
type of associations to arules is easy as well. One has only to implement a new class extending
the virtual associations class.

5 Mining algorithm interfaces

In package arules we interface free reference implementations of Apriori and Eclat by Christian
Borgelt (Borgelt and Kruse, 2002; Borgelt, 2003). The code is called directly from R by the
functions apriori and eclat and the data objects are directly passed from R to the C code and
back without writing to external files.
The input format of the data for the apriori and eclat functions is transactions or a data format
which can be coerced to transactions (e.g., matrix or list). The algorithm parameters are divided
into two groups represented by the arguments parameter and control. The mining parameters
(parameter) change the characteristics of the mined itemsets or rules (e.g., the minimum support)
and the control parameters (control) influence the performance of the algorithm (e.g., an initial
sorting of the items with respect to their frequency). These arguments have to be instances of
the classes APparameter and APcontrol for the function apriori or ECparameter and ECcontrol for
the function eclat, respectively. Alternatively, data which can be coerced to these classes (e.g.,
NULL which will give the default values or a named list with names equal to slot names to change
the default values) can be passed. In these classes each slot specifies a different parameter and
the values. The default values are equal to the defaults of the stand-alone C programs (Borgelt,
2004) except that by default the more common original support definition (instead of the support
of only the antecedent) is used for the specified minimum support required.
For apriori the appearance feature implemented by Christian Borgelt can also be used. With
argument appearance of function apriori one can specify which items have to or cannot appear
in itemsets or rules. For more information on this feature we refer to the Apriori manual Borgelt
(2004).
The output of the functions apriori and eclat is an object of a class extending associations which
contains the sets mined associations and can be further analyzed using the methods provided for
these classes.
It is straightforward to interface additional algorithms which use a incidence matrix or transaction
ID list representation as input. The necessary steps are:

1. Adding interface code to the algorithm, preferably by directly calling into the native imple-
mentation language (rather than using files for communication), and an R function calling
this interface.

2. Implementing extensions for parameter and control.

Implementations of algorithms as kDCI, LCM, FP-Growth or Patricia are discussed in Goethals
and Zaki (2003), and the source code is available on the internet.

6 Example 1: Analyzing the Epub data set

In this example we look at the Epub transaction data contained in package arules. This data
set contains downloads of documents from the Electronic Publication platform of the Vienna
University of Economics and Business Administration available via http://epub.wu-wien.ac.at.
First, we load arules and the data set.

> library("arules")
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Loading required package: Matrix
Loading required package: stats4

> data("Epub")

> Epub

transactions in sparse format with
2771 transactions (rows) and
419 items (columns)

We see that the data set consists of 2771 transactions and is represented as a sparse matrix with
2771 rows and 419 columns which represent the items. Next, we use the summary method to get
more information about the data set.

> summary(Epub)

transactions as itemMatrix in sparse format with
2771 rows (elements/itemsets/transactions) and
419 columns (items)

most frequent items:
epub-wu-01_11d epub-wu-01_4c6 epub-wu-01_2cd epub-wu-01_71 epub-wu-01_364

177 100 90 90 89
(Other)

4436

element (itemset/transaction) length distribution:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1976 411 164 78 43 20 13 12 10 5 7 4 4 2 1 3
17 18 19 20 22 24 25 28 34 38 74
2 2 5 2 1 1 1 1 1 1 1

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 1.000 1.798 2.000 74.000

includes extended transaction information - examples:
transactionIDs TimeStamp

1 epub-wu-01_session4795-1041447099 Wed Jan 1 19:59:00 2003
2 epub-wu-01_session4797-1041486295 Thu Jan 2 06:46:01 2003
3 epub-wu-01_session479a-1041497371 Thu Jan 2 09:50:38 2003

The summary method displays the most frequent items in the data set, information about the
transaction length distribution and that the data set contains some extended transaction infor-
mation. We see that the data set contains transaction IDs and in addition time stamps for the
transactions. The additional information can be used for analyzing the data set.

> year <- substr(as(transactionInfo(Epub)[["TimeStamp"]], "character"),

+ 21, 24)

> table(year)

year
2003 2004 2005
988 1375 408
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We selected only the year part of the time stamps. For 2003, the first year in the dataset we have
988 transactions. We can select the corresponding transactions and inspect the structure using a
level-plot.

> Epub_2003 <- Epub[year == "2003"]

> length(Epub_2003)

[1] 988

> image(Epub_2003)

Dimensions: 988 x 419
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The plot is a direct visualization of the binary incidence matrix where the the dark dots represent
the ones in the matrix. From the plot we see that the items in the data set are not evenly
distributed. In fact, the white area to the top right site suggests, that in the beginning of 2003
only very few items were available (less than 50) and then during the year more items were added
till it reached a number of around 300 items. Also, we can see that there are two transactions in the
data set which contain a very high number of items (denser horizontal lines). These transactions
need further investigation since they could originate from data collection problems (e.g., a web
robot downloading many documents from the publication site). To find the very long transactions
we can use the size method and select very long transactions (containing more than 20 items).

> transactionInfo(Epub_2003[size(Epub_2003) > 20])

transactionIDs TimeStamp
301 epub-wu-01_session56e2-1051611211 Tue Apr 29 12:30:38 2003
580 epub-wu-01_session6308-1061133365 Sun Aug 17 17:16:12 2003
896 epub-wu-01_session72dc-1072722731 Mon Dec 29 19:35:35 2003

We found three long transactions and printed the corresponding transaction information. Of
course, size can also be used in a similar fashion to remove long or short transactions.
Transactions can be inspected using the inspect method. Since the long transactions identified
above would result in a very long printout, we will inspect the first 5 transactions in the subset
for 2003.

8



> inspect(Epub_2003[1:5])

items transactionIDs TimeStamp
1 {epub-wu-01_3d6} epub-wu-01_session4795-1041447099 Wed Jan 1 19:59:00 2003
2 {epub-wu-01_16f} epub-wu-01_session4797-1041486295 Thu Jan 2 06:46:01 2003
3 {epub-wu-01_f4} epub-wu-01_session479a-1041497371 Thu Jan 2 09:50:38 2003
4 {epub-wu-01_11d,

epub-wu-01_1a7,
epub-wu-01_83} epub-wu-01_session47b7-1041526514 Thu Jan 2 17:55:50 2003

5 {epub-wu-01_154} epub-wu-01_session47bb-1041535625 Thu Jan 2 20:27:44 2003

Most transactions contain one item. Only transaction 4 contains three items. Alternatively,
transactions can be converted into a list with:

> as(Epub_2003[1:5], "list")

$"epub-wu-01_session4795-1041447099"
[1] "epub-wu-01_154"

$"epub-wu-01_session4797-1041486295"
[1] "epub-wu-01_3d6"

$"epub-wu-01_session479a-1041497371"
[1] "epub-wu-01_16f"

$"epub-wu-01_session47b7-1041526514"
[1] "epub-wu-01_f4" "epub-wu-01_11d" "epub-wu-01_1a7"

$"epub-wu-01_session47bb-1041535625"
[1] "epub-wu-01_83"

Finally, transaction data in horizontal layout can be converted to transaction ID list in vertical
layout using coercion.

> Epub_tidList <- as(Epub, "tidList")

> Epub_tidList

tidList in sparse format for
419 items/itemsets (rows) and
2771 transactions (columns)

For performance reasons the transaction ID list is also stored in a sparse matrix. To get a list,
coercion to list can be used.

> as(Epub_tidList[1:3], "list")

$"epub-wu-01_154"
[1] "epub-wu-01_session4795-1041447099" "epub-wu-01_session6082-1058883924"
[3] "epub-wu-01_session60dd-1059130239" "epub-wu-01_session67db-1065044430"
[5] "epub-wu-01_session769c-1075191357" "epub-wu-01_session7ee3-1079450030"
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$"epub-wu-01_3d6"
[1] "epub-wu-01_session4797-1041486295" "epub-wu-01_session4893-1042136277"
[3] "epub-wu-01_session48f4-1042453749" "epub-wu-01_session4ca3-1044889013"
[5] "epub-wu-01_session52c6-1049273642" "epub-wu-01_session5712-1051701668"
[7] "epub-wu-01_session58e3-1052992410" "epub-wu-01_session5984-1053467491"
[9] "epub-wu-01_session5b20-1054675502" "epub-wu-01_session5c20-1055421043"
[11] "epub-wu-01_session5dc0-1056639134" "epub-wu-01_session5eac-1057261298"
[13] "epub-wu-01_session6599-1063473887" "epub-wu-01_session673d-1064583856"
[15] "epub-wu-01_session683e-1065381126" "epub-wu-01_session6f2f-1069854482"
[17] "epub-wu-01_session708a-1070754608" "epub-wu-01_session7a0c-1076882429"
[19] "epub-wu-01_session7de5-1078926808" "epub-wu-01_session89db-1084827080"
[21] "epub-wu-01_session9227-1089148583" "epub-wu-01_session9941-1094031566"
[23] "epub-wu-01_sessiona4d7-1100508833" "epub-wu-01_sessiona8c0-1102612273"
[25] "wu01_session4450a-1045050224" "wu01_session4a129-1057762457"
[27] "wu01_session4d25a-1066490150"

$"epub-wu-01_16f"
[1] "epub-wu-01_session479a-1041497371" "epub-wu-01_session56e2-1051611211"
[3] "epub-wu-01_session630c-1061175093" "epub-wu-01_session72dc-1072722731"
[5] "epub-wu-01_session8b3e-1085510896" "epub-wu-01_session91ab-1088878266"
[7] "epub-wu-01_sessiona202-1098976943" "epub-wu-01_sessiona7b9-1101827029"

In this representation each item has an entry in with a list of all transactions it occurs in.

7 Example 2: Mining the Adult data set

As a second example, we use the Adult data set from the UCI machine learning repository (Blake
and Merz, 1998) provided by package arules. This data set is similar to the data used by Hastie
et al. (2001). The data originates from the U.S. census bureau database and contains 48842
instances with 14 variable like age, work class, education, salary, etc.

> library("arules")

> data("Adult")

> dim(Adult)

[1] 48842 14

> Adult[1:2, 1:4]

age workclass education education-num
1 middle-aged State-gov Bachelors 13
2 senior Self-emp-not-inc Bachelors 13

The metric variables in the Adult data frame have already been transformed into suitable cate-
gories and the values of all variables have been encoded as factors. The data can be automatically
recoded as a binary incidence matrix by coercing the data set to transactions.

> Adult_transactions <- as(Adult, "transactions")

Recoded 14 variables to 132 binary items
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The census data set contains 14 categorical variables which are automatically recoded into 132
binary items. During encoding the item labels were generated in the form of <variable name >
= <category label >.

> summary(Adult_transactions)

transactions as itemMatrix in sparse format with
48842 rows (elements/itemsets/transactions) and
132 columns (items)

most frequent items:
capital-loss = none capital-gain = none

46560 44807
native-country = United-States race = White

43832 41762
salary = small (Other)

37155 463207

element (itemset/transaction) length distribution:
11 12 13 14
46 2753 821 45222

Min. 1st Qu. Median Mean 3rd Qu. Max.
11.00 14.00 14.00 13.87 14.00 14.00

includes extended item information - examples:
labels variables levels

1 age = middle-aged age middle-aged
2 age = old age old
3 age = senior age senior

The summary of the transaction data set gives a rough overview showing the most frequent items,
the length distribution of the transactions and the extended item information which shows which
variable and which value were used to create each binary item. In the first example we see that
the item with label age=middle-aged was generated by variable age and value middle-aged.
Next, we call the function apriori to find all rules (the default association type for apriori) with
a minimum support of 0.01 and a confidence of 0.8 in the first 40,000 transactions.

> rules <- apriori(Adult_transactions[1:40000], parameter = list(support = 0.01,

+ confidence = 0.8))

Parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen target

0.8 0.1 1 none FALSE TRUE 0.01 1 5 rules
ext

FALSE

Algorithmic control:
filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
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set transactions ...[132 item(s), 40000 transaction(s)] done [0.11s].
sorting and recoding items ... [81 item(s)] done [0.02s].
creating transaction tree ... done [0.11s].
checking subsets of size 1 2 3 4 5 done [1.10s].
writing ... [104952 rule(s)] done [0.07s].
creating S4 object ... done [0.91s].

Result: set of 104952 rules

First, the function prints the used parameters. Apart from the specified minimum support and
minimum confidence, all parameters have the default values. It is important to note that with
parameter maxlen, the maximum size of mined frequent itemsets, is by default restricted to 5.
Longer association rules are only mined if maxlen is set to a higher value. After the parameter
settings, the output of the C implementation of the algorithm with timing information is displayed.
The result of the mining algorithm is a set of 104952 rules. For an overview of the mined rules the
function summary can be used. It shows the number of rules, the most frequent items contained in
the left-hand-side and the right-hand-side and their respective length distributions and summary
statistics for the quality measures returned by the mining algorithm.

> summary(rules)

set of 104952 rules

rule length distribution (lhs + rhs):
1 2 3 4 5
4 374 5013 26129 73432

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 4.000 5.000 4.645 5.000 5.000

summary of quality measures:
support confidence lift

Min. :0.01002 Min. :0.8000 Min. : 0.8676
1st Qu.:0.01370 1st Qu.:0.8937 1st Qu.: 1.0089
Median :0.02106 Median :0.9369 Median : 1.0468
Mean :0.03729 Mean :0.9294 Mean : 2.1943
3rd Qu.:0.03898 3rd Qu.:0.9714 3rd Qu.: 1.3087
Max. :0.95335 Max. :1.0000 Max. :97.7995

As typical for association rule mining, the number of found rules is huge. To analyze these rules,
for example, the function subset can be used to produce a subset of rules which contain items
which resulted form the variable salary in the right-hand-side of the rule and the lift measure
exceeds 1.4.

> rules.sub <- subset(rules, subset = rhs %in% "salary" & lift >

+ 1.4)
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We can then inspect the three rules with the highest lift value (using the SORT method).

> inspect(SORT(rules.sub, by = "lift")[1:3])

lhs rhs support confidence lift

1 {capital-gain = high,

occupation = Exec-managerial,

marital-status = Married-civ-spouse} => {salary = large} 0.010050 0.9686747 4.042883

2 {capital-gain = high,

occupation = Exec-managerial,

marital-status = Married-civ-spouse,

capital-loss = none} => {salary = large} 0.010050 0.9686747 4.042883

3 {capital-gain = high,

occupation = Exec-managerial,

sex = Male,

native-country = United-States} => {salary = large} 0.010125 0.9665871 4.034170

Using such subset selection and sorting a set of associations can be analyzed even if it is huge.

8 Example 3: Extending arules for all-confidence

In this example we show how easy it is to add a new interest measure. As the interest measure we
chose all-confidence introduced by Omiecinski (2003). All-confidence is defined on itemsets X as:

all-confidence(X) =
supp(X)

max(supp(I ⊂ X))
(1)

This measure has the property conf(I ⇒ Z\I) ≥ all-confidence(X) for all I ⊂ X. This means that
all possible rules generated from itemset X must at least have a confidence given by the itemset’s
all-confidence value. Omiecinski (2003) shows that the support in the denominator of equation 1
must stem from a single item and thus can be simplified to max(supp(i ∈ X)).
First, we use Eclat to mine frequent itemsets from the previously used Adult data set.

> fsets <- eclat(Adult_transactions, parameter = list(support = 0.05),

+ control = list(verbose = FALSE))

Parameter specification:
tidList support minlen maxlen target ext
FALSE 0.05 1 5 frequent itemsets FALSE

Result: set of 9371 itemsets

For the denominator of all-confidence we need to find all mined single items and their corresponding
support values.

> single_item_fsets <- fsets[size(items(fsets)) == 1]

> single_items <- data.frame(item = unlist(LIST(items(single_item_fsets),

+ decode = FALSE)), support = quality(single_item_fsets))

> single_items[1:3, ]

item support
9331 84 0.9532779
9332 81 0.9173867
9333 128 0.8974243
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Next, we can calculate the all-confidence for all itemsets and add it to the set’s quality data frame.

> itemset_list <- LIST(items(fsets), decode = FALSE)

> all_conf <- sapply(1:length(itemset_list), function(x) {

+ quality(fsets)$support[x]/max(single_items$support[match(itemset_list[[x]],

+ single_items$item)])

+ })

> quality(fsets) <- cbind(quality(fsets), all_conf)

The new quality measure can now be used to manipulate the set. For example the set can be
sorted by all-confidence.

> inspect(SORT(fsets, by = "all_conf")[1:3])

items support all_conf
1 {education = Masters,

education = Bachelors} 0.0543999 1
2 {education-num = 13,

education-num = 10} 0.1643053 1
3 {education = Some-college,

education-num = 14} 0.2227182 1

9 Summary and outlook

Previously, there was no functionality for mining and handling associations available for R. With
package arules we provide the basic infrastructure which enables us to easily combine association
mining with clustering and visualization techniques already available in R. The main features are
as follows.

� Efficient implementation using sparse matrices.

� Simple and intuitive interface to manipulate and analyze transaction data, sets of itemsets
and rules with subset selection and sorting.

� Interface to two fast mining algorithms.

� Flexibility in terms of adding new quality measures, and additional item and transaction
descriptions which can be used for selecting transactions and analyzing resulting associations.

� Extensible data structure to allow for easy implementation of new types of associations and
interfacing new algorithms.

There are several interesting possibilities to extend arules. For example, it would be very useful
to interface algorithms which use statistical measures to find “interesting” itemsets (which are
not necessarily frequent itemsets as used in an association rule context). Such algorithms include
implementations of the χ2-test based algorithm by Silverstein, Brin, and Motwani (1998) or the
baseline frequency approach by DuMouchel and Pregibon (2001).
Another interesting extension would be to interface synthetic data generators for fast evaluation
and comparison of different mining algorithms. The best known generator for transaction data for
mining association rules was developed by Agrawal and Srikant (1994). Alternatively data can be
generated by simple probabilistic models as done by Hahsler, Hornik, and Reutterer (2005).
Finally, similarity measuers between itemsets and rules can be implemented in arules. With such
measures distance based clustering and visualization of associations is possible (see e.g., Strehl
and Ghosh, 2003)).
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