
Multi-state modelling with R: themsmpackage

Version 0.5

Christopher Jackson
Department of Epidemiology and Public Health

Imperial College, London

chris.jackson@imperial.ac.uk

Abstract

The multi-state Markov model is a useful way of describing a process in which an individual
moves through a series of states in continuous time. Themsmpackage for R allows a general
multi-state model to be fitted to longitudinal data. Data often consist of observations of the process
at arbitrary times, so that the exact times when the state changes are unobserved. For example,
the progression of chronic diseases is often described by stages of severity, and the state of the
patient may only be known at doctor or hospital visits. Features ofmsminclude the ability to
model transition rates and hidden Markov output models in terms of covariates, and the ability to
model data with a variety of observation schemes, including censoring.

Hidden Markov models, in which the true path through states is only observed through some
error-prone marker, can also be fitted. The observation is generated, conditionally on the underly-
ing states, via some distribution. An example is a screening misclassification model in which states
are observed with error. More generally, hidden Markov models can have a continuous response,
with some arbitrary distribution, conditionally on the underlying state.

This manual introduces the theory behind multi-state Markov and hidden Markov models, and
gives a tutorial in the typical use of themsmpackage, illustrated by some typical applications to
modelling chronic diseases.
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1 Multi-state models

1.1 Introduction

Figure 1 illustrates a multi-state model in continuous time. Its four states are labelled1, 2, 3, 4. At a
time t the individual is in stateS(t). The arrows show which transitions are possible between states.
The next state to which the individual moves, and the time of the change, are governed by a set of
transition intensitiesqrs(t, z(t)) for each pair of statesr ands. The intensities may also depend on
the time of the processt, or more generally a set of individual-specific or time-varying explanatory
variablesz(t). The intensity represents the instantaneous risk of moving from stater to states:

qrs(t, z(t)) = lim
δt→0

P (S(t + δt) = s|S(t) = r)/δt (1)

The intensities form a matrixQ whose rows sum to zero, so that the diagonal entries are defined by
qrr = −

∑
s 6=r qrs. To fit a multi-state model to data, we estimate this transition intensity matrix. We

concentrate onMarkovmodels here. The Markov assumption is that future evolution only depends
on the current state. That is,qrs(t, z(t),Ft) is independent ofFt, the observation historyFt of the
process up to the time precedingt. See, for example, Cox and Miller[1] for a thorough introduction
to the theory of continuous-time Markov chains.

1.2 Disease progression models

The development of themsmpackage was motivated by applications to disease modelling. Many
chronic diseases have a natural interpretation in terms of staged progression. Multi-state Markov
models in continuous time are often used to model the course of diseases. A commonly-used model
is illustrated in Figure 2. This represents a series of successively more severe disease stages, and an
‘absorbing’ state, often death. The patient may advance into or recover from adjacent disease stages,
or die at any disease stage. Observations of the stateSi(t) are made on a number of individualsi at
arbitrary timest, which may vary between individuals. The stages of disease may be modelled as a
homogeneous continuous-time Markov process, with a transition matrixQ, pictured below Figure 2.

A commonly-used model is theillness-deathmodel, with three states representing health, illness
and death (Figure 3). Transitions are permitted from health to illness, illness to death and health to
death. Recovery from illness to health is sometimes also considered.

A wide range of medical situations have been modelled using multi-state methods, for exam-
ple, screening for abdominal aortic aneurysms (Jacksonet al.[2]), problems following lung trans-
plantation (Jackson and Sharples[3]), problems following heart transplantation (Sharples[4], Klotz
and Sharples[5]), hepatic cancer (Kay[6]), HIV infection and AIDS (Longiniet al.[7], Satten and
Longini[8], Guihenneuc-Jouyauxet al.[9], Gentlemanet al.[10]), diabetic complications (Marshall
and Jones[11], Andersen[12]), breast cancer screening (Duffy and Chen[13], Chenet al.[14]), cer-
vical cancer screening (Kirby and Spiegelhalter[15]) and liver cirrhosis (Andersenet al.[16]). Many
of these references also describe the mathematical theory, which will be reviewed in the following
sections.

1.3 Arbitrary observation times

Longitudinal data from monitoring disease progression are often incomplete in some way. Usually
patients are seen at intermittent follow-up visits, at which monitoring information is collected, but
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Figure 1: General multi-state model.
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Figure 2: General model for disease progression.
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information from the periods between visits is not available. Often the exact time of disease onset is
unknown. Thus, the changes of state in a multi-state model usually occur at unknown times. Also a
subject may only be followed up for a portion of their disease history. A fixed observation schedule
may be specified in advance, but in practice times of visits may vary due to patient and hospital
pressures. The states of disease progression models often include death. Death times are commonly
recorded to within a day. Also observations may be censored. For example, at the end of a study, an
individual may be known only to be alive, and in an unknown state.

A typical sampling situation is illustrated in Figure 4. The individual is observed at four occasions
through 10 months. The final occasion is the death date which is recorded to within a day. The only
other information available is the occupation of states 2, 2, and 1 at respective times 1.5, 3.5 and 5.
The times of movement between states and the state occupancy in between the observation times are
unknown. Although the patient was in state 3 between 7 and 9 months this was not observed at all.

Informative sampling times To fit a model to longitudinal data with arbitrary sampling times we
must consider the reasons why observations were made at the given times. This is analogous to the
problem of missing data, where the fact that a particular observation is missing may implicitly give
information about the value of that observation. Possible observation schemes include:

• fixed. Each patient is observed at fixed intervals specified in advance.

• random. The sampling times vary randomly, independently of the current state of the disease.

• doctor’s care. More severely ill patients are monitored more closely. The next sampling time
is chosen on the basis of the current disease state.

• patientself-selection. A patient may decide to visit the doctor on occasions when they are in a
poor condition.

Grügeret al. [17] discussed conditions under which sampling times areinformative. If a multi-
state model is fitted, ignoring the information available in the sampling times, then inference may
be biased. Mathematically, because the sampling times are often themselves random, they should
be modelled along with the observation processXt. However the ideal situation is where the joint
likelihood for the times and the process is proportional to the likelihood obtained if the sampling
times were fixed in advance. Then the parameters of the process can be estimated independently of
the parameters of the sampling scheme.

In particular, they showed that fixed, random and doctor’s care observation policies are not infor-
mative, whereas patient self-selection is informative.

1.4 Likelihood for the multi-state model

Kalbfleisch and Lawless[18] and later Kay [6] described a general method for evaluating the likeli-
hood for a general multi-state model in continuous time, applicable to any form of transition matrix.
The only available information is the observed state at a set of times, as in Figure 4. The sampling
times are assumed to be non-informative.

The likelihood is calculated from the transition probability matrixP (t). For a time-homogeneous
process, the(r, s) entry ofP (t) is the probability of being in states at a timet+u in the future, given
the state at timeu is r. It does not say anything about the time of transition fromr to s, indeed the
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Figure 4: Evolution of a multi-state model. The process is observed on four occasions.
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process may have entered other states between timesu andt + u. P (t) can be calculated by taking
the matrix exponential of the transition intensity matrix (see, for example, Cox and Miller [1]).

P (t) = exp(tQ) (2)

Supposei indexesM individuals. The data for individuali consist of a series of times(ti1, . . . , tini
)

and corresponding states(S(ti1), . . . , S(tini)). Consider a general multi state model, with a pair of
successive observed disease statesS(tj), S(tj+1) at timestj , tj+1. The contribution to the likelihood
from this pair of states is

Li,j = pS(tj)S(tj+1)(tj+1 − tj) (3)

This is the entry of the transition matrixP (t) at theS(tj)th row andS(tj+1)th column, evaluated at
t = tj+1 − tj .

The full likelihoodL(Q) is the product of all such termsLi,j over all individuals and all transi-
tions. It depends on the unknown transition matrixQ, which was used to determineP (t).

Death states In observational studies of chronic diseases, it is common that the time of death is
known, but the state on the previous instant before death is unknown. IfS(tj+1) = D is such a death
state, then the contribution to the likelihood is summed over the unknown statem on the day before
death:

Li,j =
∑

m6=D

pS(tj),m(tj+1 − tj)qm,D (4)

assuming a time unit of days. The sum is taken over all possible statesm which can be visited
betweenS(tj) andD.

Exactly observed transition times If the times(ti1, . . . , tini) had been theexacttransition times
between the states, with no transitions between the observation times, then the contributions would
be of the form

Li,j = pS(tj)S(tj)(tj+1 − tj)qS(tj)S(tj+1) (5)

since the state is assumed to beS(tj) throughout the interval betweentj and tj+1 with a known
transition to stateS(tj+1) at tj+1.

Censoring At the end of some chronic disease studies, patients are known to be alive but in an
unknown state. For such a censored observationS(tj+1), known only to be a state in the setC, the
equivalent contribution to the likelihood is

Li,j =
∑
m∈C

pS(tj),m(tj+1 − tj) (6)

More generally, suppose every observation from a particular individual is censored. Observations
1, 2, . . . ni are known only to be in the setsC1, C2, . . . , Cni

respectively. The likelihood for this
individual is a sum of the likelihoods of all possible paths through the unobserved states.

Li =
∑

sni
∈Cni

. . .
∑

s2∈C2

∑
s1∈C1

ps1s2(t2 − t1)ps2s3(t3 − t2) . . . psni−1sni
(tni − tni−1) (7)
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Suppose the states comprising the setCj arec
(j)
1 , . . . , c

(j)
mj . This likelihood can also be written as a

matrix product, say,
Li = 1T P 1,2P 2,3 . . . Pni−1,ni1 (8)

whereP j−1,j is amj−1 × mj matrix with (r, s) entryp
c
(j−1)
r c

(j)
s

(tj − tj−1), and1 is the vector of
ones.

The msmpackage allows multi-state models to be fitted to data from processes with arbitrary
observation times, exactly-observed transition times, “death” states and censored states, or a mixture
of these schemes.

1.5 Covariates

The relation of constant or time-varying characteristics of individuals to their transition rates is often
of interest in a multi-state model. Explanatory variables for a particular transition intensity can be
investigated by modelling the intensity as a function of these variables. Marshall and Jones [11]
described a form of aproportional hazardsmodel, where the transition intensity matrix elementsqrs

which are of interest can be replaced by

qrs(z(t)) = q(0)
rs exp(βT

rsz(t))

The newQ is then used to determine the likelihood. If the covariatesz(t) are time dependent, the
contributions to the likelihood of the formprs(t− u) are replaced by

prs(t− u, z(u))

although this requires that the value of the covariate is known at every observation timeu. Sometimes
covariates are observed at different times to the main response, for example recurrent disease events
or other biological markers. In some of these cases it could be assumed that the covariate is a step
function which remains constant between its observation times. Themsmpackage allows individual-
specific or time dependent covariates to be fitted to transition intensities. Time-dependent covariates
are assumed to be known at the same time as the main response, and constant between observation
times of the main response.

Marshall and Jones [11] described likelihood ratio and Wald tests for covariate selection and
testing hypotheses, for example whether the effect of a covariate is the same for all forward transitions
in a disease progression model.

1.6 Hidden Markov models

In a hidden Markov model(HMM) the states of the Markov chain are not observed. The observed
data are governed by some probability distribution (theemissiondistribution) conditionally on the
unobserved state. The evolution of the underlying Markov chain is governed by a transition intensity
matrix Q as before. (Figure 5). Hidden Markov models are mixture models, where observations
are generated from a certain number of unknown distributions. However the distribution changes
through time according to states of a hidden Markov chain. This class of model is commonly used
in areas such as speech and signal processing [19] and the analysis of biological sequence data [20].
In engineering and biological sequencing applications, the Markov process usually evolves over an
equally-spaced, discrete ‘time’ space. Therefore most of the theory of HMM estimation was devel-
oped for discrete-time models.
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HMMs have less frequently been used in medicine, where continuous time processes are often
more suitable. A disease process evolves in continuous time, and patients are often monitored at
irregular and differing intervals. These models are suitable for estimating population quantities for
chronic diseases which have a natural staged interpretation, but which can only be diagnosed by an
error-prone marker. Themsmpackage can fit continuous-time hidden Markov models with a variety
of emission distributions.

Time

ti1 ti2 ti,n−1 ti,n

Underlying

Observed

Si1 Si2 Si,n−1 Si,n

Oi1 Oi2 Oi,n−1 Oi,n

. . .
Q

E

Figure 5: A hidden Markov model in continuous time. Observed states are generated conditionally
on an underlying Markov process.

1.6.1 Misclassification models

An example of a hidden Markov model is a multi-state model with misclassification. Here the ob-
served data are states, assumed to be misclassifications of the true, underlying states.

For example, consider a disease progression model with at least a disease-free and a disease state.
When screening for the presence of the disease, the screening process can sometimes be subject to
error. Then the Markov disease processSi(t) for individual i is not observed directly, but through
realisationsOi(t). The quality of a diagnostic test is often measured by the probabilities that the true
and observed states are equal,Pr(Oi(t) = r|Si(t) = r). Wherer represents a ‘positive’ disease
state, this is thesensitivity, or the probability that a true positive is detected by the test. Wherer
represents a ‘negative’ or disease-free state, this represents thespecificity, or the probability that,
given the condition of interest is absent, the test produces a negative result.

As an extension to the simple multi-state model described in section 1, themsmpackage can fit a
general multi-state model with misclassification. For patienti, observation timetij , observed states
Oij are generated conditionally on true statesSij according to amisclassification matrixE. This is a
n× n matrix, whose(r, s) entry is

ers = Pr(O(tij) = s|S(tij) = r), (9)
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which we first assume to be independent of timet. Analogously to the entries ofQ, some of the
ers may be fixed to reflect knowledge of the diagnosis process. For example, the probability of
misclassification may be negligibly small for non-adjacent states of disease. Thus the progression
through underlying states is governed by the transition intensity matrixQ, while the observation
process of the underlying states is governed by the misclassification matrixE.

To investigate explanatory variablesw(t) for the probability of misclassificationers for each pair
of statesr ands, a logistic model can be used,

log
ers(t)

1− ers(t)
= γT

rsw(t). (10)

1.6.2 General hidden Markov model

Consider now a general hidden Markov model in continuous time. The true state of the modelSij

evolves as an unobserved Markov process. Observed datayij are generated conditionally true states
Sij = 1, 2, . . . , n according to a set of distributionsf1(y|θ1, γ1), f2(y|θ2, γ2), . . ., fn(y|θn, γn),
respectively.θr is a vector of parameters for the stater distribution. One or more of these parameters
may depend on explanatory variables through a link-transformed linear model with coefficientsγr.

1.6.3 Likelihood for general hidden Markov models

A type of EM algorithm known as theBaum-Welchor forward-backwardalgorithm [21, 22], is com-
monly used for hidden Markov model estimation in discrete-time applications. See, for example,
Durbin et al.[20], Albert [23]. A generalisation of this algorithm to continuous time was described
by Bureauet al.[24].

Themsmpackage uses a direct method of calculating likelihoods in discrete or continuous time
based on matrix products. This type of method has been described by Macdonald and Zucchini [25,
pp. 77–79], Lindsey [26, p.73] and Guttorp [27]. Satten and Longini [8] used this method to calculate
likelihoods for a hidden Markov model in continuous time with observations of a continuous marker
generated conditionally on underlying discrete states.

Patienti’s contribution to the likelihood is

Li = Pr(yi1, . . . , yimi
) (11)

=
∑

Pr(yi1, . . . , yimi
|Si1, . . . , Simi

)Pr(Si1, . . . , Simi
)

where the sum is taken over all possible paths of underlying statesSi1, . . . , Simi . Assume that the
observed states are conditionally independent given the values of the underlying states. Also assume
the Markov property,Pr(Sij |Si,j−1, . . . , Si1) = Pr(Sij |Si,j−1). Then the contributionLi can be
written as a product of matrices, as follows. To derive this matrix product, decompose the overall
sum in equation 11 into sums over each underlying state. The sum is accumulated over the unknown
first state, the unknown second state, and so on until the unknown final state:

Li =
∑
Si1

Pr(yi1|Si1)Pr(Si1)
∑
Si2

Pr(yi2|Si2)Pr(Si2|Si1)
∑
Si3

Pr(yi3|Si3)Pr(Si3|Si2)

. . .
∑
Simi

Pr(yimi
|Simi

)Pr(Simi
|Sini−1) (12)

10



wherePr(yij |Sij) is the emission probability density. For misclassification models, this is the mis-
classification probabilityeSijOij . For general hidden Markov models, this is the probability density
fSij

(yij |θSij
, γSij

). Pr(Si,j+1|Sij) is the(Sij , Si,j+1) entry of the Markov chain transition matrix
P (t) evaluated att = ti,j+1−tij . Letf be the vector of initial state occupation probabilitiesPr(Si1),
and let1 be a column vector consisting of ones. Forj = 2, . . . ,mi let Tij be then × n matrix with
(r, s) entry

Pr(yij |s)prs(tij − ti,j−1)

Then subjecti’s likelihood contribution is

Li = fTi2Ti3, . . . Timi
1 (13)

If S(tj) = D is an absorbing state such as death, measured without error, whose entry time
is known exactly, then the contribution to the likelihood is summed over the unknown state at the
previous instant before death. the day before entry. The(r, s) entry ofTij is then

prs(tj − tj−1)qs,D

Section 2.13 describes how to fit multi-state models with misclassification using themsmpackage,
and Section 2.17 describes how to apply general hidden Markov models.

1.6.4 Example of a general hidden Markov model

Jackson and Sharples [3] described a model for FEV1 (forced expiratory volume in 1 second) in re-
cipients of lung transplants. These patients were at risk of BOS (bronchiolitis obliterans syndrome), a
progressive, chronic deterioration in lung function. In this example, BOS was modelled as a discrete,
staged process, a model of the form illustrated in Figure 2, with 4 states. State 1 represents absence
of BOS. State 1 BOS is roughly defined as a sustained drop below 80% below baseline FEV1, while
state 2 BOS is a sustained drop below 65% baseline. FEV1 is measured as a percentage of a baseline
value for each individual, determined in the first six months after transplant, and assumed to be 100%
baseline at six months.

As FEV1 is subject to high short-term variability due to acute events and natural fluctuations,
the exact BOS state at each observation time is difficult to determine. Therefore, a hidden Markov
model for FEV1, conditionally on underlying BOS states, was used to model the natural history of
the disease. Discrete states are appropriate as onset is often sudden.

Model 1 Jackson [28] considered models for these data where FEV1 were Normally distributed,
with an unknown mean and variance conditionally each state (14). This model seeks the most likely
location for the within-state FEV1 means.

yij |{Sij = k} ∼ N(µk + βxij , σ
2
k) (14)

Model 2 Jackson and Sharples [3] used a more complex two-level model for FEV1 measurements.
Level 1 (15) represents the short-term fluctuation error of the marker around its underlying continuous
valueyhid

ij . Level 2 (16) represents the distribution ofyhid
ij conditionally on each underlying state, as

follows.
yij |yhid

ij ∼ N(yhid
ij + βxij , σ

2
ε ) (15)
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yhid
ij |Sij ∼


State Three state model Four state model

Sij = 0 N(µ0, σ
2
0)I[80,∞) N(µ0, σ

2
0)I[80,∞)

Sij = 1 N(µ1, σ
2
1)I(0,80) Uniform(65, 80)

Sij = 2 (death) N(µ2, σ
2
2)I(0,65)

Sij = 3 (death)

(16)

Integrating overyhid
ij gives an explicit distribution foryij conditionally on each underlying state

(given in Section 2.17, Table 1). Similar distributions were originally applied by Satten and Longini [8]
to modelling the progression through discrete, unobserved HIV disease states using continuous CD4
cell counts. Themsmpackage includes density, quantile, cumulative density and random number
generation functions for these distributions.

In both models 1 and 2, the termβxij models the short-term fluctuation of the marker in terms of
acute events.xij is an indicator for the occurrence of an acute rejection or infection episode within
14 days of the observation of FEV1.

Section 2.17 describes how these and more general hidden Markov models can be fitted with the
msmpackage.
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2 Fitting multi-state models with msm

msmis a package of functions for multi-state modelling using the R statistical software. Themsm
function itself implements maximum-likelihood estimation for general multi-state Markov or hid-
den Markov models in continuous time. We illustrate its use with a set of data from monitoring
heart transplant patients. Throughout this section “>” indicates the R command prompt,slanted
typewriter text indicates R commands, andtypewriter text R output.

2.1 Installing msm

The easiest way to install themsmpackage on a computer connected to the Internet is to run the R
command:

install.packages("msm")

This downloadsmsmfrom the CRAN archive of contributed R packages (cran.r-project.org
or one of its mirrors) and installs it to the default R system library. To install to a different location,
for example if you are a normal user with no administrative privileges, create a directory in which R
packages are to be stored, say,/your/library/dir , and run

install.packages("msm", lib='/your/library/dir')

After msmhas been installed, its functions can be made visible in an R session by

> library(msm)

or, if it has been installed into a non-default library,

library(msm, lib.loc='/your/library/dir')

2.2 Getting the data in

The data are specified as a series of observations, grouped by patient. At minimum there should be a
data frame with variables indicating

• the time of the observation,

• the observed state of the process.

If the data do not also contain

• the subject identification number,

then all the observations are assumed to be from the same subject. The subject ID does not need to
be numeric, but data must be grouped by subject, and observations must be ordered by time within
subjects. An example data set, taken from monitoring a set of heart transplant recipients, is provided
with msm. Sharpleset al. [29] studied the progression of coronary allograft vasculopathy (CAV), a
post-transplant deterioration of the arterial walls, using these data. Risk factors and the accuracy of
the screening test were investigated using multi-state Markov and hidden Markov models.

This data set can be made available to the current R session by issuing the command

13



> data(heart)

The first three patient histories are shown below. There are 622 patients in all.PTNUMis the
subject identifier. Approximately each year after transplant, each patient has an angiogram, at which
CAV can be diagnosed. The result of the test is in the variablestate , with possible values 1,
2, 3 representing CAV-free, mild CAV and moderate or severe CAV respectively. A value of 4 is
recorded at the date of death.years gives the time of the test in years since the heart transplant.
Other variables includeage (age at screen),dage (donor age),sex (0=male, 1=female),pdiag
(primary diagnosis, or reason for transplant - IHD represents ischaemic heart disease, IDC represents
idiopathic dilated cardiomyopathy), andcumrej (cumulative number of rejection episodes).

> heart[1:21, ]

PTNUM age years dage sex pdiag cumrej state
1 100002 52.49589 0.000000 21 0 IHD 0 1
2 100002 53.49863 1.002740 21 0 IHD 2 1
3 100002 54.49863 2.002740 21 0 IHD 2 2
4 100002 55.58904 3.093151 21 0 IHD 2 2
5 100002 56.49589 4.000000 21 0 IHD 3 2
6 100002 57.49315 4.997260 21 0 IHD 3 3
7 100002 58.35068 5.854795 21 0 IHD 3 4
8 100003 29.50685 0.000000 17 0 IHD 0 1
9 100003 30.69589 1.189041 17 0 IHD 1 1
10 100003 31.51507 2.008219 17 0 IHD 1 3
11 100003 32.49863 2.991781 17 0 IHD 2 4
12 100004 35.89589 0.000000 16 0 IDC 0 1
13 100004 36.89863 1.002740 16 0 IDC 2 1
14 100004 37.90685 2.010959 16 0 IDC 2 1
15 100004 38.90685 3.010959 16 0 IDC 2 1
16 100004 39.90411 4.008219 16 0 IDC 2 1
17 100004 40.88767 4.991781 16 0 IDC 2 1
18 100004 41.91781 6.021918 16 0 IDC 2 2
19 100004 42.91507 7.019178 16 0 IDC 2 3
20 100004 43.91233 8.016438 16 0 IDC 2 3
21 100004 44.79726 8.901370 16 0 IDC 2 4

A useful way to summarise multi-state data is as a frequency table of pairs of consecutive states.
This counts over all individuals, for each stater ands, the number of times an individual had an
observation of stater followed by an observation of states. The functionstatetable.msm can
be used to produce such a table, as follows,

> statetable.msm(state, PTNUM, data = heart)

to
from 1 2 3 4

1 1367 204 44 148
2 46 134 54 48
3 4 13 107 55
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Thus there were 148 CAV-free deaths, 48 deaths from state 2, and 55 deaths from state 3. On only
four occasions was there an observation of severe CAV followed by an observation of no CAV.

2.3 Specifying a model

We now specify the multi-state model to be fitted to the data. A model is governed by a transition
intensity matrixQ. For the heart transplant example, there are four possible states through which
the patient can move, corresponding to CAV-free, mild/moderate CAV, severe CAV and death. We
assume that the patient can advance or recover from consecutive states while alive, and die from any
state. Thus the model is illustrated by Figure 2 with four states, and we have

Q =


−(q12 + q14) q12 0 q14

q21 −(q21 + q23 + q24) q23 q24

0 q32 −(q32 + q34) q34

0 0 0 0


It is important to remember that this defines whichinstantaneoustransitions can occur in the

Markov process, and that the data aresnapshotsof the process (see section 1.3). Although there were
44 occasions on which a patient was observed in state 1 followed by state 3, the underlying model
specifies that the patient must have passed through state 2 in between. If your data represent the exact
and complete transition times of the process, then you must specifyexacttimes=TRUE in the call
to msm.

To tell msmwhat the allowed transitions of our model are, we define a matrix of the same size as
Q, containing zeroes in the positions where the entries ofQ are zero. All other positions contain an
initial value for the corresponding transition intensity. The diagonal entries supplied in this matrix do
not matter, as the diagonal entries ofQ are defined as minus the sum of all the other entries in the row.
This matrix will eventually be used as theqmatrix argument to themsmfunction. For example,

> twoway4.q <- rbind(c(0, 0.25, 0, 0.25), c(0.166,
+ 0, 0.166, 0.166), c(0, 0.25, 0, 0.25), c(0,
+ 0, 0, 0))

Fitting the model is a process of finding values of the seven unknown transition intensities:q12,
q14, q21, q23, q24, q32, q34, which maximise the likelihood.

2.4 Specifying initial values

The likelihood is maximised by numerical methods, which need a set of initial values to start the
search for the maximum. For reassurance that the true maximum likelihood estimates have been
found, models should be run repeatedly starting from different initial values. However a sensible
choice of initial values can be important for unstable models with flat or multi-modal likelihoods.
For example, the transition rates for a model with misclassification could be initialised at the corre-
sponding estimates for an approximating model without misclassification. Initial values for a model
without misclassification could be set by supposing that transitions between states take place only at
the observation times. If we observenrs transitions from stater to states, and a total ofnr transitions
from stater, thenqrs/qrr can be estimated bynrs/nr. Then, given a total ofTr years spent in state
r, the mean sojourn time1/qrr can be estimated asTr/nr. Thus,nrs/Tr is a crude estimate ofqrs.
Themsmpackage provides a functioncrudeinits.msm for calculating initial values in this way.
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> crudeinits.msm(state ~ years, PTNUM, data = heart,
+ qmatrix = twoway4.q)

1 2 3 4
1 -0.1173149 0.06798932 0.0000000 0.04932559
2 0.1168179 -0.37584883 0.1371340 0.12189692
3 0.0000000 0.04908401 -0.2567471 0.20766310
4 0.0000000 0.00000000 0.0000000 0.00000000

However, if there are are many changes of state in between the observation times, then this crude
approach may fail to give sensible initial values. For the heart transplant example we could also
guess that the mean period in each state before moving to the next is about 2 years, and there is
an equal probability of progression, recovery or death. This givesqrr = −0.5 for r = 1, 2, 3, and
q12 = q14 = 0.25, q21 = q23 = q24 = 0.166, q32 = q34 = 0.25, and thetwoway4.q shown above.

2.5 Runningmsm

To fit the model, call themsmfunction with the appropriate arguments. For our running example, we
have defined a data setheart , a matrixtwoway4.q indicating the allowed transitions, and initial
values. We are ready to runmsm.

Model 1: simple bidirectional model

> heart.msm <- msm(state ~ years, subject = PTNUM,
+ data = heart, qmatrix = twoway4.q, death = 4)

In this example the day of death is assumed to be recorded exactly, as is usual in studies of chronic
diseases. At the previous instant before death the state of the patient is unknown. Thus we specify
death = 4 , to indicate tomsmthat state 4 is a “death” state. In terms of the multi-state model, a
“death” state is assumed to have a known entry time, but the individual is in an unknown transient
state at the previous instant. If the model had five states and states 4 and 5 were two competing causes
of death with death times recorded exactly, then we would specifydeath = c(4,5) .

By default, the data are assumed to represent snapshots of the process at arbitrary times. However,
observations can also represent exact times of transition, “death” times, or a mixture of these. See the
obstype argument tomsm.

While the msmfunction runs, it searches for the maximum of the likelihood of the unknown
parameters. Internally, it uses the R functionoptim to minimise the minus log-likelihood. When
the data set, the model, or both, are large, then this may take a long time. It can then be useful to see
the progress of the optimisation algorithm. To do this, we can specify acontrol argument tomsm,
which is passed internally to theoptim function. For examplecontrol = list(trace=1,
REPORT=1). See the help page foroptim ,

> help(optim)

for more options to control the optimisation. When completed, themsmfunction returns a value.
This value is a list of the important results of the model fitting, including the parameter estimates and
their covariances. To keep these results for post-processing, we store them in an R object, here called
heart.msm . When running several similarmsmmodels, it is recommended to store the respective
results in informatively-named objects.
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2.6 Showing results

To show the maximum likelihood estimates and 95% confidence intervals, type the name of the
fitted model object at the R command prompt.1 The confidence level can be changed using thecl
argument tomsm.

> heart.msm

Call:
msm(formula = state ~ years, subject = PTNUM, data = heart, qmatrix = twoway4.q, death = 4)

Maximum likelihood estimates:
Transition intensity matrix

State 1 State 2
State 1 -0.1702 (-0.1901,-0.1524) 0.1277 (0.1112,0.1466)
State 2 0.2244 (0.167,0.3016) -0.6062 (-0.7068,-0.5199)
State 3 0 0.1312 (0.08003,0.2152)
State 4 0 0

State 3 State 4
State 1 0 0.04253 (0.03414,0.05298)
State 2 0.3406 (0.2714,0.4273) 0.0412 (0.01193,0.1423)
State 3 -0.4361 (-0.5517,-0.3447) 0.3049 (0.2368,0.3925)
State 4 0 0

-2 * log-likelihood: 3968.803

From the estimated intensity matrix, we see patients are three times as likely to develop symptoms
than die without symptoms (first row). After disease onset (state 2), progression to severe symptoms
(state 3) is 50% more likely than recovery, and death from the severe disease state is rapid (mean of
1 / -0.44 = 2.3 years in state 3).

Section 2.9 describes various functions that can be used to obtain summary information from the
fitted model.

2.7 Covariates on the transition rates

We now model the effect of explanatory variables on the rates of transition, using a proportional
intensities model. Now we have an intensity matrixQ(z) which depends on a covariate vectorz.
For each entry ofQ(z), the transition intensity for patienti at observation timej is qrs(zij) =
q
(0)
rs exp(βT

rszij). The covariatesz are specified through thecovariates argument tomsm. If zij

is time-dependent, we assume it is constant in between the observation times of the Markov process.
msmcalculates the probability for a state transition from timesti,j−1 to tij using the covariate value
at timeti,j−1.

We consider a model with just one covariate, female sex. Out of the 622 transplant recipients,
535 are male and 87 are female. By default, all linear covariate effectsβrs are initialised to zero.

1This is equivalent to typingprint.msm(heart.msm) . The functionprint.msm formats the important information
in the model object for printing on the screen.
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To specify different initial values, use acovinits argument, as described inhelp(msm) . Initial
values given in theqmatrix represent the intensities at covariate values of zero.

Model 2: sex as a covariate

> heartsex.msm <- msm(state ~ years, subject = PTNUM,
+ data = heart, qmatrix = twoway4.q, death = 4,
+ covariates = ~sex)

Themsmobject will now include the estimated covariate effects and their confidence intervals.

> heartsex.msm

Call:
msm(formula = state ~ years, subject = PTNUM, data = heart, qmatrix = twoway4.q, covariates = ~sex, death = 4)

Maximum likelihood estimates:
Transition intensity matrix with covariates set to their means

State 1 State 2
State 1 -0.1726 (-0.193,-0.1543) 0.1308 (0.1138,0.1505)
State 2 0.2429 (0.1817,0.3248) -0.6811 (-0.7989,-0.5807)
State 3 0 0.1748 (0.1028,0.2974)
State 4 0 0

State 3 State 4
State 1 0 0.04175 (0.03333,0.05229)
State 2 0.3794 (0.3016,0.4774) 0.05876 (0.0251,0.1375)
State 3 -0.4813 (-0.6156,-0.3763) 0.3065 (0.238,0.3947)
State 4 0 0

Log-linear effects of sex

State 1 State 2
State 1 0 -0.6276 (-1.136,-0.1188)
State 2 -0.01686 (-1.049,1.015) 0
State 3 0 0.7751 (-1.914,3.465)
State 4 0 0

State 3 State 4
State 1 0 0.2141 (-0.3622,0.7904)
State 2 0.4474 (-0.4951,1.39) 0.5854 (-1.266,2.437)
State 3 0 0.6701 (-0.162,1.502)
State 4 0 0

-2 * log-likelihood: 3961.345

Comparing the estimated log-linear effects of age and their standard errors, we see that the disease
onset rate is smaller for females, whereas none of the other effects are significant. The first matrix

18



shown in the output of printingheartsex.msm is the estimated transition intensity matrixqrs(z) =
q
(0)
rs exp(βT

rsz) with the covariatez set to its mean value in the data. This represents an average
intensity matrix for the population of 535 male and 87 female patients. To extract separate intensity
matrices for male and female patients (z = 0 and1 respectively), use the functionqmatrix.msm ,
as shown below. This and similar summary functions will be described in more detail in section 2.9.

> qmatrix.msm(heartsex.msm, covariates = list(sex = 0))

State 1 State 2
State 1 -0.1818 (-0.2044,-0.1616) 0.1411 (0.1221,0.163)
State 2 0.2434 (0.1801,0.3291) -0.6578 (-0.7706,-0.5615)
State 3 0 0.1593 (0.09821,0.2583)
State 4 0 0

State 3 State 4
State 1 0 0.04069 (0.03182,0.05202)
State 2 0.3596 (0.2859,0.4522) 0.05477 (0.02136,0.1404)
State 3 -0.442 (-0.5649,-0.3459) 0.2828 (0.2166,0.3692)
State 4 0 0

> qmatrix.msm(heartsex.msm, covariates = list(sex = 1))

State 1 State 2
State 1 -0.1257 (-0.1747,-0.09044) 0.07531 (0.04623,0.1227)
State 2 0.2394 (0.08923,0.6421) -0.9002 (-1.776,-0.4562)
State 3 0 0.3458 (0.02453,4.873)
State 4 0 0

State 3 State 4
State 1 0 0.0504 (0.02993,0.08488)
State 2 0.5625 (0.2255,1.403) 0.09835 (0.01996,0.4845)
State 3 -0.8984 (-2.5,-0.3228) 0.5527 (0.2513,1.216)
State 4 0 0

We may also want to constrain the effect of age to be equal for certain transition rates, to reduce
the number of parameters in the model, or to investigate hypotheses on the covariate effects. A
constraint argument can be used to indicate which of the transition rates have common covariate
effects.

Model 3: constrained covariate effects

> heart3.msm <- msm(state ~ years, subject = PTNUM,
+ data = heart, qmatrix = twoway4.q, death = 4,
+ covariates = ~sex, constraint = list(sex = c(1,
+ 2, 3, 1, 2, 3, 2)))

This constrains the effect of age to be equal for the progression ratesq12, q23, equal for the death rates
q14, q24, q34, and equal for the recovery ratesq21, q32. The intensity parameters are assumed to be or-
dered by reading across the rows of the transition matrix, starting at the first row: (q12, q14, q21, q23, q24, q32, q34),
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giving constraint indicators(1,2,3,1,2,3,2) . Any vector of increasing numbers can be used
for the indicators.

In a similar manner, we can constrain some of the baseline transition intensities to be equal to one
another, using theqconstraint argument. For example, to constrain the ratesq12 andq23 to be
equal, andq24 andq34 to be equal, specifyqconstraint = c(1,2,3,1,4,5,4) .

2.8 Fixing parameters at their initial values

For exploratory purposes we may want to fit a model assuming that some parameters are fixed, and
estimate the remaining parameters. This may be necessary in cases where there is not enough in-
formation in the data to be able to estimate a proposed model, and we have strong prior information
about a certain transition rate. To do this, use thefixedpars argument tomsm. For model 1, the
following statement fixes the parameters numbered 2, 5, 7, that is,q14, q24, q34, to their initial values
(0.25, 0.166 and 0.25, respectively).

Model 4: fixed parameters

> heart4.msm <- msm(state ~ years, subject = PTNUM,
+ data = heart, qmatrix = twoway4.q, death = 4,
+ control = list(trace = 2, REPORT = 1), fixedpars = c(2,
+ 5, 7))

A fixedpars statement can also be useful for fixing covariate effect parameters to zero, that is
to assume no effect of a covariate on a certain transition rate.

2.9 Extractor functions

We may want to extract some of the information from themsmmodel fit for post-processing, for ex-
ample for plotting graphs or generating summary tables. A set of functions is provided for extracting
interesting features of the fitted model.

Intensity matrices The functionqmatrix.msm extracts a transition intensity matrix and its confi-
dence intervals for a given set of covariate values, as shown in section 2.7. Confidence intervals
are calculated from the covariance matrix of the estimates by assuming the distribution is sym-
metric on the log scale. Standard errors for the intensities are also available from the object
returned byqmatrix.msm . These are calculated by the delta method. Themsmpackage pro-
vides a general-purpose functiondeltamethod for estimating the variance of a function of
a random variableX given the expectation and variance ofX. Seehelp(deltamethod)
for further details.

Transition probability matrices The functionpmatrix.msm extracts the estimated transition prob-
ability matrixP (t) within a given time. For example, for model 1, the 10 year transition prob-
abilities are given by:

> pmatrix.msm(heart.msm, t = 10)
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State 1 State 2 State 3 State 4
State 1 0.30959690 0.09780067 0.08775948 0.5048430
State 2 0.17187999 0.06588634 0.07810046 0.6841332
State 3 0.05943821 0.03009829 0.04705873 0.8634048
State 4 0.00000000 0.00000000 0.00000000 1.0000000

Thus, a typical person in state 1, disease-free, has a probability of 0.5 of being dead ten years
from now, a probability of 0.3 being still disease-free, and probabilities of 0.1 of being alive
with mild/moderate or severe disease, respectively.

This assumesQ is constant within the desired time interval. For non-homogeneous processes,
whereQ varies with time-dependent covariates but can be approximated as piecewise constant,
there is an equivalent functionpmatrix.piecewise.msm . Consult its help page for further
details.

There are no estimates of error presented withpmatrix.msm , however bootstrap methods
may be feasible for simpler models.

Mean sojourn times The functionsojourn.msm extracts the estimated mean sojourn times in
each transient state, for a given set of covariate values.

> sojourn.msm(heart.msm)

estimates SE L U
State 1 5.874810 0.3310261 5.260554 6.560791
State 2 1.649685 0.1292902 1.414784 1.923587
State 3 2.292950 0.2750939 1.812478 2.900791

Total length of stay Mean sojourn times describe the average period in a single stay in a state. For
processes with successive periods of recovery and relapse, we may want to forecast the total
time spent healthy or diseased, before death. The functiontotlos.msm estimates the fore-
casted total length of time spent in each transient states between two future time pointst1 and
t2, for a given set of covariate values. This defaults to the expected amount of time spent in
each state between the start of the process (time 0, the present time) and death or a specified
future time. This is obtained as

Ls =
∫ t2

t1

P (t)r,sdt

wherer is the state at the start of the process, which defaults to 1. This is calculated using
numerical integration. For model 1, each patient is forecasted to spend 8.8 years disease free,
2.2 years with mild or moderate disease and 1.8 years with severe disease. Notice that there
are currently no estimates of error available fromtotlos.msm , however bootstrap methods
may be feasible for simpler models.

> totlos.msm(heart.msm)

State 1 State 2 State 3
8.823770 2.236885 1.746796
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Ratio of transition intensities The functionqratio.msm estimates a ratio of two entries of the
transition intensity matrix at a given set of covariate values, together with a confidence interval
estimated assuming normality on the log scale and using the delta method. For example, we
may want to estimate the ratio of the progression rateq12 into the first state of disease to the
corresponding recovery rateq21. For example in model 1, recovery is 1.8 times as likely as
progression.

> qratio.msm(heart.msm, ind1 = c(2, 1), ind2 = c(1,
+ 2))

estimate se L U
1.7574521 0.2455929 1.3363906 2.3111790

Hazard ratios for transition The functionhazard.msm gives the estimated hazard ratios corre-
sponding to each covariate effect on the transition intensities. 95% confidence limits are com-
puted by assuming normality of the log-effect. For example, for model 2 with female sex as a
covariate, the following hazard ratios show more clearly that the only transition on which the
effect of sex is significant at the 5% level is the 1-2 transition.

> hazard.msm(heartsex.msm)

$sex
HR L95 U95

State 2 - State 1 0.9832775 0.3504128 2.7591299
State 1 - State 2 0.5338549 0.3209412 0.8880164
State 3 - State 2 2.1707943 0.1474242 31.9645565
State 2 - State 3 1.5641957 0.6094988 4.0142955
State 1 - State 4 1.2387824 0.6961528 2.2043748
State 2 - State 4 1.7957093 0.2818258 11.4417215
State 3 - State 4 1.9544936 0.8504352 4.4918708

Setting covariate values All of these extractor functions take an argument calledcovariates .
If this argument is omitted, for example,

> qmatrix.msm(heart.msm)

then the intensity matrix is evaluated asQ(x̄) with all covariates set to their mean valuesx̄ in the
data. Alternatively, setcovariates to 0 to return the resultQ(0) with covariates set to zero. This
will usually be preferable for categorical covariates, where we wish to see the result for the baseline
category.

> qmatrix.msm(heartsex.msm, covariates = 0)

Alternatively, the desired covariate values can be specified explicitly as a list,

> qmatrix.msm(heartsex.msm, covariates = list(sex = 1))
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If a covariate is categorical, that is, an Rfactor with k levels, then we use its internal representation
as a set ofk − 1 0/1 indicator functions. For example, consider a covariatecov , with three levels,
VAL1, VAL2, VAL3 , where the baseline level isVAL1. To set the value ofcov to beVAL1,
VAL2 or VAL3, respectively, use statements such as

qmatrix.msm(example.msm, covariates = list(age = 60, covVAL2=0, covVAL3=0))
qmatrix.msm(example.msm, covariates = list(age = 60, covVAL2=1, covVAL3=0))
qmatrix.msm(example.msm, covariates = list(age = 60, covVAL2=0, covVAL3=1))

respectively. (This procedure is likely to be simplified in future versions of the package.)

2.10 Survival plots

In studies of chronic disease, an important use of multi-state models is in predicting the probability
of survival for patients in increasingly severe states of disease, for some timet in the future. This can
be obtained directly from the transition probability matrixP (t).

Theplot method formsmobjects produces a plot of the expected probability of survival against
time, from each transient state. Survival is defined as not entering the final absorbing state.

> plot(heart.msm, legend.pos = c(8, 1))
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This shows that the 10-year survival probability with severe CAV is approximately 0.1, as opposed
to 0.3 with mild CAV and 0.5 without CAV. With severe CAV the survival probability diminishes very
quickly to around 0.3 in the first five years after transplant. Thelegend.pos argument adjusts the
position of the legend in case of clashes with the plot lines. Atimes argument can be supplied to
indicate the time interval to forecast survival for.

A more sophisticated analysis of these data might explore competing causes of death from causes
related or unrelated to the disease under study.

2.11 Convergence failure

Inevitably if over-complex models are applied with insufficient data then the parameters of the model
will not be identifiable. This will result in the optimisation algorithm failing to find the maximum
of the log-likelihood, or even failing to evaluate the likelihood. For example, it will commonly be
inadvisable to include several covariates in a model simultaneously.

In some circumstances, the optimisation may report convergence, but fail to calculate any standard
errors. In these cases, the Hessian of the log-likelihood at the reported solution is not positive definite.
Thus the reported solution is probably close to the maximum, but not the maximum.

Initial values Make sure that a sensible set of initial values have been chosen. The optimisation may
only converge within a limited range of ‘informative’ initial values.

Scaling It is often necessary to apply a scaling factor to normalise the likelihood (fnscale ), or cer-
tain individual parameters(parscale) . This may prevent overflow or underflow problems
within the optimisation. For example, if the value of the -2× log-likelihood is around 5000,
then the following option leads to an minimisation of the -2× log-likelihood on an approximate
unit scale:options = list(fnscale = 5000)

It is also advisable to analyse all variables, including covariates and the time unit, on a roughly
normalised scale. For example, working in terms of a time unit of months or years instead of
days, when the data range over thousands of days.

Convergence criteria “False convergence” can sometimes be solved by tightening the criteria (reltol ,
defaults to1e-08 ) for reporting convergence of the optimisation. For example,options =
list(reltol = 1e-16) .

Alternatively consider using smaller step sizes for the numerical approximation to the gradient,
used in calculating the Hessian. This is given by the control parameterndeps . For example,
for a model with 5 parameters,options = list(ndeps = rep(1e-6, 5))

Model simplification If none of these numerical adjustments lead to convergence, then the model
is probably over-complicated. There may not be enough information in the data on a certain
transition rate. It is always recommended to count all the pairs of transitions between states in
successive observation times, making a frequency table of previous state against current state
(functionstatetable.msm ). Although the data are a series of snapshots of a continuous-
time process, and the actual transitions take place in between the observation times, this type
of table may still be helpful. If there are not many observed ‘transitions’ from state 2 to state
4, for example, then the data may be insufficient to estimateq24.

For a staged disease model (Figure 2), the number of disease states should be low enough that
all transition rates can be estimated. Consecutive states of disease severity should be merged
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if necessary. If it is realistic, consider applying constraints on the intensities or the covariate
effects so that the parameters are equal for certain transitions, or zero for certain transitions.

2.12 Model assessment

Observed and expected prevalenceTo compare the relative fit of two nested models, it is easy
to compare their likelihoods. However it is not always easy to determine how well a fitted multi-
state model describes an irregularly-observed process. Ideally we would like to compare observed
data with fitted or expected data under the model. If there were times at which all individuals were
observed then the fit of the expected numbers in each state orprevalencescan be assessed directly at
those times. Otherwise, some approximations are necessary. We could assume that an individual’s
state at an arbitrary timet was the same as the state at their previous observation time. This might
be fairly accurate if observation times are close together. This approach is taken by the function
prevalence.msm , which constructs a table of observed and expected numbers and percentages of
individuals in each state at a set of times.

A set of expected counts can be produced if the process begins at a common time for all indi-
viduals. Suppose at this time, each individual is in state 0. Then givenn(t) individuals are under
observation at timet, the expected number of individuals in stater at timet is n(t)P (t)0,r.

For example, we calculate the observed expected numbers and percentages at two-yearly inter-
vals up to 20 years after transplant, for the heart transplant modelheart.msm . The number of
individuals still alive and under observation decreases from 622 to 251 at year 20.

> options(digits = 3)
> prevalence.msm(heart.msm, times = seq(0, 20, 2))

Calculating approximate observed state prevalences...
Forecasting expected state prevalences...
$Observed

State 1 State 2 State 3 State 4 Total
0 622 0 0 0 622
2 507 20 7 54 588
4 330 37 24 90 481
6 195 43 28 129 395
8 117 44 21 161 343
10 60 25 22 189 296
12 26 11 12 221 270
14 11 3 6 238 258
16 4 0 3 245 252
18 0 0 2 249 251
20 0 0 0 251 251

$Expected
State 1 State 2 State 3 State 4 Total

0 622.0 0.00 0.00 0.0 622
2 437.0 74.51 23.70 52.8 588
4 279.8 68.66 38.66 93.9 481
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6 184.2 52.07 37.95 120.8 395
8 129.9 39.41 32.84 140.9 343
10 91.6 28.95 25.98 149.4 296
12 68.7 22.21 20.80 158.3 270
14 54.0 17.73 17.02 169.2 258
16 43.5 14.41 14.05 180.0 252
18 35.8 11.92 11.72 191.6 251
20 29.6 9.88 9.77 201.8 251

$"Observed percentages"
State 1 State 2 State 3 State 4

0 100.00 0.00 0.000 0.00
2 86.22 3.40 1.190 9.18
4 68.61 7.69 4.990 18.71
6 49.37 10.89 7.089 32.66
8 34.11 12.83 6.122 46.94
10 20.27 8.45 7.432 63.85
12 9.63 4.07 4.444 81.85
14 4.26 1.16 2.326 92.25
16 1.59 0.00 1.190 97.22
18 0.00 0.00 0.797 99.20
20 0.00 0.00 0.000 100.00

$"Expected percentages"
State 1 State 2 State 3 State 4

0 100.0 0.00 0.00 0.00
2 74.3 12.67 4.03 8.97
4 58.2 14.27 8.04 19.51
6 46.6 13.18 9.61 30.57
8 37.9 11.49 9.57 41.07
10 31.0 9.78 8.78 50.48
12 25.4 8.23 7.70 58.64
14 20.9 6.87 6.60 65.59
16 17.3 5.72 5.57 71.43
18 14.3 4.75 4.67 76.32
20 11.8 3.94 3.89 80.38

Comparing the observed and expected percentages in states 1, 2 and 3, we see that the predicted
number of individuals who die is under-estimated by the model from year 8 onwards. Similarly the
number of individuals sill alive and free of CAV (State 1) is over-estimated by the model for year 10
onwards.

Such discrepancies could have many causes. One possibility is that the transition rates vary with
the time since the beginning of the process, the age of the patient, or some other omitted covariate, so
that the Markov model isnon-homogeneous. This could be accounted for by modelling the intensity
as a function of age, for example, such as a piecewise-constant function. In this example, it is likely
that the hazard of death increases with age, so the model underestimates the number of deaths when
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forecasting far into the future.
Another cause of poor model fit may sometimes be the failure of the Markov assumption. That is,

the transition intensities may depend on the time spent in the current state (a semi-Markov process)
or other characteristics of the process history. Accounting for the process history is difficult as the
process is only observed through a series of snapshots. For a multi-state model with one-way pro-
gression through states, and frequent observations, we may be able to estimate the time spent in each
state by each individual.

2.13 Fitting misclassification models withmsm

In fact, in the heart transplant example from section 2.2, it is not medically realistic for patients
to recover from a diseased state to a healthy state. Progression of coronary artery vasculopathy is
thought to be an irreversible process. The angiography scan for CAV is actually subject to error,
which leads to some false measurements of CAV states and apparent recoveries. Thus we account
for misclassification by fitting ahidden Markov modelusingmsm. Firstly we replace the two-way
multi-state model by a one-way model with transition intensity matrix

Q =


−(q12 + q14) q12 0 q14

0 −(q23 + q24) q23 q24

0 0 −q34 q34

0 0 0 0


We also assume that true state 1 (CAV-free) can be classified as state 1 or 2, state 2 (mild/moderate
CAV) can be classified as state 1, 2 or 3, while state 3 (severe CAV) can be classified as state 2 or 3.
Recall that state 4 represents death. Thus our matrix of misclassification probabilities is

E =


1− e12 e12 0 0
e21 1− e21 − e23 e23 0
0 e32 1− e32 0
0 0 0 0


with underlying states as rows, and observed states as columns.

To model observed states with misclassification, we define an matrixematrix indicating the
states that can be misclassified. Rows of this matrix correspond to true states, columns to observed
states. It should contains zeroes in the positions where misclassification is not permitted. Non-zero
entries are initial values for the corresponding misclassification probabilities. We then callmsmas
before, but with this matrix as theematrix argument. Initial values of 0.1 are assumed for each of
the four misclassification probabilitiese12, e21, e23, e32. Zeroes are given where the elements ofE
are zero. The diagonal elements supplied inematrix are ignored, as rows must sum to one. The
matrix qmatrix , specifying permitted transition intensities and their initial values, also changes to
correspond to the newQ representing the progression-only model for the underlying states.

We use an alternative quasi-Newton optimisation algorithm(method="BFGS") which can of-
ten be faster or more robust than the default Nelder-Mead simplex-based algorithm. An optional
argumentinitprobs could also have been given here, representing the vectorf of the probabili-
ties of occupying each true state at the initial observation (equation 13). If not given, all individuals
are assumed to be in true state 1 at their initial observation.
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Model 5: multi-state model with misclassification

> oneway4.q <- rbind(c(0, 0.148, 0, 0.0171), c(0,
+ 0, 0.202, 0.081), c(0, 0, 0, 0.126), c(0,
+ 0, 0, 0))
> ematrix <- rbind(c(0, 0.1, 0, 0), c(0.1, 0, 0.1,
+ 0), c(0, 0.1, 0, 0), c(0, 0, 0, 0))
> heartmisc.msm <- msm(state ~ years, subject = PTNUM,
+ data = heart, qmatrix = oneway4.q, ematrix = ematrix,
+ death = 4, method = "BFGS")
> heartmisc.msm

Call:
msm(formula = state ~ years, subject = PTNUM, data = heart, qmatrix = oneway4.q, ematrix = ematrix, death = 4, method = "BFGS")

Maximum likelihood estimates:
Transition intensity matrix

State 1 State 2
State 1 -0.142 (-0.1599,-0.1262) 0.1014 (0.08663,0.1186)
State 2 0 -0.2607 (-0.3162,-0.2149)
State 3 0 0
State 4 0 0

State 3 State 4
State 1 0 0.04068 (0.03253,0.05088)
State 2 0.2267 (0.1691,0.3041) 0.03394 (0.008598,0.134)
State 3 -0.3085 (-0.3906,-0.2436) 0.3085 (0.2436,0.3906)
State 4 0 0

Misclassification matrix

State 1 State 2
State 1 0.9923 (0.9822,0.9967) 0.007662 (0.003253,0.01794)
State 2 0.245 (0.1778,0.3276) 0.7039 (0.6517,0.7513)
State 3 0 0.1244 (0.06253,0.2322)
State 4 0 0

State 3 State 4
State 1 0 0
State 2 0.05105 (0.02966,0.08648) 0
State 3 0.8756 (0.7841,0.9317) 0
State 4 0 1 (1,1)

-2 * log-likelihood: 3952

Thus there is an estimated probability of about 0.01 that mild/moderate CAV will be diagnosed
erroneously, but a rather higher probability of 0.24 that underlying mild/moderate CAV will be diag-
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nosed as CAV-free. Between the two CAV states, the mild state will be misdiagnosed as severe with
a probability of 0.05, and the severe state will be misdiagnosed as mild with a probability of 0.12.

The model also estimates the progression rates through underlying states. An average of 7 years is
spent disease-free, an average of 3.8 years is spent with mild/moderate disease, and periods of severe
disease last 3.2 years on average before death.

2.14 Effects of covariates on misclassification rates

We can investigate how the probabilities of misclassification depend on covariates in a similar way
to the transition intensities, using amisccovariates argument tomsm. For example, we now
include female sex as a covariate for the misclassification probabilities. This requires an extra four
initial values for the linear effect for each of the logit-probabilities, which we set to zero.

Model 6: misclassification model with misclassification probabilities modelled on sex

> miscinits <- c(0.148, 0.0171, 0.202, 0.081, 0.126,
+ 0.1, 0.1, 0.1, 0.1, 0, 0, 0, 0)

> heartmiscsex.msm <- msm(state ~ years, subject = PTNUM,
+ data = heart, qmatrix = oneway4.q, ematrix = ematrix,
+ death = 4, misccovariates = ~sex, method = "BFGS")

> heartmiscsex.msm

Call:
msm(formula = state ~ years, subject = PTNUM, data = heart, qmatrix = oneway4.q, ematrix = ematrix, misccovariates = ~sex, death = 4, method = "BFGS")

Maximum likelihood estimates:
Transition intensity matrix

State 1 State 2
State 1 -0.1419 (-0.1603,-0.1256) 0.1014 (0.08606,0.1194)
State 2 0 -0.2679 (-0.3255,-0.2204)
State 3 0 0
State 4 0 0

State 3 State 4
State 1 0 0.04053 (0.03236,0.05077)
State 2 0.2331 (0.1737,0.3127) 0.03478 (0.008897,0.136)
State 3 -0.3027 (-0.3835,-0.2388) 0.3027 (0.2388,0.3835)
State 4 0 0

Misclassification matrix

State 1 State 2
State 1 0.9947 (0.9127,0.9997) 0.005319 (0.0002942,0.08858)
State 2 0.2513 (0.1741,0.3483) 0.6971 (0.6367,0.7514)
State 3 0 0.1462 (0.07781,0.2578)
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State 4 0 0
State 3 State 4

State 1 0 0
State 2 0.05156 (0.02974,0.08795) 0
State 3 0.8538 (0.7615,0.9144) 0
State 4 0 1 (1,1)

Logit-linear effects of sex

State 1 State 2
State 1 0 -5.615 (-29.06,17.83)
State 2 1.327 (-0.3563,3.011) 0
State 3 0 1.936 (0.1946,3.678)
State 4 0 0

State 3 State 4
State 1 0 0
State 2 -0.6299 (-2.744,1.484) 0
State 3 0 0
State 4 0 0

-2 * log-likelihood: 3945

Considering the large confidence intervals for the estimates, we do not see any significant effect of
sex on the fitted misclassification probabilities, so that men are no more or less likely than women to
have an inaccurate angiography scan.

2.15 Extractor functions

As well as the functions described in section 2.9 for extracting useful information from fitted models,
there are a number of extractor functions specific to models with misclassification.

Misclassification matrix The functionematrix.msm gives the estimated misclassification prob-
ability matrix at the given covariate values. For illustration, the fitted misclassification proba-
bilities for men and women in model 6 are given by

> ematrix.msm(heartmiscsex.msm, covariates = list(sex = 0))

State 1 State 2
State 1 0.9896 (0.9776,0.9952) 0.01039 (0.004753,0.02257)
State 2 0.2225 (0.1546,0.3093) 0.7221 (0.6665,0.7716)
State 3 0 0.1195 (0.05971,0.2247)
State 4 0 0

State 3 State 4
State 1 0 0
State 2 0.05539 (0.0316,0.09533) 0
State 3 0.8805 (0.7907,0.935) 0
State 4 0 1 (1,1)
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> ematrix.msm(heartmiscsex.msm, covariates = list(sex = 1))

State 1 State 2
State 1 1 (1.75e-06,1) 3.823e-05 (2.556e-15,1)
State 2 0.519 (0.1673,0.8528) 0.4507 (0.2794,0.6345)
State 3 0 0.4847 (0.1572,0.8259)
State 4 0 0

State 3 State 4
State 1 0 0
State 2 0.03029 (0.004057,0.1932) 0
State 3 0.5153 (0.316,0.7099) 0
State 4 0 1 (1,1)

although these are not useful in this situation as there was no significant gender difference in
angiography accuracy. The standard errors for the estimates for women are higher, since there
are only 87 women in this set of 622 patients.

Odds ratios for misclassification The functionodds.msm gives the estimated odds ratios corre-
sponding to each covariate effect on the misclassification probabilities.

> odds.msm(heartmiscsex.msm)

$sex
OR L95 U95

Obs State 1 | State 2 3.77019 7.00e-01 2.03e+01
Obs State 2 | State 1 0.00364 2.40e-13 5.52e+07
Obs State 2 | State 3 6.93300 1.21e+00 3.96e+01
Obs State 3 | State 2 0.53263 6.43e-02 4.41e+00

underlining the lack of evidence for any gender difference in misclassification.

Observed and expected prevalencesThe functionprevalence.msm is intended to assess the
goodness of fit of the hidden Markov model for theobservedstates to the data. Tables of ob-
served prevalences of observed states are calculated as described in section 2.12, by assuming
that observed states are retained between observation times.

The expected numbers of individuals in each observed state are calculated similarly. Suppose
the process begins at a common time for all individuals, and at this time, the probability of
occupyingtrue stater is fr. Then givenn(t) individuals under observation at timet, the ex-
pected number of individuals in true stater at timet is therth element of the vectorn(t)fP (t).
Thus the expected number of individuals inobservedstater is therth element of the vector
n(t)fP (t)E, whereE is the misclassification probability matrix.

The expected prevalences (not shown) for this example are similar to those forecasted by the
model without misclassification, with underestimates of the rates of death from 8 years on-
wards. To improve this model’s long-term prediction ability, it is probably necessary to account
for the natural increase in the hazard of death from any cause as people become older.
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2.16 Recreating the path through underlying states

In speech recognition and signal processing,decodingis the procedure of determining the underlying
states that are most likely to have given rise to the observations. The most common method of
reconstructing the most likely state path is theViterbi algorithm. Originally proposed by Viterbi [30],
it is also described by Durbinet al. [20] and Macdonald and Zucchini [25] for discrete-time hidden
Markov chains. For continuous-time models it proceeds as follows. Suppose that a hidden Markov
model has been fitted and a Markov transition matrixP (t) and misclassification matrixE are known.
Let vi(k) be the probability of the most probable path ending in statek at timeti.

1. Estimatevk(t1) using known or estimated initial-state occupation probabilities.

2. For i = 1 . . . N , calculatevl(ti) = el,Oti
maxk vk(ti−1)Pkl(ti − ti−1). Let Ki(l) be the

maximising value ofk.

3. At the final time pointN , the most likely underlying stateS∗N is the value ofk which maximises
vk(TN ).

4. Retrace back through the time points, settingS∗i−1 = Ki(S∗i ).

The computations should be done in log space to prevent underflow. Themsmpackage provides
the functionviterbi.msm to implement this method. For example, the following is an extract from
a result of callingviterbi.msm to determine the most likely underlying states for all patients. The
results for patient 100103 are shown, who appeared to ‘recover’ to a less severe state of disease while
in state 3. We assume this is not biologically possible for the true states, so we expect that either the
observation of state 3 at time 4.98 was an erroneous observation of state 2, or their apparent state
2 at time 5.94 was actually state 3. According to the expected path constructed using the Viterbi
algorithm, it is the observation at time 5.94 which is most probably misclassified.

> vit <- viterbi.msm(heartmisc.msm)
> vit[vit$subject == 100103, ]

subject time observed fitted
567 100103 0.00 1 1
568 100103 2.04 1 1
569 100103 4.08 2 2
570 100103 4.98 3 3
571 100103 5.94 2 3
572 100103 7.01 3 3
573 100103 8.05 3 3
574 100103 8.44 4 4

2.17 Fitting general hidden Markov models withmsm

The msmpackage provides a framework for fitting continuous-time hidden Markov models with
general, continuous outcomes. As before, we use themsmfunction itself.
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Specifying the hidden Markov model A hidden Markov model consists of two related compo-
nents:

• the model for the evolution of the underlying Markov chain,

• the set of models for the observed data conditionally on each underlying state.

The model for the transitions between underlying states is specified as before, by supplying a
qmatrix . The model for the outcomes is specified using the argumenthmodel to msm. This is a
list, with one element for each underlying state, in order. Each element of the list should be an object
returned by a hidden Markov modelconstructor function. The HMM constructor functions provided
with msmare listed in Table 1. There is a separate constructor function for each class of outcome
distribution, such as uniform, normal or gamma.

Consider a three-state hidden Markov model, with a transition intensity matrix of

Q =

 −q12 q12 0
0 −q23 q23

0 0 0


Suppose the outcome distribution for state 1 is Normal(µ1, σ

2
1), the distribution for state 2 is Normal(µ2, σ

2
2),

and state 3 is exactly observed. Observations of state 3 are given a label of -9 in the data. Here our
hmodel argument should be a list of objects returned byhmmNormandhmmIdent constructor
functions.

We must specify initial values for the parameters as the arguments to the constructor functions.
For example, we take initial values ofµ1 = 90, σ1 = 8, µ2 = 70, σ2 = 8. Initial values forq12 and
q23 are 0.25 and 0.2. Finally suppose the observed data are in a variable calledy , the measurement
times are intime , and subject identifiers are inptnum . The call tomsmto estimate the parameters
of this hidden Markov model would then be

msm ( y ~ time, subject=ptnum, data = example.df,
qmatrix = rbind( c(0, 0.25, 0), c(0, 0, 0.2), c(0, 0, 0)),
hmodel = list (hmmNorm(mean=90, sd=8), hmmNorm(mean=70, sd=8),

hmmIdent(-9)) )

Covariates on hidden Markov model parameters Most of the outcome distributions can be pa-
rameterised by covariates, using a link-transformed linear model. For example, an observationyij

may have distributionf1 conditionally on underlying state 1. The link-transformed parameterθ1 is a
linear function of the covariate vectorxij at the same observation time.

yij |Sij ∼ f1(y|θ1, γ1)
g(θ1) = α + βT xij

Specifically, parameters named as the “Location” parameter in Table 1 can be modelled in terms of
covariates, with the given link function.

Thehcovariates argument tomsmspecifies the model for covariates on the hidden Markov
outcome distributions. This is a list of the same length as the number of underlying states, and
the same length as thehmodel list. Each element of the list is a formula, in standard R linear
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Function Distribution Parameters Location (link) Density for an observationx
hmmCat Categorical prob,

basecat
p, c0 p (logit) px, x = 1, . . . , n

hmmIdent Identity x x0 Ix=x0
hmmUnif Uniform lower,

upper
l, u 1/(u− l), u ≤ x ≤ l

hmmNorm Normal mean, sd µ, σ µ (identity) φ(x, µ, σ) = 1√
2πσ2

exp(−(x− µ)2/(2σ2))

hmmLNorm Log-normal meanlog,
sdlog

µ, σ µ (identity) 1

x
√

2πσ2
exp(−(log x− µ)2/(2σ2))

hmmExp Exponential rate λ λ (log) λe−λx, x > 0

hmmGamma Gamma shape,
rate

n, λ λ (log) λn

Γ(n) xn−1 exp(−λx), x > 0, n > 0, λ > 0

hmmWeibull Weibull shape,
scale

a, b b (log) a
b ( x

b )a−1 exp (−( x
b )a), x > 0

hmmPois Poisson rate λ λ (log) λx exp(−λ)/x!, x = 0, 1, 2, . . .

hmmBinom Binomial size, prob n, p p (logit)
(

n
x

)
px(1− p)n−x

hmmTNorm Truncated normal mean, sd,
lower,
upper

µ, σ, l, u µ (identity) φ(x, µ, σ)/
(Φ(u, µ, σ)− Φ(l, µ, σ)),

whereΦ(x, µ, σ) =
∫ x

−∞
φ(u, µ, σ)du

hmmMETNorm Normal with trun-
cation and measure-
ment error

mean, sd,
lower,
upper,
sderr,
meanerr

µ0, σ0, l, u,
σε, µε

µε (identity) (Φ(u, µ2, σ3)− Φ(l, µ2, σ3))/
(Φ(u, µ0, σ0)− Φ(l, µ0, σ0))
×φ(x, µ0 + µε, σ2),
σ2
2 = σ2

0 + σ2
ε ,

σ3 = σ0σε/σ2,
µ2 = (x− µε)σ

2
0 + µ0σ2

ε
hmmMEUnif Uniform with mea-

surement error
lower,
upper,
sderr,
meanerr

l, u, µε, σε µε (identity) (Φ(x, µε + l, σε)− Φ(x, µε + u, σε))/
(u− l)

Table 1: Hidden Markov model distributions inmsm.

model notation, defining the covariates on the distribution for the corresponding state. If there are no
covariates for a certain hidden state, then insert aNULL in the corresponding place in the list. For
example, in the three-state normal-outcome example above, suppose that the normal means on states
1 and 2 are parameterised by a single covariatex.

µ1 = α1 + β1xij , µ2 = α2 + β2xij .

The equivalent call tomsmwould be

msm ( state ~ time, subject=ptnum, data = example.df,
qmatrix = rbind( c(0, 0.25, 0), c(0, 0, 0.2), c(0, 0, 0)),
hmodel = list (hmmNorm(mean=90, sd=8), hmmNorm(mean=70, sd=8),

hmmIdent(-9)),
hcovariates = list ( ~ x, ~ x, NULL)

).

Constraints on hidden Markov model parameters Sometimes it is realistic that parameters are
shared between some of the state-specific outcome distributions. For example, the Normally-distributed
outcome in the previous example could have a common varianceσ2

1 = σ2
2 = σ2 between states 1 and

2, but differing means. It would also be realistic for any covariates on the mean to have a common
effectβ1 = β2 = β on the state 1 and 2 outcome distributions.

The argumenthconstraint to msmspecifies which hidden Markov model parameters are
constrained to be equal. This is a named list. Each element is a vector of constraints on the named
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hidden Markov model parameter. The vector has length equal to the number of times that class of
parameter appears in the whole model. As for the other constraint arguments such asqconstraint ,
identical values of this vector indicate parameters constrained to be equal.

For example consider the three-state hidden Markov model described above, with normally-
distributed outcomes for states 1 and 2. To constrain the outcome variance to be equal for states
1 and 2, and to also constrain the effect ofx on the outcome mean to be equal for states 1 and 2,
specify

hconstraint = list(sd = c(1,1), x=c(1,1))

FEV1 after lung transplants Now we give an example of fitting a hidden Markov model to a real
dataset. The data on FEV1 measurements from lung transplant recipients, described in 1.6.4, are
provided with themsmpackage in a dataset calledfev .

> data(fev)

We fit models Models 1 and 2, each with three states and commonQ matrix.

> three.q <- rbind(c(0, exp(-6), exp(-9)), c(0,
+ 0, exp(-6)), c(0, 0, 0))

The simpler Model 1 is specified as follows. Under this model the FEV1 outcome is Normal with
unknown mean and variance, and the mean and variance are different between BOS state 1 and state
2. hcovariates specifies that the mean of the Normal outcome depends linearly on acute events.
Specifically, this covariate is an indicator for the occurrence of an acute event within 14 days of the
observation, denotedacute in the data. As an initial guess, we suppose the mean FEV1 is 100%
baseline in state 1, and 54% baseline in state 2, with corresponding standard deviations 16 and 18, and
FEV1 observations coinciding with acute events are on average 8% baseline lower.hconstraint
specifies that the acute event effect is equal between state 1 and state 2.

Days of death are coded as 999 in thefev outcome variable.

> hmodel1 <- list(hmmNorm(mean = 100, sd = 16),
+ hmmNorm(mean = 54, sd = 18), hmmIdent(999))
> fev1.msm <- msm(fev ~ days, subject = ptnum, data = fev,
+ qmatrix = three.q, death = 3, hmodel = hmodel1,
+ hcovariates = list(~acute, ~acute, NULL),
+ hcovinits = list(-8, -8, NULL), hconstraint = list(acute = c(1,
+ 1)), method = "BFGS")
> fev1.msm

Call:
msm(formula = fev ~ days, subject = ptnum, data = fev, qmatrix = three.q, hmodel = hmodel1, hcovariates = list(~acute, ~acute, NULL), hcovinits = list(-8, -8, NULL), hconstraint = list(acute = c(1, 1)), death = 3, method = "BFGS")

Maximum likelihood estimates:
Transition intensity matrix

State 1
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State 1 -0.0007038 (-0.0008333,-0.0005945)
State 2 0
State 3 0

State 2
State 1 0.0006275 (0.0005201,0.0007572)
State 2 -0.0008011 (-0.001013,-0.0006337)
State 3 0

State 3
State 1 7.631e-05 (3.967e-05,0.0001468)
State 2 0.0008011 (0.0006337,0.001013)
State 3 0

Hidden Markov model, 3 states
Initial state occupancy probabilities: 1,0,0

State 1 - normal distribution
Parameters:

estimate l95 u95
mean 98.0 97.34 98.67
sd 16.2 15.78 16.60
acute -8.8 -9.95 -7.63

State 2 - normal distribution
Parameters:

estimate l95 u95
mean 51.8 50.76 52.88
sd 17.7 17.08 18.29
acute -8.8 -9.95 -7.63

State 3 - identity distribution
Parameters:

estimate l95 u95
which 999 999 999

-2 * log-likelihood: 51598

> sojourn.msm(fev1.msm)

estimates SE L U
State 1 1421 122 1200 1682
State 2 1248 149 987 1578

Printing themsmobjectfev1.msm shows estimates and confidence intervals for the transition
intensity matrix and the hidden Markov model parameters. The estimated within-state means of FEV1

are around 98% and 52% baseline respectively. From the estimated transition intensities, individuals
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spend around 1421 days (3.9 years) before getting BOS, after which they live for an average of 1248
days (3.4 years). FEV1 is lower by an average of 8% baseline within 14 days of acute events.

Model 2, where the outcome distribution is a more complex two-level model, is specified as
follows. We use the distribution defined by equations 15–16. ThehmmMETNormconstructor defines
the truncated normal outcome with an additional normal measurement error. The explicit probability
density for this distribution is given in Table 1.

Our initial values are again 100 and 54 for the means of the within-state distribution ofunderlying
FEV1, and 16 and 18 for the standard errors. This time, underlying FEV1 is truncated normal. The
truncation limitslower andupper are not estimated. We take an initial measurement error standard
deviation ofsderr=8 . The extra shiftmeanerr in the measurement error model is fixed to zero
and not estimated.

Thehconstraint specifies that the measurement error varianceσ2
ε is equal between responses

in states 1 and 2, as is the effect of short-term acute events on the FEV1 response.

> hmodel2 <- list(hmmMETNorm(mean = 100, sd = 16,
+ sderr = 8, lower = 80, upper = Inf, meanerr = 0),
+ hmmMETNorm(mean = 54, sd = 18, sderr = 8,
+ lower = 0, upper = 80, meanerr = 0), hmmIdent(999))
> fev2.msm <- msm(fev ~ days, subject = ptnum, data = fev,
+ qmatrix = three.q, death = 3, hmodel = hmodel2,
+ hcovariates = list(~acute, ~acute, NULL),
+ hcovinits = list(-8, -8, NULL), hconstraint = list(sderr = c(1,
+ 1), acute = c(1, 1)), method = "BFGS")
> fev2.msm

Call:
msm(formula = fev ~ days, subject = ptnum, data = fev, qmatrix = three.q, hmodel = hmodel2, hcovariates = list(~acute, ~acute, NULL), hcovinits = list(-8, -8, NULL), hconstraint = list(sderr = c(1, 1), acute = c(1, 1)), death = 3, method = "BFGS")

Maximum likelihood estimates:
Transition intensity matrix

State 1
State 1 -0.0007629 (-0.0008978,-0.0006483)
State 2 0
State 3 0

State 2
State 1 0.0006912 (0.000578,0.0008266)
State 2 -0.0007507 (-0.0009445,-0.0005967)
State 3 0

State 3
State 1 7.17e-05 (3.563e-05,0.0001443)
State 2 0.0007507 (0.0005967,0.0009445)
State 3 0

Hidden Markov model, 3 states
Initial state occupancy probabilities: 1,0,0
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State 1 - metruncnorm distribution
Parameters:

estimate l95 u95
mean 88.70 85.57 91.84
sd 18.99 17.41 20.72
lower 80.00 80.00 80.00
upper Inf Inf Inf
sderr 8.88 8.42 9.38
meanerr 0.00 0.00 0.00
acute -10.18 -11.24 -9.11

State 2 - metruncnorm distribution
Parameters:

estimate l95 u95
mean 59.65 56.96 62.34
sd 20.96 19.08 23.01
lower 0.00 0.00 0.00
upper 80.00 80.00 80.00
sderr 8.88 8.42 9.38
meanerr 0.00 0.00 0.00
acute -10.18 -11.24 -9.11

State 3 - identity distribution
Parameters:

estimate l95 u95
which 999 999 999

-2 * log-likelihood: 51411

> sojourn.msm(fev2.msm)

estimates SE L U
State 1 1311 109 1114 1543
State 2 1332 156 1059 1676

Under this model the standard deviation of FEV1 measurements caused by measurement error
(more realistically, natural short-term fluctuation) is around 9% baseline. The estimated effect of
acute events on FEV1 and sojourn times in the BOS-free state and in BOS before death are similar to
Model 1.

The following plot illustrates a trajectory of declining FEV1 from the first lung transplant recipient
in this dataset. This is produced by the following R code. The Viterbi algorithm is used to locate the
most likely point at which this individual moved from BOS state 1 to BOS state 2, according to the
fitted Model 2. This is illustrated by the vertical dotted line. This is the point at which the individual’s
lung function started to remain consistently below 80% baseline FEV1.
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> keep <- fev$ptnum == 1 & fev$fev < 999
> plot(fev$days[keep], fev$fev[keep], type = "l",
+ ylab = expression(paste("% baseline ", FEV[1])),
+ xlab = "Days after transplant")
> vit <- viterbi.msm(fev2.msm)[keep, ]
> (max1 <- max(vit$time[vit$fitted == 1]))

[1] 2337

> (min2 <- min(vit$time[vit$fitted == 2]))

[1] 2367

> abline(v = mean(max1, min2), lty = 2)
> text(max1 - 500, 50, "STATE 1")
> text(min2 + 500, 50, "STATE 2")
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An alternative way of specifying a misclassification model This general framework for specify-
ing hidden Markov models can also be used to specify multi-state models with misclassification. A
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misclassification model is a hidden Markov model with a categorical outcome distribution. So in-
stead of anematrix argument tomsm, we can use ahmodel argument withhmmCatconstructor
functions.

hmmCat takes at least one argumentprob , a vector of probabilities of observing outcomes of
1, 2, . . . , n respectively, wheren is the length ofprob . All outcome probabilities with an initial
value of zero are assumed to be fixed at zero.prob is scaled if necessary to sum to one.

The model in section 2.13 specifies that an individual occupying underlying state 1 can be ob-
served as states 2 (and 1), underlying state 2 can be observed as states 1, 2 or 3, and state 3 can be
observed as states 2 or 3, and underlying state 4 (death) cannot be misclassified. Initial values of 0.1
are given for the 1-2, 2-1, 2-3 and 3-2 misclassification probabilities.

This is equivalent to the model below, specified using ahmodel argument tomsm. The maximum
likelihood estimates should be the same as before (Model 5).

> oneway4.q <- rbind(c(0, 0.148, 0, 0.0171), c(0,
+ 0, 0.202, 0.081), c(0, 0, 0, 0.126), c(0,
+ 0, 0, 0))
> heartmisc.msm <- msm(state ~ years, subject = PTNUM,
+ data = heart, hmodel = list(hmmCat(c(0.9,
+ 0.1, 0, 0)), hmmCat(c(0.1, 0.8, 0.1, 0)),
+ hmmCat(c(0, 0.1, 0.9, 0)), hmmIdent(4)),
+ qmatrix = oneway4.q, death = 4, method = "BFGS")
> heartmisc.msm

Call:
msm(formula = state ~ years, subject = PTNUM, data = heart, qmatrix = oneway4.q, hmodel = list(hmmCat(c(0.9, 0.1, 0, 0)), hmmCat(c(0.1, 0.8, 0.1, 0)), hmmCat(c(0, 0.1, 0.9, 0)), hmmIdent(4)), death = 4, method = "BFGS")

Maximum likelihood estimates:
Transition intensity matrix

State 1 State 2
State 1 -0.142 (-0.1599,-0.1262) 0.1014 (0.08663,0.1186)
State 2 0 -0.2607 (-0.3162,-0.2149)
State 3 0 0
State 4 0 0

State 3 State 4
State 1 0 0.04068 (0.03253,0.05088)
State 2 0.2267 (0.1691,0.3041) 0.03394 (0.008598,0.134)
State 3 -0.3085 (-0.3906,-0.2436) 0.3085 (0.2436,0.3906)
State 4 0 0

Hidden Markov model, 4 states
Initial state occupancy probabilities: 1,0,0,0

State 1 - categorical distribution
Parameters:

estimate l95 u95
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P(1) 0.99234 NA NA
P(2) 0.00766 0.00325 0.0179
P(3) 0.00000 0.00000 0.0000
P(4) 0.00000 0.00000 0.0000

State 2 - categorical distribution
Parameters:

estimate l95 u95
P(1) 0.245 0.1778 0.3276
P(2) 0.704 NA NA
P(3) 0.051 0.0297 0.0865
P(4) 0.000 0.0000 0.0000

State 3 - categorical distribution
Parameters:

estimate l95 u95
P(1) 0.000 0.0000 0.000
P(2) 0.124 0.0625 0.232
P(3) 0.876 NA NA
P(4) 0.000 0.0000 0.000

State 4 - identity distribution
Parameters:

estimate l95 u95
which 4 4 4

-2 * log-likelihood: 3952

2.17.1 Defining a new hidden Markov model distribution

Suppose the hidden Markov model outcome distributions supplied withmsm(Table 1) are insuffi-
cient. We want to define our own univariate distribution, calledhmmNewDist, taking two parame-
ters location andscale . Download the source package, for examplemsm-0.5.tar.gz for
version 0.5, from CRAN and edit the files in there, as follows.

1. Add an element to.msm.HMODELPARSin the fileR/constants.R , naming the parameters
of the distribution. For example

newdist = c('location', 'scale')

2. Add a corresponding element to the C variableHMODELSin the filesrc/hmm.h . This MUST
be in the same position as in the.msm.HMODELPARSlist. For example,

hmmfn HMODELS[] = {
...,
hmmNewDist

};.
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3. The new distribution is allowed to have one parameter which can be modelled in terms of co-
variates. Add the name of this parameter to the named vector.msm.LOCPARSin R/constants.R .
For examplenewdist = ’location’ . Specifynewdist = NA if there is no such pa-
rameter.

4. Supposed we have specified a parameter with a non-standard name, that is, one which doesn’t
already appear in.msm.HMODELPARS. Standard names include, for example,’mean’ , ’sd’ ,
’shape’ or ’scale’ . Then we should add the allowed range of the parameter to.msm.PARRANGES.
In this example, we addmeanpars = c(-Inf, Inf) to .msm.PARRANGES. If neces-
sary, we also specify the appropriate functions and inverse functions to transform the range to
the full real line, in.msm.TRANSFORMS. If the parameter should always be fixed during a
maximum likelihood estimation, then add its name to.msm.AUXPARS.

5. Add an R constructor function for the distribution toR/hmm-dists.R . For a simple univari-
ate distribution, this is of the form

hmmNewDist <- function(location, scale)
{

hmmDIST (label = "newdist",
link = "identity",
r = function(n) rnewdist(n, location, scale),
match.call())

}

• The ’label’ must be the same as the name you supplied for the new element of
.msm.HMODELPARS

• link is the link function for modelling the location parameter of the distribution as
a function of covariates. This should be the quoted name of an R function. A log
link is ’log’ and a logit link is’qlogis’ . If using a new link function other than
’identity’ , ’log’ , or ’logis’ , you should add its name to the vector.msm.LINKFNS
in R/constants.R , and add the name of the corresponding inverse link to.msm.INVLINK .
You should also add the names of these functions to the C arrayLINKFNS in src/lik.c ,
and write the functions if they do not already exist.

• r is an R function, of the above format, returning a vector ofn random values from the
distribution. You should write this if it doesn’t already exist.

6. Write a C function to compute the probability density of the distribution, and put this in
src/hmm.c , with a declaration insrc/hmm.h . This must be of the form

double hmmNewDist(double x, double *pars)

where*pars is a vector of the parameters of the distribution, and the density is evaluated at
x .

7. Recompile the package (see the “Writing R Extensions” manual)

Your new distribution will be available to use in thehmodel argument tomsm, as, for example
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hmodel = list (..., hmmNewDist(location = 0, scale = 1), ...)

If your distribution may be of interest to others, ask me nicely (chris.jackson@imperial.ac.uk )
to include it in a future release.
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3 msmreference guide

The R help page formsmgives details of all the allowed arguments and options to themsmfunction.
To view this online in R, type:

> help(msm)

Similarly all the other functions in the package have help pages, which should always be con-
sulted in case of doubt about how to call them. The web-browser based help interface may often be
convenient - type

> help.start()

and navigate toPackages . . . msm, which brings up a list of all the functions in the package with
links to their documentation, and a link to this manual in PDF format.

A Changes in the msm package

Version 0.5 is a major update tomsm, introducing hidden Markov models with general responses.
Much of the underlying R and C code was re-organised or re-written. Some syntax changes were
made to simplify the process of specifying models.

To convert code written for previous versions of msm to run in 0.5, the following changes will
need to be made.

• Replace theqmatrix of ones and zeroes with aqmatrix containing initial values for tran-
sition intensities.

• Replace theematrix of ones and zeroes with aematrix containing initial values for mis-
classification probabilities.

• Put any initial values for covariate effects incovinits or misccovinits arguments.
These are set to zero if not specified.

• Remove theinits argument.

• Remove unnecessarymisc = TRUE for misclassification models.

• Replace anyfromto -style datasets with proper longitudinal datasets with one row per obser-
vation time.fromto support has been withdrawn.

• covmatch has been abolished. If you were usingcovmatch=’next’ , covariates will need
to be matched with observations by moving covariates one row back in the data.

• crudeinits.msm now takes an formulastate ∼ time instead of two argumentsstate ,
time

• simmulti.msm takes an argumentcovariates instead ofbeta , for consistency with
msm.
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Saved model objects from previous versions will need to be generated again under 0.5 to work
with the post-processing functions from 0.5.

For a more detailed list of the changes introduced in Version 0.5, see theNEWSfile in the top-level
directory of the installed package.

If you usemsmin published work, please let me know, for my own interest! Or even if you just
use it and find it helpful, whatever your field of application.
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