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Abstract
Designed gene expression micro-array experiments, consisting of several treat-

ment levels with a number of replicates per level, are analyzed by applying sim-
ple tests for group differences at the per gene level. The gene level statistics
are sorted and a criterion for selecting important genes which takes into ac-
count multiplicity is applied. A caveat arises in that true signals (genes truly
over or under expressed) are “competing” with fairly large type I error signals.
False positives near the top of a sorted list can occur when genes having very
small fold-change are compensated by small enough variance to yield a large
test statistic. One of the first attempts around this caveat was the develop-
ment of “significance analysis of micro-arrays (SAM)”, which used a modified
t-type statistic thresholded against its permutation distribution. The key inno-
vation of the modified t-statistic was the addition of a constant to the per gene
standard errors in order to stabilize the coefficient of variation of the resulting
test statistic. Since then, several authors have proposed the use of shrinkage
variance estimators in conjunction with t-type, and more generally, ANOVA
type tests at the gene level. Our new approach proposes the use of a shrinkage
variance Hotelling T-squared statistic in which the per gene sample covariance
matrix is replaced by a shrinkage estimate borrowing strength from across all
genes. It is demonstrated that the new statistic retains the F-distribution un-
der the null, with added degrees of freedom in the denominator. Advantages
of this class of tests are (i) flexibility in that a whole family of hypothesis tests
is possible (ii) the gains of the above-mentioned earlier innovations are enjoyed
more fully. This paper summarizes our results and presents a simulation study
benchmarking the new statistic against another recently proposed statistic.
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1 Introduction

Gene expression microarrays provide a fast and systematic way to identify genes

differentially expressed between two or more experimental groups of samples in

a hypothesis driven study. These samples and experimental groups could be,

for example, human prostate cancer cell line RNA samples treated with two or

three different agents, or treated with the same agent at differing concentrations.

Right now cDNA chips contain on the order of ten thousand genes, while

oligonucleotide arrays contain upwards of twelve thousand genes. In the not

too distant future entire genome chips will become available. The consequence

is a tremendous savings in time and resources as the per gene expense in time

and resources for the preliminary screening of genes has gone down considerably.

Nonetheless, the considerable cost per array results in experiments that are typ-

ically based upon few replicates. For example, an experiment consisting of two

experimental conditions might have just three replicates per set of conditions.

While the shift in platfroms from cDNA arrays to oligonucleotide arrays

has resulted in the reduction in various sources of within gene and extra gene

variability, the reality is that there is still a great deal of endemic noise in these

sorts of investigations. Given the small number of replicates, power is a primary

concern. Albeit, the goal of statistical analysis in this setting is to arrive at a
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relatively short list of candidate genes that warrant further investigation via a

more sensitive and specific technique such as PCR. The investigator typically

has aloted specific resources for the further investigation of a given number of

genes and will request a “short list” of the requesite length. Therefore, the role

of efficiency and power may not be completely appreciated. Clearly, however,

the goal is to present the best possible list, so that the role of efficiency and

power can now be understood.

A caveat arises in that true signals (genes truly over or under expressed)

are “competing” with fairly large type I error signals. False positives near the

top of a sorted list can occur when genes having very small fold-change are

compensated by small enough variance to yield a large test statistic. One of the

first attempts around this caveat was the development of “significance analysis of

micro-arrays” or (SAM), [11], which used a modified t-type statistic thresholded

against its permutation distribution. The key innovation of the modified t-

statistic was the addition of a constant to the per gene standard errors in order

to stabilize the coefficient of variation of the resulting test statistic. Since then,

[12], [6], several authors have proposed the use of shrinkage variance estimator in

conjunction with t-type and more generally, ANOVA type tests at the gene level.

One advantage of this latter approach is that it doesn’t require the computation

of ad-hoc fudge constants. In the situation under study, e.g. a hypothesis driven
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experiment consisting of a small number of experimental groups, a natural model

is the per gene linear model on the appropriate scale, leading to a per gene

ANOVA type test of the null. Recent work, [12], [2], [6] presented a model in

which the per gene residual variance parameters were considered to be draws

from an inverse gamma distribution, resulting in a “shrinkage variance test”

that could potentially have gains in efficiency depending on the heterogeneity of

the extra gene variability. The idea of using a shrinkage estimate of within group

variance has also been persued by others, [1], [7], [8]. One assumption of that

model which is often violated in applications is that the extra gene variability is

consistent across experimental conditions. In order to circumvent this restrictive

assumption, we extend that work to the multivariate setting arriving now at a

whole class of hypothesis tests based upon a shrinkage variance Hotelling T 2. If

there is any appreciable between-group correlation, this approach constitutes a

more efficient use of the scarce data available per gene data. Furthermore, as we

shall point out in this work, the incorporation of a shrinkage variance/covariance

estimator into the usual Hotelling T 2 statistic accomplishes the goals of the

earlier innovations to an even greater degree.
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2 Background and Motivation: Designed Gene
Expression Micro-Array experiments

The impetus for this work were two microarray studies with which the authors

have been involved. The first of these was a spotted cDNA array experiment

studying the effects of the isoflavone/phytoestrogen genestein on gene expres-

sion in the LnCAP cell line. Several batches of colonies were treated with

either 1µM, 5µM, 25µM, genestein or control media and allowed to grow for 24

hours. Messenger RNA (mRNA) isolated from each of the treated groups was

hybridized onto the green channel of a corresponding micro-array, while mRNA

isolated from the control treated colony was hybridized onto the red channel of

each micro-array. This experiment was conducted independently and in identi-

cal fashion on three separate dates. Systematic variability occuring from array

to array and within array were adjusted out in the manner suggested by [3].

Within each experimental replicate and for each gene, the log base two of the

ratio of normalized green to red channel expression values were calculated and

used in subsequent analysis. The research questions being investigated were (i)

whether there was differential expression between the green and red channels

under treatment with genestein at any of the three concentrations, and if so (ii)

was there a trend in this effect.

The second study was an oligonucleotide micro-array experiment studying
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the effects of two hormones, dehydroepiandrosterone (DHEA) and dihyrotestos-

terone (DHT), on gene expression in the LnCAP line. Again, several batches

of colonies were treated with either DHEA, dhT, or control media and allowed

to grow for 24 hours. mRNA isolated from each of the two treated colonies as

well as from the control treated colony was hybridized onto one of three cor-

responding single channel oligonucleotide arrays. The raw image files, in CEL

format, were imported into the R statistical computing platform [10]. For each

gene, the probe set was summarized into a model based gene expression index

[5], using the Bioconductor suite of add-on libraries for R [4]. Within each ex-

perimental replicate and for each gene, the log base two of the expression ratios

of treatment to control were calculated and used in subsequent analysis. The

research questions here were (i) whether there was differential expression be-

tween treatment and control under treatment with either hormone, any of the

three conditions, and if so (ii) was there differential expression between the two

treatments.

3 The Shared Hotelling T 2 statistic

As indicated in the introductory remarks above, the new methodologic tool

introduced here is a Hotelling T 2 statistic for a variety test of the null which in-

corporates a shrinkage estimate of the per gene residual variance. Suppose that
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each preprocessed microarray yields expression levels on each of G genes. In the

type of studies dealt with here we have a total of n×d such microarrays arising

from n identical replicates of an experiment having d experimental conditions or

“treatments”. Here as is usually the case, the measurements being analyzed will

be the log base two of a treatment to control ratio. For each of the 1 ≤ g ≤ G

genes, we consider these measurements as an i.i.d. sequence of d-demensional

random variables, {Yg,i : i = 1, 2, . . . , ng}, where we allow the possibility that

there may be a different number of measurements for different genes due to

reading errors. We assume such missingness is completely at random. Let Y g

and Sg be the d-dimensional sample mean and unbiased sample covariance ma-

trix corresponding to the sample {Yg,i : i = 1, 2, . . . , ng}. Denote by Fn1,n2 and

Fn1,n2,θ the CDFs corresponding to central and non-central F−distributions,

respectively, of degrees n1 and n2, the latter having non-centrality parameter θ.

The following theorem shows that, under an assumed conjugate prior, we can

replace the estimated covariance matrix in the usual Hotelling T 2 test with a

shrinkage estimate and still retain the property that the resulting test has an F

distribution under the null hypothesis.
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Theorem 1: Suppose that ming ng > d and for a given gene, g, that

1. conditional upon Σ| g, {Yg,i : i = 1, 2, . . . , ng} is i.i.d. Nd(µ,Σ| g),

2. {Σ| g : g = 1, 2, . . . , G} is i.i.d. InvWishartd(ν,Λ) and independant of the

above.

Let T 2
g = ng Y

′
g

(

Λ + (ng − 1)Sg
)−1

Y g.

Then under H0 : µ = 0d, ShHT 2
g =

ν + ng − 2d− 1
d

T 2
g has the Fd,ν+ng−2d−1 distribution. (1)

The model in items 1 and 2 above is called the Normal–Inverse Wishart model

in the following. The above statistic has the potential for fair sized gains in

efficiency. The most ideal situation occurs when the average (over genes) of

the within gene variability is reasonably small but there is reasonable spread

across genes in the magnitude of this variation. In such a case, the parameter

Λ would not add so much magnitude to the denomenator, while the shape

parameter, ν would gives us extra degrees of freedom as if we had more replicates

per experimental condition. In reality there is trade off between these two

phenomena, and one checks for gain in efficiency by comparing with the standard

Hotelling T 2.

Next, we note that, as is the case in the usual Hotelling T 2 statistic, a whole

family of statistics arises by applying a linear transformation. We state this as

a corollary to the above theorem.
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Corollary 1: Assume conditions (1) and (2) above except without any restric-

tion on d and ng relative to oneanother. Consider the matrix M , which is chosen

to be of dimension q × d of rank r < ming ng. Then we can replace Y g, Sg,Λ

and d by M Y g,MSgM
′,MΛM ′ and r in the theorem above and the conclusions

still follow.

The above theorem and its corollary are used to test a variety of null hy-

potheses, H0 : Mµ = 0 where µ = IEY1. There are three natural choices for

M . Call these the “zero means” contrast, Mµ0, the “equal means” contrast,

Mµeq,and the “no trend” contrast, Mtrend0. Specifically, these are given by:

Mµ0 = Id, which requires that n > d, Mµeq = Id − 1
n1−d 1−′d, which requires

that n > d − 1, and Mtrend0 = {(uu′)−1 u′}2, u = [1−d, [0,1, . . . ,d − 1]′], which

requires that n > 1 and d > 2. The application of these results to testing hy-

potheses in the analysis of both cDNA and oligonucleotide arrays will be clearly

laid out in the section which follows.

Notice in the definition of the statistics ShHT2
g given above in 1, the param-

eter matrix, Λ, and the shape parameter, ν arising in the prior distribution of

Σ| g are assumed to be “known”. The next result is used to estimate Λ and ν

via maximum likelihood using the data the Sg, g = 1, . . . , G which under our

model are i.i.d. draws from the density given below in 2.
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Theorem 2: Under the conditions of theorem 1, Ag = (n − 1)Sg has density

function equal to

f(A) =
Γd
(

ν+ng−d−2
2

)

Γd
(

ng−1
2

)

Γd
(

νg−d−1
2

)

|Λ|(ν−d−1)/2 |A|(ng−d−2)/2

|Λ +A|(ν+ng−d−2)/2
. (2)

4 Comparison with other approaches–simulation
study

We conducted a simulation study in order to compare the operating characteris-

tics of the proposed shared variance Hotelling T 2 statistic (ShHT2) in expression

1 with those of three other statistics. In all cases the test was relative to the

null hypothesis of group means identically zero, with two groups. We consider a

shared univariate T 2 (ShUT2) statistic based on the assumption of uncorrelated

errors and common group variances which was the topic of [12], and similar in

nature to statistics considered in [7], [12], [2], and [6]. Additionally, the standard

versions of the above two shared variance statistics will also be considered: the

the standard Hotelling T 2 (HT 2), [9], and the standard univariate T 2, (UT2).

The spirit of the comparison was to determine the consequences of the two major

features of the statistic: its multivariate nature and its shrinkage estimate of the

variance/covariance matrix. For sake of completeness, we make brief mention

of each of the three statistics being compared. To this end, recall the notation

used above in theorem 1 and its corollary. In addition to the quantities pre-
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sented there, we write Yg for the nd dimensional column vector containing the

observations {Yg,i,k : i = 1, . . . , ng, k = 1, . . . , d} stacked by replicate within

component, and Rg = (n − 1)
∑d
k=1 Sg,k,k for the total within group sum of

squares. The other three statistics being benchmarked against our own ShHT2

statistic are:

HT2
g =

ng − d
d

ng
ng − 1 Y

′
g S
−1
g Y g (3)

UT2
g =

d(ng − 1)
ngd

Y ′gYg

Rg
(4)

ShUT2
g =

2s+ d(ng − 1)
ngd

Y ′gYg

2r +Rg
(5)

Under the assumption that {Yg,i : i = 1, . . . , ng} are multivariate normally dis-

tributed having zero mean vector and constant covariance matrix, Σ| g, the HT2
g

statistic in expression 3 is distributed as Fd,ng−1, [9]. Under the assumption

that {Yg,i,k : i = 1, . . . , ng, k = 1, . . . , d} are normally distributed having mean

zero and common variance σ2
g , it follows from elementary results regarding ra-

tios of chi-squared variables that the UT2 statistic in expression 4 is distributed

as Fngd,d(ng−1). Finally, if the last mentioned assumption of normality is made

conditionally upon σ2
g , and {σ2

g : g = 1, . . . , G} are assumed to be i.i.d. draws

from an inversge gamma distribution with shape parameter, s, and rate param-

eter, r, the ShUT2 statistic in expression 5 is distributed as Fngd,2s+d(ng−1).

Note that our version of the ShUT2 statistic is a test of the null that all group
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means are zero, which differs from that presented in [12], but the only difference

between the two statistics is in the numerator. Thus the proof contained in [12]

carries over to the present setting intact, with a modification in the numerator

degrees of freedom. The parameters s and r in the prior distribution are esti-

mated as in [12], by fitting the observations {σ2
g : g = 1, . . . , G} to an inverse

gamma distribution via maximum likelihood.

The first simulation study was conducted by generating data from the Normal–

Inverse Wishart model with d = 2 groups and ng = 3 replicated observations

for each of G=12625 genes, using values for Λ and ν that were obtained in the

analysis of the oligonucleotide array data (see below for further details). One

hundred of the genes were designated as “true positives” by giving them non-

zero group specific means that were chosen in the following way. First, a value

of θ was chosen so that

0.90 = F6,4,3θ(F−1
6,4 (1− 0.0026))

i.e., so that the UT2 statistic would have power 90% at a type I error of 0.26%

to reject the null hypothesis of zero group means. This value of θ = 7.5 was

then multiplied by the average per group standard deviation calculated under

the Normal–Inverse Wishart model, i.e. 1
ν−2d−2diag

[

Λ
]

to arrive at the two

group specific means applied identically to each of the ten designated genes.
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In order to study the robustness of the test statistic to lack of model assump-

tions, a second simulation study was conducted using a Normal-2 component

mixed inverse Wishart distribution. Specifically, the data are i.i.d. multivariate

normal but the prior distribution on the random variance/covariance matrix

is a mixture of two inverse Wisharts, having shape parameters ν1 and ν2 and

common rate matrix λ. The mixing proportion, f and shape parameters ν1 and

ν2 were chose so that the expected value of Sg, the per gene empirical covari-

ance matrix, would remain identical its value under the normal/inverse Wishart

model used previously, Λ
ν−2d−1 . The values used were f = 0.2, ν1 = 18.4067,

and ν2 = 6.77542. Once again, one hundred genes were designated as “true

positives” by assigning means as above.

The simulation results were summarized in two ways. The first method,

shown in tables 4 and 4, used the Benjamini-Hochberg FDR stepdown pro-

cedure to set the significance criterion. In each simulation replicate, the four

listed statistics and corresponding p-values were calculated for each of the 12625

genes. Next, for each statistic, the list was sorted on corresponding p-value and

the row containing the largest p-value not exceeding (rank)FDR/12625 and all

rwos above it were marked significant. The true positive rate was derived as

the number of genes called significant as a proportion of those truely differen-

tially expressed, i.e. 100. The false positive rate was derived as the number of
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genes called significant not among those 100. These were averaged over simula-

tion replicates yielding emprical true positive rates (eTPR) and empirical false

positive rate (eFPR). In table 4 is shown results for the data simulated from

the normal/Inverse Wishart model. The leftmost column is the nominal false

discovery rate, FDR, used in setting the significance criterion. The next eight

columns are the empirical true positive and false positive rates for each of the

four benchmarked statistics.

Results corresponding to data simulated from the normal/inverse Wishart

model are shown in table 4. In the case of the proposed statistic, ShHT2, the

eFPR coincides within simulation error with the FDR. That is because the

p-values are derived via the F-distribution listed in theorem 1, which assumes

the data arise from a normal/inverse Wishart distribution. Notice as well that

the eTPR is quite high in the 90’s at the low FDR of 0.05. The other three

statistics benchmarked a clearly inferior. First, HT2, thestandard hotelling T 2,

is nearly uninformative, displaying an eTPR of 100% at all values of FDR

with correspondingly high eFPR ranging upwards from 85%. The shrinkage

variance F-statistic, ShUT2, is overly concervative, with eFPR equal to zero

within simulation error and eTPR ranging from 20% to 50%. Finally, the

ordinary F-statistic, UT2, is overly conservative at the lower FDR’s of 5% and

10%, but then uninformative at the higher FDR’s of 15%, 20% and 25%.

13



The results corresponding to data simulated from the normal/mixed inverse

Wishart model are shown in 4. The only notable difference relateive to remarks

made above is that control over the FDR is now lost, as the eFPR no longer

agrees with the FDR. Still, if the simulation model can be considered an

extreme departure from the model assumptions then use of the FDR=5% which

gives eFPR = 12% and eTPR = 94% should be acceptible.

On the other hand one may wish to dispesne with any attempts at controling

the false discovery rate at all, and instead, rely on the statistic’s ability to

provide a more informative ordering. In this case, we simply decide how many

genes we wish to call significant and draw the line there. For the second method

of summarizing the simulation results the eTPR and eFPR were derived this

time using, consecutively, each of the values of the statistic as the significance

criterion. The results for data obeying model assumptions are shown in figures

1, and for data not obeying model assumptions in figure 2.
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Table 1

ShHT2 HT2 ShUT2 UT2
FDR TPF FPF TPF FPF TPF FPF TPF FPF
0.05 0.929 0.045 1.00 0.857 0.204 0.00 0.014 0.00
0.10 0.964 0.093 1.00 0.927 0.341 0.00 0.079 0.00
0.15 0.976 0.141 1.00 0.951 0.424 0.00 1.00 0.992
0.20 0.983 0.192 1.00 0.963 0.480 0.00 1.00 0.992
0.25 0.987 0.242 1.00 0.970 0.526 0.00 1.00 0.992

Table 2

ShHT2 HT2 ShUT2 UT2
FDR TPF FPF TPF FPF TPF FPF TPF FPF
0.05 0.944 0.123 1.00 0.863 0.424 0.00 0.343 0.000
0.10 0.968 0.223 1.00 0.929 0.556 0.00 0.593 0.000
0.15 0.976 0.307 1.00 0.951 0.626 0.00 1.000 0.992
0.20 0.981 0.378 1.00 0.963 0.671 0.00 1.000 0.992
0.25 0.985 0.442 1.00 0.970 0.706 0.00 1.000 0.992

5 Application: Two Case Studies

Table 5

Gene dhea dht stat p-val FDR=0.10
1 34319 at 1.690 4.400 273.0 1.902e-07 7.129e-06
2 36658 at 2.440 2.790 90.9 8.665e-06 1.426e-05
3 33998 at 0.519 0.275 85.1 1.084e-05 2.139e-05
4 38827 at 1.310 1.840 64.1 2.836e-05 2.851e-05
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Appendix Proofs of theorems

Proof of theorem 1: In the following, for any symmetric matrix with spectral

decomposition A = QDQ′, let A
1
2
s = QD

1
2Q′ be the symmetric square root of

A. A−
1
2

s is the symmetric square root of A−1. Square root matrices without the

subscript s are considered Cholesky square roots, but will not appear in this
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manuscript. First, rewrite T 2 as follows:

T 2 = n
(

Σ| −
1
2

s Y
)(

Σ| −
1
2

s ΛΣ| −
1
2

s + (n− 1)Σ| −
1
2

s SΣ| −
1
2

s

)−1 (

Σ| −
1
2

s Y
)

D= n
(

Σ| −
1
2

s Y
)(

Λ
1
2
s Σ| −1Λ

1
2
s + (n− 1)Σ| −

1
2

s SΣ| −
1
2

s

)−1 (

Σ| −
1
2

s Y
)

,

where equality in distribution follows from the fact that because Σ| −
1
2

s ΛΣ| −
1
2

s and

Λ
1
2
s Σ| −1Λ

1
2
s are both positive definite and symetric, it follows from theorem A9.9

of [9] that they are an orthogonal similarity transformation of eachother and

since the latter has a Wishart distribution (see below), equality in distributions

follows from the invariance of the Wishart distribution to orthogonal similarity

transformations.

Next we make the following observations:

1. (n−1)Σ| −
1
2

s SΣ| −
1
2

s has the Wishartd(n−1, Id) distribution and is therefore,

independent of Σ| . This is because the conditional distribution of (n−1)S

given Σ| is Wishartd(n− 1,Σ| ).

2. Λ
1
2
s Σ| −1Λ

1
2
s has the Wishartd(ν − d− 1, Id) distribution, because Σ| −1 has

the Wishartd(ν − d− 1,Λ−1).

Therefore, the sum,

V = Λ
1
2
s Σ| −1Λ

1
2
s + (n− 1)Σ| −

1
2

s SΣ| −
1
2

s

has the Wishartd(ν + n − d − 2, Id) distribution. Next, put Z = Σ| −
1
2

s Y and
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rewrite T 2 as

T 2 = nZ ′V −1Z =
nZ ′Z
Z′Z

Z′V −1Z

.

Notice that since Z has been rescaled, it is independant of Σ| . Next, because

Z is the sample mean, it is independant of the sample covariance matrix, S.

Thus Z and V are independant. Next, it follows from theorem 3.2.12 of [9], the

denominator is distributed χ2
ν+n−2d−1 and independent of the Z. Because the

numerator is χ2
d, it follows that T 2 ν+n−2d−1

d has the Fd,ν+n−2d−1 distribution.

Proof of theorem 2: As stated above, the conditional distribution of A =

(n− 1)S given Σ| is Wishartd(n− 1,Σ| ) which has density:

fWd,n−1,Σ| (A) = 2−d(n−1)/2Γd

(

n− 1
2

)−1 |A|(n−d−2)/2

|Σ| |(n−1)/2
etr
(

−1
2

Σ| −1
A

)

while Σ| has the InvWishartd(ν,Λ) distribution, which has density:

fW
−1

d,ν,Λ(Σ| ) = 2−d(ν−d−1)/2Γd

(

ν − d− 1
2

)−1 |Λ|(ν−d−1)/2

|Σ| |ν/2
etr
(

−1
2

Σ| −1Λ
)

Taking the product of the two above densities and reorganizing factors yeilds:

fWd,n−1,Σ| (A)fW
−1

d,ν,Λ(Σ| ) = 2−d(ν+n−d−2)/2Γd

(

ν + n− d− 2
2

)−1 |Λ +A|(ν+n−d−2)/2

|Σ| |(ν+n−1)/2
etr
(

−1
2

Σ| −1(Λ +A)
)

Γd
(

ν+n−d−2
2

)

Γd
(

n−1
2

)

Γd
(

ν−d−1
2

)

|Λ|(ν−d−1)/2 |A|(n−d−2)/2

|Λ +A|(ν+n−d−2)/2
.

Thus, the posterior distribution of Σ| given A = (n− 1)S is

InvWishartd(ν + n− 1,Λ + (n− 1)S), and so the distribution of A = (n− 1)S

is the one given in expression 2.
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Figure 1: In data simulated from the normal/Inverse Wishart model, the true
positive and false positive rates for the four benchmarked statistics as cutoff
ranges through all possible values of the statistic. ShHT2=black, ShUT2=green,
UT2=red, HT2=blue
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Figure 2: In data simulated from the normal/mixed Inverse Wishart model, the
true positive and false positive rates for the four benchmarked statistics as cutoff
ranges through all possible values of the statistic. ShHT2=black, ShUT2=green,
UT2=red, HT2=blue
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