
On mixed-effect Cox models, sparse matrices, and

modeling data from large pedigrees

Terry M Therneau

October 28, 2003

Contents

1 Introduction 3

2 Software 4

3 Random Effects Cox Model 5

4 Sparse matrix computations 7
4.1 Generalized Cholesky Decomposition 7
4.2 Block Diagonal Symmetric matrices 8

5 Kinship 10

6 Linear Mixed Effects model 13

7 Breast cancer data set 15
7.1 Minnesota breast cancer family study 15
7.2 Correlated Frailty . 20
7.3 Connections between breast and prostate cancer 22

8 Random treatment effect 24

9 Questions and Conclusion 27

A Sparse terms and factors 28

B Pedigree Plotting 30
B.1 Background . 30
B.2 Plotting examples . 30

1

C Manual pages 34
C.1 align.pedigree . 34
C.2 autohint . 35
C.3 bdsmatrix.ibd . 36
C.4 bdsmatrix . 37
C.5 besthint . 38
C.6 coxme.control . 38
C.7 coxme . 39
C.8 familycheck . 41
C.9 gchol . 42
C.10 kinship . 43
C.11 lmekin . 44
C.12 makefamid . 45
C.13 makekinship . 46
C.14 pedigree . 48
C.15 plot.pedigree . 48
C.16 solve.bdsmatrix . 49
C.17 solve.gchol . 50

D Model statements 51

2

1 Introduction

This technical report attempts to document many of the thoughts and compu-
tational issues behind the S-Plus/R kinship library, which contains the coxme

and lmekin functions. Like many other projects, this really started with a data
set and a problem. From this came statistical ideas for a solution, followed by
some initial programming — which more than anything else helped to define
the real computational and statistical issues — and then a more ambitious pro-
gramming solution. The problem turned out to be harder than I thought; the
first release-worthy code has taken over 3 years in gestation.

For several years I have been involved in an NIH funded program project
grant of Dr. Tom Sellers; the goals of the grant are to further understand genetic
and environmental risk factors for the development of breast cancer. To this
end, Dr. Sellers has assembled a cohort of 426 extended families comprising
over 26000 individuals. A little under half of these are females, and over 4000 of
the females have married into the families as opposed to being blood relatives.
The initial population was entirely from Minnesota and the large majority of
the participants remain so; in this population is is reasonable to assume little
or no ethnic stratification with respect to marriage, so that we can assume that
the marry-ins form an unbiased control sample.

In analyzing this data, how should one best adjust for genetic associations
when examining other covariates such as parity or early life diet? Both strat-
ification or a single per-family random effect are unattractive, as they assume
a consistency within family that need not be there. In particular, in such large
pedigrees it is certainly possible that a genetic risk has followed one branch of
the family tree and not another. Also, the marry-ins are genetically linked to the
tree through their children, but are nevertheless not full blood members. One
appealing solution to this is to use a correlated random effects model, where
there is a per-patient random effect but correlated according to a matrix of
relationships.

This in turn raises two immediate computational issues. The first is sim-
ple: with 26050 subjects the full kinship matrix must be avoided, as it would
consume almost 4 terabytes of main memory. Luckily, the matrix is sparse in a
simply patterned way, and substantial storage and computational savings can be
achieved. The second issue is a somewhat more subtle one of design: although it
would be desirable to copy the user-level syntax of lme, the linear mixed-effects
models in S-Plus, we can do so only partially. A basic assumption of lme is
that the random effects are the same for each subgroup, both in number and
in correlation structure. This is of course not true for a kinship relation: each
family is unique.

Details of these issues, examples, further directions, and computational side
bars are all jumbled together in the rest of this note. I hope it is enlightening,
perhaps enjoyable, but most of all at least comprehensible. Eventually much of
this should find its way into a set of (more organized) papers.

3

2 Software

The kinship library is a set of routines designed for use in S-Plus. The cen-
terpiece of the collection are coxme and lmekin. In terms of sheer volume of
code, these are overshadowed by the support routines for sparse matrices (of
a particular type), generalized cholesky decomposition, pedigree drawing, and
kinship matrices.

The modeling routines are

• coxme: general mixed-effects Cox model. The calling syntax is patterned
after lme, but with important differences due to the need to handle genetic
problems.

• lmekin: a variant of lme that allows for genetic correlation matrices. In
time, Jose Pinheiro and I have talked about merging its capabilities into
lme, which would be a good thing since there is virtually no overlap be-
tween the type of problem handled by the two routines.

The main pedigree handling routines are

• familycheck: evaluates the consistency of a family id variable and pedigree
structure.

• makekinship: create a sparse kinship matrix representing the genetic re-
lation between individuals in a collection of families.

• pedigree and plot.pedigree: create a pedigree structure representing a sin-
gle family, and plot it in a very compact way. There are many other
packages that draw prettier or more general diagrams; the goal of this
was to create a reasonably good, fast, automatic drawing that fits on the
screen, as a debugging aid for the central programs. It has turned out to
be more useful than anticipated.

Supporting matrix routines include

• bdsmatrix: the overall class structure for block-diagonal symmetric ma-
trices.

• gchol: generalized cholesky decomposition, for both ordinary matrices and
bdsmatrix objects.

• bdsmatrix.ibd: read in the data representing an identity-by-descent (IBD)
matrix from a file, and store it as a bdsmatrix object. The kinship suite
does not include routines to compute an ibd matrix directly.

There are also a large number of supporting routines which will rarely if ever
be called directly by the user. Descriptions of these routines are found in the
appendix.

We have done neither a port to S/Windows nor to R, although we expect
others will. This is not an argument against either environment, they are just
not the environment that we use, and there are only so many hours in a day.
For an R port we are aware of 3 issues:

4

• Trivial: The bdsS.h and coxmeS.h files contain some S-specific definitions.
The changes for R are well known.

• Simple: The coxme.fit routine uses the nlminb function of S-Plus for min-
imization; in R one would use the optim function.

• Moderate(?): The bdsmatrix routines are based on the “new” style class
structure. These classes have been added to R, but appear to be in evo-
lution.

3 Random Effects Cox Model

Notationally, we will stay quite close to the standards for linear mixed-effect
models, avoiding some of the (unnecessary we believe) notational complexities
of the literature on frailty models. The hazard function for the sample is defined
as

λ(t) = λ0(t)eXβ+Zb or (1)
λi(t) = λ0(t)eXiβ+Zib (2)

where λ0 is an unspecified baseline hazard rate, i refers to a particular subject
and Xi, Zi refer to the ith rows of the X and Z matrices, respectively. We
will use these two equations interchangeably, appropriate to the context. The
X matrix and the parameter vector β represent the fixed effects of the model,
and Z, b the random effects.

Because it is the only model that easily generalizes to arbitrary covariance
matrices, we will assume the Gaussian random effects model set forth by Ripatti
and Palmgren [7],

b ∼ N(0,Σ) . (3)

Integrating the random effect out of the partial likelihood gives an integrated
log-partial likelihood L of

eL =
1√

2π|Σ|

∫
ePL(β,b)e−b′Σ−1b/2db (4)

=
1√

2π|Σ|

∫
ePPL(β,b)db

≈ 1√
2π|Σ|

ePPL(β,b̂)

∫
e−(b−b̂)′Hb̂b̂(b−b̂)/2db (5)

L = PPL(β, b̂)−−
[
1
2

log |Σ|+ log |Hb̂b̂|
]

(6)

Equation 4 is an intractable multi-dimensional integral—b has a dimension
of order n for correlated frailty problems. The partial likelihood exp(PL) is a
product of ratios, which is not a “nice” integral with respect to direct solution.

5

First, recognize the integrand as exp(PPL(β, b)), where PPL is the penalized
partial likelihood consisting of the usual Cox (log) partial likelihood minus a
penalty. The Laplace approximation to the integral replaces the exponential of
the integrand with a second order Taylor series about (β, b̂), f(b) ≈ f(b̂) + (b−
b̂)′f ′′(b̂)(b− b̂). Since β̂ is by definition the value with first derivative of 0, the
Taylor series has only the second order term. Pulling the constant term out of
the integral leads to equation 5. We now recognize the term under the integral
as the kernel of a multivariate Gaussian distribution, leading directly to 6.

Rippatti and Palmgren do a somewhat more formal likelihood derivation,
which worries about the implicit baseline hazard λ0 and the fact that (4) is
not actually a likelihood, but arrive at the same final equation. Essentially,
the Laplace approximation has replaced a multi-dimensional integration with
a multi-dimensional maximization. This is unlike linear mixed-effects models,
where the integration over b can be done directly, leading to a maximization
over β and the parameters of the variance matrix Σ alone.

The matrix H is the second derivative or Hessian of the PPL, which is
easily seen to be −Ibb −Σ−1, where Ibb is the portion of the usual information
matrix for the Cox PL corresponding to the random effects coefficients b. By
the product rule for determinants, we can rewrite the second two terms of 6 as

−(1/2) log |ΣIbb + I|

where I is the identity matrix. As the variance of the random effect goes to
zero, this converges to log |0 + I| = 0, showing that the PPL and the integrated
likelihood L coincide at the no frailty case. Computation of the correction term,
however, makes use of the form found in equation 6, since those components
are readily at hand from the Newton-Raphson calculations that were used to
compute (β̂, b̂) for the PPL maximization.

The coxme code returns a likelihood vector of three elements: the PPL for
Σ = 0 and (β, b) = initial values (usually 0), the integrated likelihood at the
final solution, and the PPL at the final solution. Assume for the moment that
Σ = σ2

1A + σ2
2I for some fixed matrix A, that rank(X) = p and that Z has

q columns. There are two possible likelihood ratio tests; that based on the
integrated likelihood is 2(L2−L1), and is approximately χ2 on p + 2 degrees of
freedom. That based on the PPL is 2(L3−L1) and is only approximately χ2, on
p+q−trace(Σ−1[H−1]bb) degrees of freedom, see equation 5.16 of Therneau and
Grambsch [9]. As pointed out there, the current code uses an approximation
for the p-value that is strictly conservative.

In equation 5 we were purposely somewhat vague about whether (Hbb)−1 or
(H−1)bb is appearing in the quadratic form. The first corresponds to treating
β̂ as a fixed parameter, and yields the MLE estimate proposed by Ripatti and
Palmgren. The second implicitly recognizes that b and β̂ are linked, and is an
expansion in terms of the profile likelihood. It leads to the substitution

− log |Hbb| = log |(Hbb)−1| =⇒ log |(H−1)bb|

in equation 6. Yau and McGilchrist [11] point out that the Newton-Raphson
iteration of a Cox model can be written in the form of a linear model, and

6

that the resultant equation for the update is identical to that for a linear mixed
effects model. On this heuristic grounds, the substitution above is called an
REML estimate for a mixed-effects Cox model. Computationally, the REML
estimate turns out to be more demanding due to algorithmic details of the sparse
Cholesky decomposition.

Another important question, of course, is the adequacy of the Laplace ap-
proximation at all. It has long been known that the Cox PL is well approximated
by a quadratic in the neighborhood of the maximum, if there are an adequate
number of events and Xβ̂ is modest size: 10 events/covariate and risks < 4 are
reasonable values. (For a counterexample with infinite β see [9]). Random ef-
fects pose a new case that requires investigation, and within that an exploration
of ML vs. REML superiority.

4 Sparse matrix computations

4.1 Generalized Cholesky Decomposition

The generalized Cholesky decomposition of a symmetric matrix A is

A = L′DL

where L is lower triangular with 1’s on the diagonal and D is diagonal. This
decomposition exists for any symmetric matrix A. L is always of full rank, but
D may have zeros.

D will be strictly positive if and only if A is a symmetric positive definite
matrix, and we can then convert to the usual Cholesky decomposition

A = [L
√

D][
√

DL′] = U ′U

where U is upper triangular. If D is non-negative, then A is a symmetric
non-negative definite matrix. However, the decomposition exists (with possibly
negative elements of D) for any symmetric A.

There are two advantages of this over the Cholesky. The first, and a very
minor one, is that the decomposition can be computed without any square
root operations. The larger one is that matrices with redundant columns, as
often arise in statistical problems with particular codings for dummy variables,
become particularly transparent. If column i of A is redundant with columns 1 to
i-1, then Dii = 0 and Lij = 0 for all i 6= j. This simple labeling of the redundant
columns makes for easy code downstream of the gchol routines. The tolerance

argument in the gchol function, and the corresponding tolerance.chol argument
in coxph.control is used to distinguish redundant columns. The threshold is
multiplied by the maximum diagonal element of A, if a diagonal element in the
decomposition is less than this relative threshold it is set to 0.

Let E be a generalized inverse of D, that is, define Eii to be zero if Dii = 0
and as Eii = 1/Dii otherwise. Because of it’s structure L is always of full rank,
and being triangular it is easy to invert. Then it is easy to show that

B = (L−1)′EL−1

7

is a generalized inverse of A. That is: ABA = A and BAB = B.
The gchol routines have been used internally to the coxph and survreg func-

tions for many years. The new S routines just give an interface to that code.
Internally, the return value of gchol is a matrix with L below the diagonal and
D on the diagonal. Above the diagonal are zeros. At present, I decided not to
bother with doing packed storage, although it would be easy to adapt the code
called by the bdsmatrix routines.

If
x <- gchol(a)

then
as.matrix(x) returns L
diag(x) returns D (as a vector)
print(x) combines L and D, with D on the diagonal
as.matrix(x, ones=F) is the matrix used by print

x@rank is the rank of x

Note that solve(x) = solve(gchol(x)). This is in line with the current solve
function in S, which always returns the result for the original matrix, when
presented with a factorization. If x is not full rank, the returned value is a
generalized inverse. To get the inverse of L, one can use the full=F option. One
use of this is for transforming data. Suppose that y has correlation σ2A, where
A is a general n× n matrix (kinship for instance). Then

> temp <- gchol(A)

> ystar<- solve(temp, y, full=F)

> xstar<- solve(temp, x, full=F)

> fit <- lm(ystar ~ xstar)

is a solution to the general regression problem. The vector ystar will have
correlation σ2 times the identity, since L

√
D is a square root of A. The resulting

fit corresponds to a linear regression of y on x accounting for the correlation.

4.2 Block Diagonal Symmetric matrices

A major part of the work in creating the kinship library was the formation of
the bdsmatrix class of objects. A bdsmatrix object has the form

A B′

B C

where A is block-diagonal, A and C are symmetric, and B,C may be dense.
Internally, the elements of the object are

• blocksize: vector of block sizes

• blocks: vector containing the blocks, strung together. Together blocksize
and blocks represent the block-diagonal A matrix. The blocks component

8

only keeps elements on or below the diagonal, and only those that are
within one of the blocks. For instance bdsmatrix(blocksize=rep(1,n),

blocks=rep(1.0,n)) is a representation of the n× n identity matrix using
n instead of n2 elements of storage.

• rmat: the matrix (BC)′. This will have 0 rows if there is no dense portion
to the matrix.

• offdiag: the value of off-diagonal elements. This usually arises when some-
one has done y <- exp(bdsmatrix) or some such. Some of the methods for
bdsmatrices, e.g. cholesky decomposition, will punt on these and use
as.matrix to convert to a full matrix form.

• .Dim and .Dimnames are the same as they would be for an ordinary ma-
trix.

There are a full compliment of methods for the class, including arithmetic
operators, subscripting and matrix multiplication. To a user at the command
line, an object of the class might appear to be an ordinary matrix. (At least,
that is the intention). One non-obvious issue, however, occurs when the matrix
is converted. Assume that kmat is a large bdsmatrix object.

> xx <- kmat[1:1000, 1:1000]

> xx <- kmat[1000:1, 1:1000]

Problem in kmat[1000:1, 1:1000]: Automatic conversion would create

too large a matrix

Why did the first request work and the second one fail? Reordering the rows
and/or columns of a bdsmatrix can destroy the block-diagonal structure of the
object. If the row and column subscripts are identical, and they are in sorted
order, then the result of a subscripting operation will still be block diagonal.
If this is not so, then the result will be an ordinary matrix object. To prevent
the accidental creation of huge matrices that might exhaust system memory,
yet still allow simple interrogation queries such as kmat[15,21], there is a option
bdsmatrixsize with a default value of 1000. Creation of a matrix larger than
about 31 by 31 will fail with the message above. This can be overridden by the
user, e.g., options(bdsmatrixsize=5000), to allow the creation of bigger objects.
An explicit call to as.matrix does not check the size, however, on the assumption
that if the user is explicit then they must know what they are doing. (Which is
of course just an assumption.)

The gchol functions also have methods for bdsmatrix objects, and make use
of a key fact — this fact is the actual reason for creating the entire library in
the first place — if the block-diagonal portions of the matrix precede the dense
portions, as they do in a bdsmatrix object, then the generalized Cholesky de-
composition of the matrix is also block-diagonal sparse, with the same blocksize
structure as the original. Assume that X were a bdsmatrix of dimension p + q,
with q sparse and p dense columns. The rmat component of the decomposition
(which by definition contains the transpose of the lower border of the matrix)

9

will have p + q rows and p columns. The lower p by p portion of rmat has zeros
below the diagonal, but as with the generalized cholesky of an ordinary matrix,
we do not try to save extra space by using sparse storage for this component.
Almost all of the savings in space has already been realized by keeping the q by
q portion in block-diagonal form.

5 Kinship

We have mentioned using a correlation matrix A that accounts for how subjects
are related. One natural choice is the kinship matrix K. Roughly speaking, the
elements of K are the amount of genetic material that two subjects would be
expected to have in common, by chance. Thus, there are 1’s on the diagonal
(and for identical twins), 0.5 for parent/child and sib/sib relations, 0.25 for
grandparent/grandchild, uncle/niece, and etc. Coefficients other that 1/2i occur
if there is inbreeding.

Formally, the elements of Kij are the probability that a gene selected ran-
domly from case i and another selected from case j will be identical by descent
(ibd) at some given locus. Thus, the usual diagonal element is 0.5 and the matrix
described in the paragraph above is 2K. See Lange [6] for a fuller explanation,
along with a description of other possible relationship matrices.

One consequence of the formal definition is that Kij = 0 whenever i and j
are from different family trees. Thus K is a symmetric block diagonal matrix.
There are 5 principle routines that deal with creation of the kinship matrix:
kinship, makekinship, makefamid, familycheck, and bdsmatrix.ibd.

The kinship routine creates a kinship matrix K, using the algorithm of Lange
[6]. The algorithm requires that the subjects first be sorted by generation,
any partial ordering such that no offspring appears before his/her parents is
sufficient. This is accomplished by an internal call to the kindepth routine,
which assigns a depth of 0 to founders, and 1 + max(father’s depth, mother’s
depth) to all others.

The modeling functions coxme and lmekin currently adjust any input variance
matrices to have a diagonal of 1, so it is not necessary to explicitly replace K
with 2K. With inbreeding, the diagonal of 2K may become greater than 1. We
currently don’t know quite what to do in this case, and the routines will fail
with a message to that effect.

To create the kinship matrix for a subset of the subjects, it is necessary to
first create the full K matrix and then subset it. For instance, if only females
were used to create K, then my daughter and my sister would appear to be
unrelated. This actually turns out to be more help than hurt in the data pro-
cessing; a single K can be created once and for all for a study and then used
in all subsequent analyses. The routines choose appropriate rows/cols from K
automatically based on the dimnames of the matrix, which are normally the
individual subject identifiers.

The kinship function creates a full n by n matrix. When there are multiple
families this matrix has a lot of zeros. The makekinship function creates a sparse

10

kinship matrix (of class bdsmatrix) by calling the kinship routine once per family
and “gluing” the results together. For the Seller’s data, the full kinship matrix
is 26050 by 26050 = 678,602,500 elements. But of these, less than 0.00076 are
within family and possibly non-zero. (A marry-in with no children can be “in”
a family but still have zeros off the diagonal).

The makefamid function creates a family-id variable, marking disjoint pedi-
grees within the data. Subjects who have neither children nor parents in the
pedigree (marry-in for instance) are marked with a 0. The makekinship func-
tion recognizes a 0 as unrelated, and they become separate 1 by 1 blocks in the
matrix. Because makefamid uses only (id, father id, mother id), it will pick up
on cross-linked families.

For the extended pedigrees of the breast cancer data set, there are a lot of
marry-ins. Overall, makefamid identifies 8191 of the 26050 participants in the
study as singletons, reduces the maximal family size from 286 to 180 and the
mean family size from 61.1 to 41.9, and results in a K matrix that has about 1/2
the number of non-sparse elements. This can result in substantial improvements
in processing time. For most data sets, however, the main utility of the routine
may be just as a data check. This use is formalized in the familycheck function.
It’s output is a dataframe with columns

• famid: the family id, as entered into the data set

• n : number of subjects in the family

• unrelated: number of them that appear to be unrelated to anyone else in
the entire pedigree set. This is usually marry-ins with no children (in the
pedigree), and if so are not a problem.

• split : number of unique “new” family ids.

– if this is 0, it means that no one in this “family” is related to anyone
else (not good)

– 1 = all is well

– 2+= the family appears to be a set of disjoint trees. Are you missing
some of the people?

• join : number of other families that had a unique famid, but are actually
joined to this one. One expects 0 of these.

If there are any joins, then an attribute join is attached to the dataframe. It will
be a matrix with family id as row labels, new-family-id as the columns, and the
number of subjects as entries. This allows one to diagnose which families have
inter-married. The example below is from a pedigree that had several identifier
errors.

> checkit<- familycheck(ids2$famid, ids2$gid, ids2$fatherid,

ids2$motherid)

> table(checkit$split) # should be all 1’s

11

0 1 2

112 424 4

Shows 112 of the "families" were actually isolated individuals,

and that 4 of the families actually split into 2.

In one case, a mistyped father id caused one child, along with his

spouse and children, to be "set adrift" from the connected pedigree.

> table(checkit$join)

0 1 2

531 6 3

#

There are 6 families with 1 other joined to them (3 pairs), and 3

with 2 others added to them (one triplet).

For instance, a single mistyped father id of someone in family 319,

which was by bad luck the id of someone else in family 339,

was sufficient to join two groups.

> attr(checkit, ’join’)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

31 78 0 0 0 0 0 0

32 3 15 0 0 0 0 0

33 6 0 12 0 0 0 0

63 0 0 0 63 0 0 0

65 0 0 0 17 16 0 0

122 0 0 0 0 0 16 0

127 0 0 0 0 0 30 0

319 0 0 0 0 0 0 20

339 0 0 0 0 0 0 37

The other sparse matrix which is often used in the analysis is an identity
by descent (ibd) matrix. Whereas K contains the expected value for an ibd
comparison of a randomly selected locus, an ibd matrix contains the actual
agreement for a particular locus based on the results of laboratory typing of
the locus. In an ideal world, ibd matrices would contain only the 0/1 indicator
value, shared or not shared, for each pair. But the results of genetic analysis of
a pedigree are rarely so clear. Subjects who are homozygous at the locus, and
of course those for whom a genetic sample was not available, give uncertainty to
the results, and the matrix contains the expected value of each indicator, given
the available data.

The kinship library does not contain any routines for calculating an ibd
matrix B. However, most other routines which do so are able to output a data
file of (i, j, value) triplets; each asserts that Bij=value. Since B is symmetric and
sparse, only the non-zero elements on or below the diagonal are output to the
file. The bdsmatrix.ibd routine can read such a file, infer the familial clustering,
and create B as a bdsmatrix object. One of the challenging “bookkeeping” tasks
in the library was to match up multiple matrices. Routines that calculate ibd
matrices, such as solar [3], often will reorder the subjects within a family;
the K matrix from our makekinship function will not exactly match the ibd
matrix, yet is in truth computable with it given some row/column shifts. The

12

bdsmatrix.reconcile function, called by coxme and lmekin but NOT by users,
accomplishes this. It makes use of the dimnames to accomplish the matching, so
the used of a common subject identifier for all matrices is critical to the success
of the process.

Here is a small example of using a kinship matrix.

> kmat <- makekinship(newfam, bdata$gid, bdata$dadid, bdata$momid)

> class(kmat)

[1] "bdsmatrix"

> kmat[8192:8197, 8192:8196]

0041000002 0041000003 0041001700 0041003001 0041003400

0041000002 0.500 0.000 0.125 0.25 0.250

0041000003 0.000 0.500 0.125 0.25 0.250

0041001700 0.125 0.125 0.500 0.25 0.125

0041003001 0.250 0.250 0.250 0.50 0.250

0041003400 0.250 0.250 0.125 0.25 0.500

0041003401 0.250 0.250 0.125 0.25 0.250

Note that the row/column order of kmat is NOT the order of subjects in the
data set. The first 8191 rows/cols of kmat correspond to the unrelated subjects,
which are treated as families of size 1, then come the larger families one by one.
(The first portion of the matrix is equivalent to the .5 times the identity matrix,
and is not an interesting subset to print out.) The gid variable in this particular
study is a structured character string: the people shown are all from family 004.

Some of the routines above have explicit loops within them, and so cannot be
said to be optimized for the S-Plus environment. However, even on the n=26050
breast cancer set none of them took more than a minute, and they need to be
run only once for a given study.

6 Linear Mixed Effects model

The lmekin function is a mimic of lme that allows the user to input correlation
matrices. As an example, consider a simulated data set dervied from GAW [10].

> dim(adata)

[1] 1497 13

> names(adata)

[1] "famid" "id" "father" "mother" "sex" "age" "ef1" "ef2"

[9] "q1" "q2" "q3" "q4" "q5"

>

> kmat <- makekinship(adata$famid, adata$id, adata$father, adata$mother)

> dim(kmat)

[1] 1497 1497

To this we will add 2 ibd matrices for the data, generated as output data files
from solar. The variable pedindex is a 2-column array containing the subject
label used by solar in column 1 and the original id in column 2.

> temp <-matrix(scan("pedindex.out"), ncol=9, byrow=T)

13

> pedindex <- temp[,c(1,9)]

> temp <- read.table(’ibd.d06g030’, row.names=NULL,

col.names=c("id1", "id2", "x", "dummy"))

> ibd6.30 <- bdsmatrix.ibd(temp$id1, temp$id2, temp$x,

idmap=pedindex)

> temp <- read.table(’ibd.d06g090’, row.names=NULL,

col.names=c("id1", "id2", "x", "dummy"))

> ibd6.90 <- bdsmatrix.ibd(temp$id1, temp$id2, temp$x,

idmap=pedindex)

> fit1 <- lmekin(age ~ 1, data=adata, random = ~1|id,

varlist=kmat)

> fit1

Log-likelihood = -4252.912

n=1000 (497 observations deleted due to missing values)

Fixed effects: age ~ 1

Value Std. Error t value Pr(>|t|)

(Intercept) 45.51726 0.6348451 71.69821 0

Random effects: ~ 1 | id

Variance list: kmat

id resid

Standard Dev: 5.8600853 16.0306836

% Variance: 0.1178779 0.8821221

> fit2 <- lmekin(age ~ q4, data=adata, random = ~1|id,

varlist=list(kmat, ibd6.90))

> fit2

Log-likelihood = -4073.227

n=1000 (497 observations deleted due to missing values)

Fixed effects: age ~ q4

Value Std. Error t value Pr(>|t|)

(Intercept) -3.634481 2.4610657 -1.476792 0.1400469

q4 2.367681 0.1131428 20.926475 0.0000000

Random effects: ~ 1 | id

Variance list: list(kmat, ibd6.90)

id1 id2 resid

Standard Dev: 5.9110099 3.8240786 12.5529729

% Variance: 0.1686778 0.0705973 0.7607249

In both cases, the results agree with the same run of solar, with the exception
of the log-likelihood, which differs by a constant, and the value of the intercept
term in the second model, for which solar gives a value of -3.634 + 2.367*

mean(q4). This implies that solar subtracts the mean from each covariate before
doing the fit. For the log-likelihood, we have made lmekin consistent with the
results of lme.

Even more intesting is a fit with multiple loci

> fit3 <- lmekin(age ~ q4, adata, random= ~1|id,

14

varlist=list(kmat, ibd6.30, ibd6.90))

Log-likelihood = -4073.242

n=1000 (497 observations deleted due to missing values)

Fixed effects: age ~ q4

Value Std. Error t value Pr(>|t|)

1 -3.635242 2.4611164 -1.47707 0.1399723

2 2.367719 0.1131451 20.92640 0.0000000

Random effects: ~ 1 | id

Variance list: list(kmat, ibd6.30, ibd6.90)

id1 id2 id3 resid

Standard Dev: 5.8975380 0.3969544649 3.82594576 12.5528024

% Variance: 0.1679029 0.0007606731 0.07066336 0.7606731

We see that the 6.30 locus adds very little to the fit. (In fact, to avoid
numeric issues, the opimizer is internally constrained to have no component
smaller than .001 times the residual standard error, so we see that this was on
the boundary). Accurate confidence intervals for a parameter can be obtained
by profiling the likelihood:

theta <- seq(.001, .3, length=20)

ltheta <- theta

for (i in 1:20) {
tfit <- lmekin(age ~1, adata, random= ~1|id, varlist=list(kmat, ibd6.90),

variance=c(0, theta[i]))

ltheta[i] <- tfit$loglik

}
plot(theta, ltheta, ylab="Profile likelihood", xlab=’Variance’)

abline(h=fit2$loglik - qchisq(.95,1)/2)

The optional argument variance=c(0,.02) will fix the variance for ibd6.90 at
0.02 while optimizing over the remaining parameter.

The lmekin function, nevertheless, is very restricted as compared to lme,
allowing for only a single random effect. It’s purpose is not to create a viable
competitor to lme, and certainly not to challenge broad packages such as solar.
But since it shares almost all of its data-processing code with coxme, it acts as a
very comprehensive test for the correctness of the kinship and ibd matrices and
our manipulations of them, and greatly increases our confidence in the latter
function. A second, but perhaps even more important role is to help make the
mental connections for how coxme output might be interpreted.

7 Breast cancer data set

7.1 Minnesota breast cancer family study

The aggregation of breast cancer within families has been the focus of investi-
gation for at least a century [4]. There is clear evidence that both genetic and

15

environmental factors are important, but despite literally hundreds of studies,
it is estimated that less than 50% of the cancer cases can be accounted for by
known risk factors.

The Minnesota Breast Cancer Family Resource is a unique collection of fam-
ilies, first identified by V. Elving Anderson and colleagues at the Dight Institute
for Human Genetics [1]. They collected data on 544 sequential breast cancer
cases seen at the University of Minnesota between 1944 and 1952 Baseline infor-
mation on probands, relatives (parents, aunts and uncles, sisters and brothers,
sons and daughters) was obtained by interviews, followup letters, and telephone
calls, to investigate the issues of parity, genetics and other life factors on breast
cancer risk.

This data then sat unused until 1991, when the study was revived by Dr.
Tom Sellers. The revised study excluded 58 subjects who were prevalent rather
than incident cases, and another 19 who had only 0 or 1 living relative at
the time of the first study. Of the remaining 426 families, 10 had no living
members, 23 were lost to follow-up, and only 8 refused, leaving a cohort of
426 participating. Sellers et al. [8] have recently extended the followup of all
pedigrees through 1995 as part of an ongoing research program, 98.2% of the
families agreed to further participation. There are currently 26,050 subjects in
the registry, of which 12,699 are female and 13,351 are male. Among the females,
the data set has over 435000 person-years of follow up. There a a total of 1063
incident breast cancers: 426/426 of the probands, 376/7090 blood relatives of
the probands, and 188/5183 of the females who have married into the families.

There is a wide range of family sizes:

family size 1 4–20 21–50 51-100 > 100
count 8191 72 228 115 11

The 8191 “families” of size 1 in the above table is the count of people, both
males and females, that have married into one of the 426 family trees but have
not had any offspring. For genetic purposes, these can each be treated as a
disconnnected subject, and we do so for efficiency reasons. (If studying shared
environmental factors, this simplification would not be possible).

Age is the natural time scale for the baseline risk. The followup for most of
the familial members starts at age 18, that for marry-ins to the families begins
at the age that they married into the family tree. A portion of this data set
was already seen in the section on kinship. The model below includes only
parity, which is defined to be 0 for women who have not had a child and 1
otherwise. It is a powerful risk variables, conferring an approximately 30% risk
reduction. Because they became a part of the data set due to their endpoint,
simple inclusion of the probands would bias the analysis, and they are deleted
from the computation.

> fit1 <- coxph(Surv(startage, endage, cancer) ~ parity, breast,

subset=(sex==’F’ & proband==0))

> fit1

coef exp(coef) se(coef) z p

16

parity0 -0.303 0.739 0.116 -2.62 0.0088

Likelihood ratio test=6.35 on 1 df, p=0.0117

n=9399 (2876 observations deleted due to missing values)

>fit1$loglik

-5186.994 -5183.817

Several subjects are missing information on either parity (1452), follow-up time/status
(2705) or both (1276). Many of these were advanced in age when the study be-
gan, and were not available for the follow-up in 1991. Of the 426 families, 423
are represented in the fit after deletions.

> coxme(Surv(startage, endage, cancer) ~ parity, breast,

random= ~1|famid, subset=(sex==’F’& proband==0))

n=9399 (2876 observations deleted due to missing values)

Iterations= 6 63

NULL Integrated Penalized

Log-likelihood -5186.994 -5174.865 -5121.984

Penalized loglik: chisq= 130.02 on 90.59 degrees of freedom, p= 0.0042

Integrated loglik: chisq= 24.26 on 2 degrees of freedom, p= 5.4e-06

Fixed effects: Surv(startage, endage, cancer) ~ parity0

coef exp(coef) se(coef) z p

parity0 -0.3021981 0.7391916 0.1172174 -2.58 0.0099

Random effects: ~ 1 | famid

famid

Variance: 0.2090332

The random effects model based on family shows a moderate familial variance of
0.21, or a standard error of b of about .46. Since exp(.46) ≈ 1.6, this says that
individual families commonly have a breast cancer risk that is 60% larger or
smaller than the norm. One interesting aspect of the random-effects Cox model
is that the variances are directly interpretable in this way, without reference to
a baseline variance.

However, this is probably not the best model to fit, since it attempts to assign
the same “extra” risk to both blood relatives and grafted family members alike.
Figure 1 shows the results of the fit for one particular family in the study. (We
chose a family with a large enough pedigree to be interesting, but small enough
to fit easily on a page). Darkened circles correspond to breast cancer in the
females, or prostate cancer in the males. Beneath each subject is the age of
event or last follow-up, followed by the exp(b̂i), the estimated excess risk for the
subject. The female in the upper left corner, diagnosed with breast cancer at
age 36, is the proband. Because she was not included in the fit of the random
effects model, no coefficient bi is present. The proband’s mother had breast
cancer at age 56, four sisters are breast cancer free at ages 88, 60, 78 and 74,
but a daughter and a niece are also affected at a fairly young age. Females

17

1.47

73
1.47

73
1.47

1.47

56
1.47

36
1.47

72
1.47

40
1.47

1.47

64
1.47

36
1.47

60
1.47

47
1.47

42
1.47

65
1.47

72
1.47

38
1.47

53
1.47

28
1.47

88
1.47

71
1.47

89
1.47

64
1.47

78
1.47

50
1.47

84
1.47

46
1.47

74
1.47

52
1.47

44
1.47

Figure 1: Shared frailty model, for family 8

in this high risk pedigree are all assigned a common risk of 1.47, including a
daughter-in-law.

A more reasonable model would assign a separate family id to each marry-in
subject (family of size 1). Other options are a single id for all the marry-ins, in
which case the frailty level for that single group might be looked upon as the
“background Minnesota” level, or to apply either of these options only to those
marry-ins with no offspring. The variable tempid1 below corresponds to the
first case: a blood relative receives their family id, and each marry in a unique
number > 1000. The variable tempid2 assigns all marry-ins to family 1000.

> tempid1 <- ifelse(breast$bloodrel, breast$famid, 1000 + 1:nrow(breast))

> tempid2 <- ifelse(breast$bloodrel, breast$famid, 1000)

> fit2 <- coxme(Surv(startage, endage, cancer) ~ parity , breast,

random= ~1|tempid1, subset=(sex==’F’ & proband==0))

> fit3 <- coxme(Surv(startage, endage, cancer) ~ parity , breast,

random= ~1|tempid2, subset=(sex==’F’ & proband==0))

> fit2

n=9399 (2876 observations deleted due to missing values)

Iterations= 4 50

NULL Integrated Penalized

Log-likelihood -5186.994 -5163.226 -5031.745

Penalized loglik: chisq= 310.5 on 232.65 degrees of freedom, p= 0.00048

Integrated loglik: chisq= 47.54 on 2 degrees of freedom, p= 4.8e-11

18

Fixed effects: Surv(startage, endage, cancer) ~ parity0

coef exp(coef) se(coef) z p

parity0 -0.2935372 0.7456215 0.119258 -2.46 0.014

Random effects: ~ 1 | tempid1

tempid1

Variance: 0.5063702

The results using tempid2 have very similar coefficients: -0.23 for parity and 0.51
for the variance of the random effect, but has a far shorter vector of random
effects b — 424 vs 4527 — and a more significant likelihood ratio test, 79.5 versus
47.5. A survey of the random effects associated with the marry-in subjects
verifies that the estimated random effects from fit2 are indeed quite tight.

> group <- breast$bloodrel[match(names(fit2$frail, tempid2)]

> table(group)

Marry-in Blood

4104 423

> tapply(fit2$frail, group, quantile)

0% 25% 50% 75% 100%

Marry-in -0.096 -0.045 -0.026 -0.009 0.506

Blood -0.802 -0.199 -0.045 0.260 2.039

The returned vector of random effects (frailties) will not necessarily be ordered
by subject id, and so it is necessary to retrieve them by matching on coefficient
names. (They are, in fact, ordered so as to take maximum advantange of the
sparseness of the kinship matrix, i.e., an order determined solely by computa-
tional considerations). The quantiles for the 4104 marry-ins in the final model
range from -.05 to -.01, and those for the 423 blood families in the model range
from -0.2 to 0.26. The sum of all 4527 coefficients is constrained to sum to zero,
and the random effects structure shrinks all the individual effects towards zero,
particularly those for the individual subjects. The amount of shrinkage for a
particular frailty coefficient is dependent on the total amount of information
in the group (essentially the expected number of events in the group), so large
families are shrunk less than small ones, and the individuals most of all. For
fit3, the random effect for all marry-ins together is estimated at -0.50 or about
40% less than the average for the study as a whole.

A rather simple model, but with surprising results, is to fit a random effect
per subject.

fit4 <- coxme(Surv(startage, endage, cancer) ~ parity, breast,

random= ~1|gid, subset=(sex==F & proband==0))

fit4

n=9399 (2876 observations deleted due to missing values)

Iterations= 7 68

NULL Integrated Penalized

Log-likelihood -5186.994 -5183.815 -5163.111

Penalized loglik: chisq= 47.77 on 42.26 degrees of freedom, p= 0.26

19

Integrated loglik: chisq= 6.36 on 2 degrees of freedom, p= 0.042

Fixed effects: Surv(startage, endage, cancer) ~ parity0

coef exp(coef) se(coef) z p

parity0 -0.3039211 0.7379191 0.116263 -2.61 0.0089

Random effects: ~ 1 | gid

gid

Variance: 0.06780249

It gives a very small random effect of 0.07, and is almost indistinguishable from
a model with no random effect at all: compare the integrated log-likelihood
of 5183.815 to the value of 5183.817 from fit1! With only one observation per
random effect, these models are essentially not identifiable. Technically, it has
been shown that with even a single covariate, the models with one frailty term
per observation are identifiable in the sense of converging to the correct solution
as n → ∞, but in this case it appears that n really does need to be almost
infinite. Cox nodels with one independent random effect per observation are
not useful in practice.

7.2 Correlated Frailty

The most interesting models for the data involve correlated frailty.

> coxme(Surv(startage, endage, cancer) ~ parity0, breast,

random= ~1|gid, varlist=kmat,

subset=(sex==’F’ & proband==0))

n=9399 (2876 observations deleted due to missing values)

Iterations= 4 49

NULL Integrated Penalized

Log-likelihood -5187.746 -5172.056 -4922.084

Penalized loglik: chisq= 531.32 on 471.63 degrees of freedom, p= 0.029

Integrated loglik: chisq= 31.38 on 2 degrees of freedom, p= 1.5e-07

Fixed effects: Surv(startage, endage, cancer) ~ parity0

coef exp(coef) se(coef) z p

parity0 -0.3201102 0.726069 0.1221572 -2.62 0.0088

Random effects: ~ 1 | gid

Variance list: kmat

gid

Variance: 0.8714414

When we adjust for the structure of the random effect, then the estimated
variance of the random effect is quite large: individual risks of 2.5 fold are
reasonably common. This model has 9399 random effects, one per subject, and
one fixed effect for the parity. The nlminb routine is responsible for maximizing

20

73

73

56
2.53

36

72

40
1.30

64
0.95

36
1.30

60
1.63

47

42

65

72
1.39

38
2.75

53

28
2.65

88
1.53

71

89

64

78
1.56

50
1.22

84

46
1.22

74
1.59

52 44
1.25

Figure 2: Correlated random effects fit for family 8

the profile likelihood, which is a function only of σ2, the variance of the random
effect. It required 3 iterations, in it’s way of counting, but actually required
9 evaluations for different test values of σ (this number is not shown). Each
evaluation of the profile likelihood for a fixed σ requires iterative solution of the
Cox PPL likelihood equations for β̂ and b̂ as shown in equation (6); a total of
41 Newton-Raphson iterations for the PPL were used “behind the scenes” in
this way.

Figure 2 displays the fit for family 8. The 88 year old sister has a smaller
estimated genetic random effect than the 60 year old sister; with more years of
follow-up there is stronger evidence that she did not inherit as large a portion of
the genetic risk. The unaffected neice at age 44 is genetically further from the
affecteds and has a lower estimated risk. Note also that the two females who
married into the family, one with and one without an affected daughter, have
very different risks than the blood relatives.

The figure was drawn by the following code

> fam8 <- breast[famid==’008’,]

> ped8 <- pedigree(fam8$gid, fam8$dadid, fam8$momid, sex=fam8$sex,

affected=(!is.na(fam8$cancer) & fam8$cancer==1))

> ped8$hints[10,1] <- 1.5

> risk8 <- fit4$frail[match(fam8$gid, names(fit4$frail))]

> risk8 <- ifelse(is.na(risk8), ’’, format(round(exp(risk8),2)))

> age8 <- ifelse(is.na(fam8$endage), "", round(fam8$endage))

> plot(ped8, id= paste(age8, risk8, sep="backslash n")

21

The hints are used to adjust the order of siblings in line 2 of the plot, and
was not strictly necessary. (More on this in a later section). The order of the
coefficients in fit4$frail is determined by the coxme program itself, using the
ordering that is simplest for indexing the bdsmatrix kmat, so it is necessary to
retrieve coeffiecients by name. The coefficients and the age are then formatted
in a nice way, and pasted together to form the label for each node of the genetic
tree. (The word ‘backslash’ in the above should be the character
, but latex and I have not yet agreed on how to get it to print what I want
within an example).

We can also fit a model with a more general random effect per subject:

> coxme(Surv(startage, endage, cancer) ~ parity2, breast,

random= ~1|gid, varlist=list(kmat, bdsI),

subset=(sex==’F’ & proband==0))

n=9399 (2876 observations deleted due to missing values)

Iterations= 4 65

NULL Integrated Penalized

Log-likelihood -5186.994 -5170.824 -4896.216

Penalized loglik: chisq= 581.56 on 516.1 degrees of freedom, p= 0.024

Integrated loglik: chisq= 32.34 on 3 degrees of freedom, p= 4.4e-07

Fixed effects: Surv(startage, endage, cancer) ~ parity0

coef exp(coef) se(coef) z p

parity0 -0.3219566 0.7247296 0.1228136 -2.62 0.0088

Random effects: ~ 1 | gid

Variance list: list(kmat, bdsI)

gid1 gid2

Variance: 0.909301 0.0520675

This again fits a model with one random effect per subject, but a covariance
matrix b ∼ N(0, σ2

1K + σ2
2I). This is equivalent to the sum of two independent

random effects, one correlated according to the kinship matrix and the other
an independent effect per subject. Again, the addition of an unconstrained per
subject random effect does not add much; the likelihood increases by only 1.2
for 1 extra degree of freedom. This is in contrast to the linear model, where a
residual variance term is expected and important.

7.3 Connections between breast and prostate cancer

Within the MBRFS, a substudy was conducted to examine the question of
possible common genetic factors between breast and prostate cancer. For 60
high risk families (4 or more breast cancers) and a sample of 81 of the 138 lowest
risk families (no breast cancers beyond the original proband), all male relatives
over the age of 40 were assessed for prostate cancer using a questionairre.

Three models were considered:

22

Variance
M/F F/F M/M L

Common 0.68 0.68 0.68 46.4
Separate – 0.98 0.71 51.9

Combined 0.20 0.92 0.70 52.5

Table 1: Results for the breast-prostate models. Shown are the variances of the random
effects, along with the likelihood ratio Lfor each model with the null.

1. Common genes: each person’s risk of cancer depends on that of both male
and female relatives. This makes sense if general defect-repair mechanisms
are responsible for both cancers, mechanisms that would effect both gen-
ders.

2. Separate genes: a female’s risk of cancer is linked to the risk of her female
relatives, a male’s is linked to that of his male relatives, but there is no
interdependency. This makes sense if the cancers are primarily hormone
driven, with different genes at risk for estrogen and androgen damage.

3. Combined: some risk of each type exists.

To examine these, consider a partioned kinship matrix where the variance
strucure is σ2

1kij for i, j both female, σ2
2kij for i, j both male, and σ2

3kij when
i, j differ in gender, where k are the usual elements of the kinship matrix. The
common gene model corresponds to σ1 = σ2 = σ3, the separate gene model to
σ3 = 0, and the combined model to unconstrained variances. In practice, the
code requires the creation of three variant matrices: kmat.f is a version of the
kinship matrix where only female-female elements are non-zero, kmat.m similarly
for male-male and kmat.mf for male-female intersections. The code below fits
model 2:

> coxme(Surv(startage, endage, cancer) ~ parity + strata(sex),

subset=(proband==0),

random=~1|id, varlist=list(kmat.f, kmat.m))

Table 1 shows results for the 3 models. The variance coefficients for model
2 are identical to doing separate fits of the males and the females; a joint fit
also gives the overall partial likelihood. We see that the separate gene model is
significantly better than a shared gene hypothesis, that the familial effects for
both breast and prostate cancer are quite large, and that the combined model
is somewhat, but not significantly, better than a separate genes hypothesis. For
a woman, knowing her sister’s status is much more useful than knowing that of
male relatives.

23

8 Random treatment effect

The development of coxme was focused on genetic models, where each subject
has their own random effect. It can also be used for simpler cases, albeit with
more work involved than the usual lme call. The data illustrated below is from
an cancer trial in the EORTC; the example is courtesy of Jose Cortinas.

There are 37 enrolling centers, with a single treatment variable. Fitting a
random effect per center is easy:

> fit0 <- coxph(Surv(y, uncens) ~x, data1) # No random effect

> fit1 <- coxme(Surv(y, uncens) ~ x, data1, random= ~1|centers)

> fit1

Cox mixed-effects model fit by maximum likelihood

Data: data1

n= 2323

Iterations= 11 137

NULL Integrated Penalized

Log-likelihood -10638.71 -10521.44 -10489.41

Penalized loglik: chisq= 298.6 on 31.47 degrees of freedom, p= 0

Integrated loglik: chisq= 234.55 on 2 degrees of freedom, p= 0

Fixed effects: Surv(y, uncens) ~ x

coef exp(coef) se(coef) z p

x 0.7115935 2.037235 0.06428942 11.07 0

Random effects: ~ 1 | centers

centers

Variance: 0.1404855

> fit0$log

-10638.71 -10585.88

By comparing the fit with and without the random effect, we get a test statistic
of 2(10585.8 − 10521.44) = 129 on 1 degree of freedom. The center effect is
highly significant.

Now, we would also like to add a random treatment effect, nested within cen-
ter. Eventually this also will be simple to fit using ∼ x|centers as the random
effect formula. We can also fit this with the current offering by constructing a
single random effect with the appropriate covariance structure. The model has
two random effects, a group effect bj1 and a treatment effect xbj2 where j is the
enrollment center

b.1 ∼ N(0, σ2
1)

b.2 ∼ N(0, σ2
2)

The combined random effect c ≡ bj1+xbj2 has a variance matrix of the following

24

form

A =


σ2

1 σ2
1 0 0 . . .

σ2
1 σ2

1 + σ2
2 0 0 . . .

0 0 σ2
1 σ2

1 . . .
0 0 σ2

1 σ2
1 + σ2

2 . . .
...

...
...

...
. . .


The rows/columns correspond to group 1/treatment 0, group 1/treatment 1,
2/0, 2/1, etc. Essentially, since treatment is a 0/1 variable we are able to view
treatment as a factor nested within center. To fit the model we need to construct
two variance matrices such that A = σ2

1V1 + σ2
2V2.

> ugroup <- paste(rep(1:37, each=2), rep(0:1, 37), sep=’/’) #unique groups

> mat1 <- bdsmatrix(rep(c(1,1,1,1), 37), blocksize=rep(2,37),

dimnames=list(ugroup,ugroup))

> mat2 <- bdsmatrix(rep(c(0,0,0,1), 37), blocksize=rep(2,37),

dimnames=list(ugroup,ugroup))

> group <- paste(data1$centers, data1$x, sep=’/’)

> fit2 <- coxme(Surv(y, uncens) ~x, data1,

random= ~1|group, varlist=list(mat1, mat2),

rescale=F, pdcheck=F)

> fit2

Cox mixed-effects model fit by maximum likelihood

Data: data1

n= 2323

Iterations= 10 165

NULL Integrated Penalized

Log-likelihood -10638.71 -10516 -10484.44

Penalized loglik: chisq= 308.54 on 35.62 degrees of freedom, p= 0

Integrated loglik: chisq= 245.42 on 3 degrees of freedom, p= 0

Fixed effects: Surv(y, uncens) ~ x

coef exp(coef) se(coef) z p

x 0.7346435 2.084739 0.07511273 9.78 0

Random effects: ~ 1 | group

Variance list: list(mat1, mat2)

group1 group2

Variance: 0.04925338 0.07654925

Comparing this to fit1, we have an significantly better fit, (245.2−234.6) = 10.6
on 1 degree of freedom. We needed to set pdcheck=F to bypass the internal test
that both mat1 and mat2 are positive definite, since the second matrix is not.
The rescale=F argument stops an annoying warning message that mat2 does not
have a constant diagonal.

Finally, we might wish to have a correlation between the random effects for
intercept and slope. In this case the off-diagonal elements of each block of the

25

variance matrix are cov(bj1, bj1 + bj2) = σ2
1 + σ12 and the lower right element is

var(bj1 + bj2) = σ2
1 + σ2

2 + σ12. We need a third matrix to carry the covariance
term, giving

> mat3 <- bdsmatrix(rep(c(0,1,1,1), 37), blocksize=rep(2,37),

dimnames=list(ugroup,ugroup))

> fit3 <- coxme(Surv(y, uncens) ~x, data1,

random= ~1|group, varlist=list(mat1, mat2, mat3),

rescale=F, pdcheck=F, vinit=c(.04, .12, .02))

> fit3

Cox mixed-effects model fit by maximum likelihood

Data: data1

n= 2323

Iterations= 7 169

NULL Integrated Penalized

Log-likelihood -10638.71 -10515.54 -10486.59

Penalized loglik: chisq= 304.23 on 30.09 degrees of freedom, p= 0

Integrated loglik: chisq= 246.33 on 4 degrees of freedom, p= 0

Fixed effects: Surv(y, uncens) ~ x

coef exp(coef) se(coef) z p

x 0.7142582 2.042671 0.06660611 10.72 0

Random effects: ~ 1 | group

Variance list: list(mat1, mat2, mat3)

group1 group2 group3

Variance: 0.02482083 0.07976837 0.03000053

By default the routine uses mat1 + mat2 + mat3 as a starting estimate for itera-
tion. However, in this case that particular combination is a singular matrix, so
the routine needs a little more help as supplied by the vinit argument.

Because treatment is a 0/1 variable, one should also be able to fit this as a
simple nested model.

> fit4 <- coxme(Surv(y, uncens) ~x, data=data1, random= ~1|centers/x)

> fit4

Cox mixed-effects model fit by maximum likelihood

Data: data1

n= 2323

Iterations= 11 165

NULL Integrated Penalized

Log-likelihood -10638.71 -10517.57 -10483.22

Penalized loglik: chisq= 310.99 on 39.77 degrees of freedom, p= 0

Integrated loglik: chisq= 242.29 on 3 degrees of freedom, p= 0

Fixed effects: Surv(y, uncens) ~ x

coef exp(coef) se(coef) z p

x 0.7434213 2.103119 0.08381642 8.87 0

26

Random effects: ~ 1 | group

Variance list: list(mat1, mat2b)

group1 group2

Variance: 0.06842845 0.04462965

This differs substantially from fit2. Why? Let c, d, e, f be random effects, and
consider two subjects from center 3. The predicted risk score for the subjects is

Fit 2 Fit 4
x=0 0 + c3 0 + e3 + f30

x=1 β + c3 + d3 β + e3 + f31

Here c and e are the random center effects and d and f are the random treatment
effects under the two models, respectively. Fit 2 can be written in terms of the
coefficients of fit 4: c = e + f.0, d = f.1− f.0. To be equivalent to fit 4, then, we
would have σ2

c = σ2
e + σ2

f , σ2
d = 2σ2

f and σcd = −σ2
f . An uncorrelated fit on one

scale is not the same as an uncorrelated one on the other scale. This fit can be
verified

> temp <- fit4$coef$random

> fit3c <- coxme(Surv(y, uncens) ~x, data1,

random= ~1|group, varlist=list(mat1, mat2, mat3),

rescale=F, pdcheck=F, lower=c(0,0,-100),

variance=c(temp[1]+temp[2], 2*temp[2], -temp[2]))

> fit3c$log

NULL Integrated Penalized

-10638.71 -10517.9 -10477.83

[Jose – did I do this derivation correctly?]
The main point of this section is that nearly any model can be fit “by hand”

if need by by constructing the appropriate variance matrix list for a combined
random effect.

9 Questions and Conclusion

The methods presented above have been very useful in our assessment of breast
cancer risk, factors affecting breast density, and other aspects of the research
study. A random effects Cox model, with Gaussian effects, has some clear
advantages:

• The Cox model is very familiar, and investigators feel comfortable in in-
terpreting the results

• The counting process (start, stop] notation available in the model allows
us to use time-dependent covariates, alternate time scales, and multiple
events/subject data in a well understood way, at least from the view of
setting up the data and running the model.

27

• Gaussian random effects allow for efficient analysis of large genetic corre-
lations

Nevertheless, there are a large number of unanswered questions. A primary
one is biological: the Cox model implicitly assumes that what one inherits,
as the unmeasured genetic effect, is a rate. Subject x has 1.3 times the risk
of cancer as subject y after controlling for covariates, every day, unchanging,
forever. Other models can easily be argued for.

Statistically, our own largest question relates to the required amount of
information. How much data is needed to reliably estimate the variances? We
have already commented that 1 obs/effect is far too little for an unstructured
model. For the correlated frailty model on the breast cancer data, the profile
likelihood for σ has about the same relative width as the one for the fixed parity
effect, so in this case we clearly have enough. Unfortunately, we have more
examples of the first kind than the second, but this represents fairly limited
experience.

Only time and experience may answer some of these.

A Sparse terms and factors

The main efforts at efficiency in the coxme routine have focused on random
effects that are discrete, that is, the grouping variables. In the kinship models,
in particular, b is of length n, the number of observations, or sometimes even
longer if there are multiple random terms.

The first step with such variables is to maintain their simplicity.

1. They are coded in the Z matrix as having one coefficient for each level of
the variable. The usual contrast issues (Helmert vs treatment vs ordered)
are completely ignored. This is also the correct thing to do mathemati-
cally; because of the penalty the natural constraint on these terms is the
sum constraint b′Ab = 0, where A is the inverse of the variance matrix of
b, similar to the old

∑
αi = 0 constraint of one-way ANOVA.

2. The dummy variables are not centered and scaled, as is done for the ordi-
nary X variables.

3. Thus, the matrix of dummy variables Z never needs to be formed at all.
A single vector containing the group number of each observation is passed
to the C code. If there are multiple random effects that are grouping
variables, then this a matrix with one column per random effect.

A second speedup takes place in the inner “computation” code. Since a given
column of Z may contain thousands of zeros for each non-zero element, simple
matrix computations like Zb consist almost entirely of multiplications by zero.
Using clever (but essentially tedious) bookkeeping, almost all of these unneeded
multiply/add operations can be avoided, speeding up the overall program several
hundred fold.

28

The above are all exact: the alternate method is faster but gives the same
answer. The computation of the overall Hessian matrix is a little more subtle.
The second derivative or Hessian matrix is the sum of a penalty term plus a
contribution from the Cox PL at each death. If the penalty is block diagonal,
which is true for all the problems where b has a large number of elements,
then the penalty term’s contribution to the Hessian is also block diagonal The
contribution from the partial likelihood is not. It consists, at each event, of
a multinomial variance matrix with diagonal elements of pj(1 − pj) and off-
diagonals −pjpk where pj is the weighted proportion of subjects in each level of
the factor, at the time of the event.

If the penalty matrix is block-diagonal, then the coxme code retains as an
approximate Hessian only the block-diagonal portion of the full H, the other
parts of H are thrown away (and not computed). This is equivalent to setting
them to zero. How big an impact does this have? Assume that the random effect
has q levels, with approximately the same number of subjects in each group.
Then the diagonal elements of H are O(1/q)+penalty, the ignored off-diagonal
ones are O(1/q2), and the retained off-diagonal elements are O(1/q2)+penalty.
We see that if q is large, the approximation is likely to be good. In fact it works
best when we need it most. The approximation is also likely to work well when
the penalty is large, i.e., when the estimated variance of the random effect is
small.

The approximation can still fail when q is large, however, if one or more of
the groups contains a large fraction of the data. An example of this was the
breast cancer analysis where we treated all of the marry-in subjects to be from
one large family “Minnesota”; q = 4126 but over half the observations were in
a single one of the levels. The off-diagonal elements with respect to this column
are of a similar order to the diagonal ones, and the error in the approximate
Hessian is such that the Newton-Raphson updates do not converge.

The sparse argument of the program is intended to deal with this. It’s
default value of (50, .02) states that first, for any grouping variable with less than
50 distinct levels the full Hessian matrix is computed. Sparse computation might
save compute time, but the problem is manageable with it. If there are more
than 50 levels, then off diagonal terms are only discarded for groups comprising
.02 or less of the total sample size. If the variance matrix for a grouping variable
is supplied by the user through the varlist argument, however, then deciding
what is and is not sparse is their decision; encapsulated in the structure of the
supplied bdsmatrix. The program accepts what it is given.

The vector of random effects is then laid out in the following order: grouping
variables for which the variance matrix is kept in block-diagonal form (sparse),
non-sparse grouping variables, and then other penalized terms (such as ran-
dom slopes). The computer code has to keep track of both the cutoff between
factor/non-factor random terms, and sparse/non-sparse locations in the penalty
matrix. This ordering is evident in the returned vector of coefficients for the
random effects. Users who want to make use of the coefficients b will usually
have to explicitly look at their names; the final order cannot be inferred as the
sorted order of their levels as with an ordinary factor variable.

29

The returned variance matrix for the coefficients is in the order (b, β), with
the random coefficients in the order described above followed by the fixed effects
coefficients. It will also be a bdsmatrix object. Now, the inverse of a block-
diagonal matrix is itself block diagonal, but the inverse of a bdsmatrix object
that contains an rmat component, as the coxme models will if there are any
fixed effects(so that β is not null), is not block diagonal. What is returned by
the function is the block-diagonal portion of the full inverse. The covariance
elements between elements of b that are omitted are not equal to zero, so the
result is incorrect in this aspect, but those off-diagonal element that are included
are computed correctly.

B Pedigree Plotting

B.1 Background

Many of the current pedigree packages are focused on the general management
of pedigree data. They produce pretty genograms of the pedigrees, but often
require lots of point and click action per pedigree to add in extra labels. Larger
pedigrees are often plotted over multiple pages. The original goal of this routine
was to create “compressed” pedigrees quickly that fit on a page, primarily for
data checking. Additional benefits have been the ability to easily add user-
defined features (such as analysis results) to the pedigree plots and to plot
multiple pedigrees easily.

Springs were used to to help create “compressed” pedigrees. Imagine each
plotting symbol as a 1x1 block in a box of width “w”. Glue the cubes for siblings
together into a block, then glue spouses together. Treat the blocks as if they are
on rollers, and can slide from left to right in the box. Finally attach a spring
from each parent pair to the children. The plotting routine (through the use
of the functions alignped1, alignped2, alignped3 and alignped4) tries to place
all these boxes together in the most compact way possible. The nomenclature
used to describe the various relationships between individuals is a modification
of the recommendations by Bennett et. al [2]. Not all the features listed in this
article have been implemented, and because of the compression lines connecting
individuals aren’t exactly as shown. The text function, together with the paste

function, are used to add labels of interest to the user.

B.2 Plotting examples

This section includes a few examples of interesting pedigrees. More examples
can be found in testpedigree subdirectory the kinship directory.

These routines are set up to plot one pedigree at a time (though it is easy
in Splus to loop through multiple pedigrees). It is assumed that the pedigree
data includes a unique person ID, as well as Father ID, Mother ID, and sex
for each person. For people without parents, a zero (“0”) is used to indicate
missing ID’s. Note that each person must have either no parents, or 2 parents.

30

35

30

4

10

36

7

2

24

20

6

27

21

5

16

34

9

17

33

3

18

37

12

1

11

28

29

52

22

53

23 32 31 50 55 56 49

Figure 3: Default plot

Other possible arguments are affection status, a death indicator, and a special
relationship matrix.

Pedigree objects are created and plotted using the following code. The plot

function, by default, labels individuals with the id value (see figure 3).

> ped1 <- pedigree(id= data1$id, momid=data1$momid,

dadid=data1$dadid, sex=data1$sex,

affected=data1$affect)

> names(ped1)

[1] "id" "momid" "dadid" "sex" "depth" "affected" "status"

[8] "hints"

> plot(ped1) ## original plot

> ind.col <- rep(1,length(dtest$upn))

> ind.col[dtest$upn==11] <- 2

> plot(ped1,col=ind.col) ## indicate color of each person

> plot(ped1,status=data1$dead) ## indicate death

> plot(ped1, id=rep(’m1 n bmi’,36)) ## indicate patient features

> ped2 <- pedigree(id=data1$upn,momid=data1$momid,dadid=data1$dadid,

sex=data1$sex,affected=data1$affect,

relation=matrix(c(17,18,1),ncol=3))

> plot(ped2) ## indicate twins

31

35

30

4

10

36

7

2

24

20

6

27

21

5

16

34

9

17

33

3

18

37

12

1

11

28

29

52

22

53

23 32 31 50 55 56 49

Figure 4: Original plot, but ’extra’ affection status values added in

35

30

4

10

36

7

2

24

20

6

27

21

5

16

34

9

17

33

3

18

37

12

1

11

28

29

52

22

53

23 32 31 50 55 56 49

Figure 5: Indicate vital status

32

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

m1
bmi

Figure 6: Use labels to indicate patient characteristics, use slash n for multiple lines

35

30

4

10

36

7

2

24

20

6

27

21

5

16

34

9

17

33

3

18

37

12

1

11

28

29

52

22

53

23 32 31 50 55 56 49

Figure 7: Indicate twins

33

1

5

9

14

2

3

10

3

6

13

4

7 2 8 11 12

Figure 8: Show a pedigree with loops

Additional features include adding in color to highlight certain people, adding
in vital status 5), indicating patient characteristics (see Figure 6), indicating
twins (see Figure 7), and indicating loops (see Figure 8).

C Manual pages

C.1 align.pedigree

Given a pedigree, this function creates helper matrices that describe the layout
of a plot of the pedigree.

align.pedigree(ped, packed=T, hints=ped$hints, width=6, align=T)

Required arguments

ped a pedigree object

Optional arguments

packed should the pedigree be compressed, i.e., to allow diagonal lines con-
necting parents to children in order to have a smaller overall width for the
plot.

34

hints two column hints matrix. The first column determines the relative order
of subjects within a sibship, as well as the relative order of processing for
the founder couples. (For this latter, the female founders are ordered as
though they were sisters). The second column contains spouse informa-
tion, e.g., if hints[2,6] = 17, then subject number 17 of the pedigree is a
spouse of number 2, and is preferentially plotted to the right of number
2. Negative numbers plot the spouse preferentially to the left.

width for a packed output, the minimum width

align should iterations of the ‘springs’ algorithm be used to improve the plotted
output. If True, a default number of iterations is used. If numeric, this
specifies the number of iterations.

Return value: a structure with components:

n a vector giving the number of subjects on each horizonal level of the plot

nid a matrix with one row for each level, giving the numeric id of each subject
plotted. (An value of 17 means the 17th subject in the pedigree).

pos a matrix giving the horizontal position of each plot point

fam a matrix giving the family id of each plot point. A value of ”3” would
mean that the two subjects in positions 3 and 4, in the row above, are this
subject’s parents.

spouse a matrix with values 1= subject plotted to the immediate right is a
spouse, 2= subject plotted to the immediate right is an inbred spouse, 0
= not a spouse

twins optional matrix which will only be present if the pedigree contains twins.
It has values 1= sibling to the right is a monozygotic twin, 2= sibling to
the right is a dizygotic twin, 3= sibling to the right is a twin of unknown
zygosity, 0 = not a twin

This is an internal routine, used almost exclusively by plot.pedigree. The
subservient functions alignped1, alignped2, alignped3, and alignped4 contain the
bulk of the computation.

C.2 autohint

A pedigree structure can contain a hints matrix which helps to reorder the
pedigree (e.g. left-to-right order of children within family) so as to plot with
minimal distortion. This routine is called by the pedigree function to create an
intial hints matrix.

autohint(ped)

Required arguments

35

ped a pedigree structure

Return value

a two column hints matrix

This routine would not normally be called by a user. It moves children
within families, so that marriages are on the ”edge” of a set children, closest
to the spouse. For pedigrees that have only a single connection between two
families this simple-minded approach works surprisingly well. For more complex
structures either hand-tuning of the hints matrix, or use of the besthint routine
will usually be required.

C.3 bdsmatrix.ibd

Routines that create identity-by-descent (ibd) coefficients often output their
results as a list of values (i, j, x[i,j]), with unlisted values of the x matrix assumed
to be zero. This routine recasts such a list into bdsmatrix form.

bdsmatrix.ibd(id1, id2, x, idmap, diagonal=1)

Required arguments

id1 row identifier for the value, in the final matrix. Optionally, id1 can be a 3
column matrix or data.frame, in which case it is assumed to contain the
first 3 arguments, in order.

id2 column identifier for the value, in the final matrix.

x the value to place in the matrix

Optional arguments

idmap a two column matrix or data frame. Sometimes routines create output
with integer values for id1 and id2, and then this argument is the mapping
from this internal label to the “real” name).

diagonal If diagonal elements are not preserved in the list, this value will be
used for the diagonal of the result. If the argument appears, then the
output matrix will contain an entry for each value in idlist. Otherwise
only those with an explicit entry appear.

Return value

a bdsmatrix object representing a block-diagonal sparse matrix.

The routine first checks for non-symmetric or otherwise inconsistent input.
It then groups observations together into ‘families’ of related subjects, which
determines the structure of the final matrix. As with the makekinship function,
singletons with no relationships are first in the output matrix, and then families
appear one by one.

36

C.4 bdsmatrix

Sparse block diagonal matrices are used in the the large parameter matrices that
can arise in random-effects coxph and survReg models. This routine creates such
a matrix. Methods for these matrices allow them to be manipulated much like
an ordinary matrix, but the total memory use can be much smaller.

bdsmatrix(blocksize, blocks, rmat, dimnames)

Required arguments

blocksize vector of sizes for the matrices on the diagonal

blocks contents of the diagonal blocks, strung out as a vector

Optional arguments

rmat the dense portion of the matrix, forming a right and lower border

dimnames a list of dimension names for the matrix

Return value

an object of type bdsmatrix

Consider the following matrix, which has been divided into 4 parts.

1 2 0 0 0 | 4 5
2 1 0 0 0 | 6 7
0 0 3 1 2 | 8 8
0 0 1 4 3 | 1 1
0 0 2 3 5 | 2 2
--------------+-----
4 6 8 1 2 | 7 6
5 7 8 1 2 | 6 9

The upper left is block diagonal, and can be stored in a compressed form without
the zeros. With a large number of blocks, the zeros can actually account for
over 99% of a matrix; this commonly happens with the kinship matrix for a
large collection of families (one block/family). The arguments to this routine
would be block sizes of 2 and 3, along with a 2 by 7 ”right hand” matrix. Since
the matrix is symmetrical, the bottom slice is not needed.

The matrix shown above is created by

tmat <- bdsmatrix(c(2,3), c(1,2,1, 3,1,2, 4,3, 5),

rmat=matrix(c(4,6,8,1,2,7,6, 5,7,8,1,2,6,9), ncol=2))

Note that only the lower part of the blocks is needed, however, the

entire block set is also allowed, i.e., c(1,2,2,1, 3,1,2,1,4,3,2,3,5)

37

C.5 besthint

A pedigree structure can contain a hints matrix which helps to reorder the
pedigree (e.g. left-to-right order of children within family) so as to plot with
minimal distortion. This routine trys out a large number of configurations,
finding the best by brute force.

besthint(ped, wt=c(1000, 10, 1), tolerance=0)

Required arguments

ped a pedigree object

Optional arguments

wt relative weights for three types of ”distortion” in a plotted pedigree. The
final score for a pedigree is the weighted sum of these; the lowest score is
considered the best. The three components are 1: the number of dotted
lines, connecting two instances of the same person; 2: the lengths of those
dotted lines; and 3: the horizontal offsets between parent/child pairs.

tolerance the threshold for acceptance. If any of the orderings that are at-
tempted have a score that is less than or equal to this value, the routine
ceases searching for a better one.

Return value

a hints matrix

Assume that a pedigree has k founding couples, i.e., husband-wife pairs for
which neither has a parent in the pedigree. The routine tries all k!/2 possible left
to right orderings of the founders (in random order), uses the autohint function
to optimize the order of children within each family, and computes a score. The
hints matrix for the first pedigree to match the tolerance level is returned, or
that for the best score found if none match the tolerance.

Find a good plot, only trying to avoid dotted connectors

myped$hints <- besthint(myped, wt=c(1000,100,0))

C.6 coxme.control

Set various control parameters for the coxme function.

coxme.control(eps=0.00001, toler.chol=.Machine$double.eps^0.75,

toler.ms=.01, inner.iter=4, iter.max=10, sparse.calc=NULL)

Optional arguments

eps convergence criteria. Iteration ceases when the relative change in the log-
likelihood is less than eps.

38

toler.chol tolerance that is used to detect singularity, i.e., redundant predictor
variables in the model, in the underlying Cholesky decompostion routines.

toler.ms convergence criteria for the minimization of the integrated loglikeli-
hood over the variance parameters. Since this “outer” iteration uses the
Cox iteration as an inner loop, and the Cox iteration in turn uses the
cholesky decomposition as an inner look, each of these treating the com-
putations below it as if they were exact, the cholesky tolerance should be
tighter than the Cox tolerance, which in turn should be tighter than that
for the variance estimates. Also keep in mind that for any but enormous
data sets, the standard errors of the variance terms are often of the order
of 10-20% of their value. It does not make much sense to iterate to a
“precision” of .0001 on a value with statistical uncertainty of 0.1.

inner.iter the number of iterations for the inner iteration loop.

iter.max maximum number of iterations for solution of a Cox partial likeli-
hood, given the values of the random effect variances. Calls with iter=0
are useful to evaluate the likelihood for a prespecified parameter vector,
such as in the computation of a profile likelihood.

sparse.calc style of computation for the inner likelihood code. The results of
the two computations are identical, but can differ in total compute time.
The optional calculation (calc=1) uses somewhat more memory, but can
be substantially faster when the total number of random effects is of order
n, the total sample size. The standard calculation (calc=0) is faster when
the number of random effects is small. By default, the coxme.fit function
chooses the method dynamically. It may not always do so optimally.

Return value

a list containing values for each option.

The central computation of coxme consists of an outer maximization to
determine the variances of the random effects, performed by the nlmin function.
Each evaluation for nlmin, however, itself requires the solution of a minimization
problem; this is the inner loop. It is important that the inner loop use a fixed
number of iterations, but it is not yet clear what is the minimal sufficient number
for that inner loop. Making this number smaller will make the routine faster,
but perhaps at the expense of accuracy.

C.7 coxme

Returns an object of class coxme representing the fitted model.

coxme(fixed, data, random,

weights, subset, na.action, init, control,

ties=c("efron", "breslow", "exact"), singular.ok=T,

varlist, variance, vinit=.2, sparse=c(50, .02), rescale=T, x=F, y=T, ...)

39

Required arguments

fixed formula decribing the fixed effects part of the model.

data a data frame containing the variables.

random a one-sided formula describing the random effects part of the model.

Optional arguments

weights case weights for each observation

subset an expression describing the subset of the data that should be used in
the fit.

na.action a function giving the default action on encountering missing values.
It is more usual to use the global na.action system option to control this.

init initial values for the coefficients for the fixed portion of the model, or the
frailties followed by the fixed effect coefficients.

control the result of a call to coxph.control

ties the approximation to be used for tied death times: either ”efron” or ”bres-
low”

singular.ok if TRUE, then redundant coefficients among the fixed effects are
set to NA, if FALSE the program will fail with an error message if there
are redundant variables.

varlist variance specifications, often of class bdsmatrix, decsribing the vari-
ance/covariance structure of one or more of the random effects.

variance fixed values for the variances of selected random effects. Values of 0
are placeholders and do not specify a fixed value.

vinit the initial value to be used for the variance estimates. This only applies
to those parameters that were not given a fixed value. The default value
reflects two things: first that final results are in the range [0, .5] much of
the time, and second that the inner Cox model iteration can sometimes
become unstable for variance parameters larger than 1–2.

sparse determines which levels of the random effects factor variables, if any,
for which the program will use sparse matrix techniques. If a grouping
variable has less than sparse[1] levels, then sparse methods are not used
for that variable. If it has greater than or equal to sparse[1] unique levels,
sparse methods will be used for those values which represent less than
sparse[2] as a proportion of the data. For instance, if a grouping variable
has 4000 levels, but 40% of the subjects are in group 1, 10% in group 2
and the rest distributed evenly, then 3998 of the levels will be represented
sparsely in the variance matrix. A single logical value of F is equivalent
to setting sparse[1] to infinity.

40

rescale scale any user supplied variance matrices so as to have a diagonal of
1.0.

pdcheck verify that any user-supplied variance matrix is positive definite (SPD).
It has been observed that IBD matrices produced by some software are not
strictly SPD. Sometimes models with these matrices still work (through-
out the iteration path, the weighted sum of variance matrices was always
SPD) and sometimes they don’t. In the latter case, the occurence of non-
spd matrices will effectively constrain some variance parameters away from
0.

x retain the X matrix in the output.

y retain the dependent variable (a Surv object) in the output.

Return value

an object of class coxme

C.8 familycheck

Compute the familial grouping structure directly from (id, mother, father) in-
formation, and compare the results to the supplied family id variable.

familycheck(famid, id, father.id, mother.id, newfam)

Required arguments

famid a vector of family identifiers

id a vector of unique subject identifiers

father.id vector containing the id of the biological father

mother.id vector containing the id of the biological mother

Optional arguments

newfam the result of a call to makefamid. If this has allready been computed
by the user, adding it as an argument shortens the running time somewhat.

Return value: a data frame with one row for each unique family id in the
famid argument.

famid the family id, as entered into the data set

n number of subjects in the family

unrelated number of them that appear to be unrelated to anyone else in the
entire pedigree set. This is usually marry-ins with no children (in the
pedigree), and if so are not a problem.

41

split number of unique ”new” family ids. If this is 0, it means that no one in
this ”family” is related to anyone else (not good); 1 = everythings is fine;
2+= the family appears to be a set of disjoint trees. Are you missing some
of the people?

join number of other families that had a unique famid, but are actually joined
to this one. 0 is the hope. If there are any joins, then an attribute ”join”
is attached. It will be a matrix with famid as row labels, new-family-id as
the columns, and the number of subjects as entries.

The makefamid function is used to create a de novo family id from the
parentage data, and this is compared to the family id given in the data. make-
famid, makekinship

C.9 gchol

Perform the generalized Cholesky decompostion of a real symmetric matrix.

gchol(x, tolerance=1e-10)

Required arguments

x the symmetric matrix to be factored

Optional arguments

tolerance the numeric tolerance for detection of singular columns in x.

Return value

an object of class gchol containing the generalized Cholesky decompostion. It
has the appearance of a lower triangular matrix.

The solve has a method for gchol decompostions, and there are gchol methods
for block diagonal symmetric (bdsmatrix) matrices as well.

Create a matrix that is symmetric, but not positive definite

The matrix temp has column 6 redundant with cols 1-5

smat <- matrix(1:64, ncol=8)

smat <- smat + t(smat) + diag(rep(20,8)) #smat is 8 by 8 symmetric

temp <- smat[c(1:5, 5:8), c(1:5, 5:8)]

ch1 <- gchol(temp)

print(as.matrix(ch1)) # print out L

print(diag(ch1)) # print out D

aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))

aeq(diag(ch1)[6], 0) # Check that it has a zero in the proper place

ginv <- solve(ch1) # see if I get a generalized inverse

aeq(temp %*% ginv %*% temp, temp)

aeq(ginv %*% temp %*% ginv, ginv)

42

C.10 kinship

Computes the n by n kinship matrix for a set of n related subjects

kinship(id, father.id, mother.id)

Required arguments

id a vector of subject identifiers. It may be either numeric or character.

father.id for each subject, the identifier of the biological father.

mother.id for each subject, the identifier of the biological mother.

Return value

a matrix of kinship coefficients.

Two genes G1 and G2 are identical by descent (ibd) if they are both physical
copies of the same ancestral gene; two genes are identical by state if they rep-
resent the same allele. So the brown eye gene that I inherited from my mother
is ibd with hers; the same gene in an unrelated individual is not.

The kinship coefficient between two subjects is the probability that a ran-
domly selected allele will be ibd between them. It is obviously 0 between unre-
lated individuals. If there is no inbreeding in the pedigree, it will be .5 for an
individual with themselves (we could choose the same allele twice), .25 between
mother and child, etc [5].

The computation is based on a recursive algorithm described in Lange. It is
unfortunately not vectorizable, so the S code is slow. For studies with multiple
disjoint families see the makekinship routine.

test1 <- data.frame(id =c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),

mom =c(0, 0, 0, 0, 2, 2, 4, 4, 6, 2, 0, 0, 12, 13),

dad =c(0, 0, 0, 0, 1, 1, 3, 3, 3, 7, 0, 0, 11, 10),

sex =c(0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1))

round(8*kinship(test1$id, test1$dad, test1$mom))

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 4 0 0 0 2 2 0 0 1 0 0 0 0 0

2 0 4 0 0 2 2 0 0 1 2 0 0 0 1

3 0 0 4 0 0 0 2 2 2 1 0 0 0 0

4 0 0 0 4 0 0 2 2 0 1 0 0 0 0

5 2 2 0 0 4 2 0 0 1 1 0 0 0 0

6 2 2 0 0 2 4 0 0 2 1 0 0 0 0

7 0 0 2 2 0 0 4 2 1 2 0 0 0 1

8 0 0 2 2 0 0 2 4 1 1 0 0 0 0

9 1 1 2 0 1 2 1 1 4 1 0 0 0 0

10 0 2 1 1 1 1 2 1 1 4 0 0 0 2

11 0 0 0 0 0 0 0 0 0 0 4 0 2 1

12 0 0 0 0 0 0 0 0 0 0 0 4 2 1

13 0 0 0 0 0 0 0 0 0 0 2 2 4 2

14 0 1 0 0 0 0 1 0 0 2 1 1 2 4

genetics

43

C.11 lmekin

A similar function to lme, but allowing for a complete specification of the co-
variance matrix for the random effects.

lmekin(fixed, data=sys.parent, random,

varlist, variance, sparse=c(20, .05),

rescale=T, pdcheck=T,

subset, weight, na.action)

Required arguments

fixed model statement for the fixed effects

random model statement for the random effects

Optional arguments

data data frame containing the variables

varlist variance specifications, often of class bdsmatrix, describing the vari-
ance/covariance structure of one or more of the random effects.

variance fixed values for the variances of selected random effects. Values of 0
indicate that the final value should be solved for.

sparse determines which levels of random effects factor variables, if any, for
which the program will use sparse matrix techniques. If a grouping vari-
able has less than sparse[1] levels, then sparse methods are not used for
that variable. If it has greater than or equal to sparse[1] unique levels,
sparse methods will be used for those values which represent less than
sparse[2] as a proportion of the data. For instance, if a grouping variable
has 4000 levels, but 40subjects are in group 1 then 3999 of the levels will
be represented sparsely in the variance matrix. A single logical value of F
is equivalent to setting sparse[1] to infinity.

rescale scale any user supplied variance matrices so as to have a diagonal of
1.0.

pdcheck verify that any user-supplied variance matrix is positive definite (SPD).
It has been observed that IBD matrices produced by some software are not
strictly SPD. Sometimes models with these matrices still work (through-
out the iteration path, the weighted sum of variance matrices was always
SPD) and sometimes they don’t. In the latter case, messages about taking
the log of negative numbers will occur, and the results of the fit are not
necessarily trustworthy.

subset selection of a subset of data

weight optional case weights

na.action the action for missing data values

44

Return value

an object of class lmekin, sharing similarities with both lm and lme objects.

The lme function is designed to accept a prototype for the variance matrix
of the random effects, with the same prototype applying to all of the groups in
the data. For familial genetic random effects, however, each family has a dif-
ferent covariance pattern, necessitating the input of the entire set of covariance
matrices. In return, at present lmekin does not have the prototype abilities of
lme.

#

Make a kinship matrix for the entire study

These two functions are NOT fast, the makekinship one in particular

#

cfam <- makefamid(main$gid, main$momid, main$dadid)

kmat <- makekinship(cfam, main$gid, main$momid, main$dadid)

The kinship matrix for the females only: quite a bit smaller

#

kid <- dimnames(kmat)[[1]]

temp <- main$sex[match(kid, main$gid)] == ’F’

fkmat <- kmat[temp,temp]

The dimnames on kmat are the gid value, which are necessary to match

the appropriate row/col of kmat to the analysis data set

A look at %dense tissue on a mammogram, with age at mammogram and

weight as covariates, and a familial random effect

#

fit <- lmekin(percdens ~ mammage + weight, data=anal1,

random = ~1|gid, kmat=fkmat)

Linear mixed-effects kinship model fit by maximum likelihood

Data: anal1

Log-likelihood = -6093.917

n= 1535

Fixed effects: percdens ~ mammage + weight

(Intercept) mammage weight

87.1593 -0.5333198 -0.1948871

Random effects: ~ 1 | gid

Kinship Residual

StdDev: 7.801603 10.26612

C.12 makefamid

Given a set of parentage relationships, this subdivides a set of subjects into
families.

45

makefamid(id, father.id, mother.id)

Required arguments

id a vector of unique subject identifiers

father.id for each subject, the identifier of their biological father

mother.id for each subject, the identifier of their biological mother

Return value

a vector of family identifiers. Individuals who are not blood relatives of anyone
else in the data set as assigned a family id of 0.

This function may be useful to create a family identifier if none exists in the
data (rare), to check for anomalies in a given family identifier (see the family-
check function), or to create a more space and time efficient kinship matrix by
separating out marry-ins without children as ’unrelated’. makefamid, kinship,
makekinship

> newid <- makefamid(cdata$gid, cdata$dadid, cdata$momid)

> table(newid==0)

FALSE TRUE

17859 8191

So nearly 1/3 of the individuals are not blood relatives.

> kin1 <- makekinship(cdata$famid, cdata$gid, cdata$dadid, cdata$momid)

> kin2 <- makekinship(newid, cdata$gid, cdata$dadid, cdata$momid, unique=0)

> dim(kin2)

[1] 26050 26050

> dim(kin1)

[1] 26050 26050

> length(kin2@blocks)/length(kin1@blocks)

[1] 0.542462

Basing kin1 on newid rather than cdata$famid (where marry-ins were each

labeled as members of one of the 426 families) reduced its size by just

less than half.

C.13 makekinship

Compute the overall kinship matrix for a collection of families, and store it
efficiently.

makekinship(famid, id, father.id, mother.id, father.id, unrelated=0)

Required arguments

famid a vector of family identifiers

id a vector of unique subject identifiers

46

father.id for each subject, the identifier of their biolgical father

mother.id for each subject, the identifier of thier biological mother

Optional arguments

unrelated subjects with this family id are considered to be unrelated single-
tons, i.e., not related to each other or to anyone else.

Return value

a sparse kinship matrix of class bdsmatrix

For each family of more than one member, the kinship function is called to
calculate a per-family kinship matrix. These are stored in an efficient way into
a single block-diagaonal sparse matrix object, taking advantage of the fact that
between family entries in the full matrix are all 0. Unrelated individuals are
considered to be families of size 0, and are placed first in the matrix. ¡br¿¡br¿
The final order of the rows within this matrix will not necessarily be the same
as in the origianl data, since each family must be contiguous. The dimnames
of the matrix contain the id variable for each row/column. Also note that to
create the kinship matrix for a subset of the data it is necessary to create the
full kinship matrix first and then subset it. One cannot first subset the data
and then call the function. For instance, a call using only the female data would
not detect that a particular man’s sister and his daughter are related.

Data set from a large family study of breast cancer

there are 26050 subjects in the file, from 426 families

> table(cdata$sex)

F M

12699 13351

> length(unique(cdata$famid))

[1] 426

> kin1 <- makekinship(cdata$famid, cdata$gid, cdata$dadid, cdata$momid)

> dim(kin1)

[1] 26050 26050

> class(kin1)

[1] "bdsmatrix"

The next line shows that few of the elements of the full matrix are >0

> length(kin1@blocks)/ prod(dim(kin1))

[1] 0.00164925

kinship matrix for the females only

femid <- cdata$gid[cdata$sex==’F’]

femindex <- !is.na(match(dimnames(kin1)[[1]], femid))

kin2 <- kin1[femindex, femindex]

#

Note that "femindex <- match(femid, dimnames(kin1)[[1]])" is wrong, since

then kin1[femindex, femindex] might improperly reorder the rows/cols

(if families were not contiguous in cdata).

However sort(match(femid, dimnames(kin1)[[1]])) would be okay.

47

C.14 pedigree

Create pedigree structure in format needed for plotting function.

pedigree(id, momid, dadid, sex, affected, status, ...)

Required arguments

id Identification variable for individual

momid Identification variable for mother

dadid Identification variable for father

sex Gender of individual noted in ‘id’. Character(”male”,”female”,”unknown”,
”terminated”) or numeric (1=”male”, 2=”female”, 3=”unknown”, 4=”ter-
minated”) allowed.

Optional arguments

affected One variable, or a matrix, indicating affection status. Assumed that
1=”unaffected”, 2=”affected”, NA or 0 = ”unknown”.

status Status (0=”censored”, 1=”dead”)

... Additional variables to be carried along with the pedigree.

Return value

An object of class pedigree.

C.15 plot.pedigree

plot objects created with the function pedigree

plot.pedigree(x, id=x$id, sex=x$sex, status=x$status,

affected=as.matrix(x$affected), cex=1,

col=rep(1, length(x$id)), symbolsize=1,

branch=0.6, packed=T, align=packed, width=8,

density=c(-1, 50, 70, 90), angle=c(90, 70, 50, 0))

Required arguments

x object created by the function pedigree.

Optional arguments

id id variable - used for labeling.

sex sex variable - used to determine which symbols are plotted.

status can be missing. If it exists, 0=alive/missing and 1=death.

affected variable, or matrix, of up to 4 columns representing 4 different affected
statuses.

48

cex controls text size. Default=1.

col color for each id. Default assigns the same color to everyone.

symbolsize controls symbolsize. Default=1.

branch defines how much angle is used to connect various levels of nuclear
families.

packed default=T. If T, uniform distance between all individuals at a given
level.

align

width

density defines density used in the symbols. Takes up to 4 different values.

angle defines angle used in the symbols. Takes up to 4 different values.

Return value: returns points for each plot plus original pedigree.

C.16 solve.bdsmatrix

This function solves the equation Ax=b for x, when A is a block diagonal sparse
matrix (an object of class bdsmatrix).

solve.bdsmatrix(a, b, tolerance=1e-10, full=T)

Required arguments

a a block diagonal sparse matrix object

Optional arguments

b a numeric vector or matrix, that forms the right-hand side of the equation.

tolerance the tolerance for detecting singularity in the a matrix

full if true, return the full inverse matrix; if false return only that portion
corresponding to the blocks. This argument is ignored if b is present. If
the bdsmatrix a has a non-sparse portion, i.e., if the rmat component is
present, then the inverse of a will not be block-diagonal sparse. In this
case setting full=F returns only a portion of the inverse. The elements
that are returned are those of the full inverse, but the off-diagonal elements
that are not returned would not have been zero.

Return value: if argument b is not present, the inverse of a is returned, other-
wise the solution to matrix equation. The equation is solved using a generalized
Cholesky decomposition.

The matrix a consists of a block diagonal sparse portion with an optional
dense border. The inverse of a, which is to be computed if y is not provided,

49

will have the same block diagonal structure as a only if there is no dense border,
otherwise the resulting matrix will not be sparse.

However, these matrices may often be very large, and a non sparse version
of one of them will require gigabytes of even terabytes of space. For one of
the common computations (degrees of freedom in a penalized model) only those
elements of the inverse that correspond to the non-zero part of a are required;
the full=F option returns only that portion of the (block diagonal portion of)
the inverse matrix.

> tmat <- bdsmatrix(c(3,2,2,4),

c(22,1,2,21,3,20,19,4,18,17,5,16,15,6,7, 8,14,9,10,13,11,12),

matrix(c(1,0,1,1,0,0,1,1,0,1,0,10,0,

0,1,1,0,1,1,0,1,1,0,1,0,10), ncol=2))

> dim(tmat)

[1] 13 13

> solve(tmat, cbind(1:13, rep(1,13)))

C.17 solve.gchol

This function solves the equation Ax=b for x, given b and the generalized
Cholesky decomposition of A. If only the first argument is given, then a G-
inverse of A is returned.

solve.gchol(a, b, full=T)

Required arguments

a a generalized Cholesky decomposition of a matrix, as returned by the gchol
function.

Optional arguments

b a numeric vector or matrix, that forms the right-hand side of the equation.

full solve the problem for the full (original) matrix, or for the Cholesky matrix.

Return value

if argument b is not present, the inverse of a is returned, otherwise the solution
to matrix equation.

A symmetric matrix A can be decomposed as LDL’, where L is a lower
triangular matrix with 1’s on the diagonal, L’ is the transpose of L, and D is
diagonal. This routine solves either the original problem Ay=b (full argument)
or the subproblem sqrt(D)L’y=b. If b is missing it returns the inverse of A or
L, respectively.

Create a matrix that is symmetric, but not positive definite

The matrix temp has column 6 redundant with columns 1-5

> smat <- matrix(1:64, ncol=8)

> smat <- smat + t(smat) + diag(rep(20,8)) #smat is 8 by 8 symmetric

50

> temp <- smat[c(1:5, 5:8), c(1:5, 5:8)]

> ch1 <- gchol(temp)

> print(as.matrix(ch1)) # print out L

> print(diag(ch1)) # print out D

> aeq <- function(x,y) all.equal(as.vector(x), as.vector(y))

> aeq(diag(ch1)[6], 0) # Check that it has a zero in the proper place

> ginv <- solve(ch1) # see if I get a generalized inverse

> aeq(temp %*% ginv %*% temp, temp)

> aeq(ginv %*% temp %*% ginv, ginv)

D Model statements

The coxme and lmekin agree with the lme function in how they process simple
random effects formulas. The simplest model is of the form covariate | group.
Two routines from the lme suite break this formula apart nicely:

> test <- ~ (age + weight) | inst/sex

> getGroupsFormula(test)

~ inst/sex

> getCovariateFormula(test)

~ (age + weight)

The functions, however, do not properly extend to multiple terms,

> getGroupsFormula(~1|inst + age|sex)

~ sex

> getCovariateFormula(~1|inst + age|sex)

~ 1 | inst + age

Further exploration shows that a formula object is stored as a recursive parse
tree, with vertical bar binding least tightly. (Operator precedence is first the
parenthesis, then the caret, then */, then +-, then |). Operators of the same
precedence are processed from right to left. Consider the following potential
formula, consisting of a random institutional effect along with random slopes
within gender:

> test <- ~ 1|inst + age|sex

> class(test)

[1] "formula"

> length(test)

[1] 2

> test[[1]]

~

> test[[2]]

1 | inst + age | sex

> class(test[[2]])

[1] "call"

> length(test[[2]])

[1] 3

51

The full tree is shown below, giving each object followed by its class in paren-
thesis. The left hand column shows the top level list of length 2; it’s second
element is itself a list of length 3 shown in the next column, etc.

∼ (name)

1|inst + age|sex(call)



|(name)

1|inst + age (call)


| (name)
1 (integer)

inst + age (call)

 +(name)
inst(name)
age (name)

sex(name)

So test[[2]][[2]][[3]][[3]] is age.
The lme functions simply assume that the parse tree will have a partic-

ular structure; they fail for instance on a parenthesized expression random=

(1|group). We have added getCrossedTerms, which breaks the formula into
distinct crossed terms, e.g. the formula ∼ 1|inst + age|sex ends up as a list
with two components ∼ 1|inst and ∼ age|sex, each of which is appropriate for
further processing. The getGroupsFormula and getCovariatesFormula routines
can then be called on the simpler objects.

In extending to more complex structures lme uses pdMat structures, for which
we essentially could never figure out the computer code; coxme moves forward
with a varlist. Much of the reason for this is actually computational, as the
elegant decomposition methods used by lme for speed are not available in more
general likelihoods, negating much of the advantage of pdMat.

References

[1] V. E Anderson, H. O. Goodman, and S. Reed. Variables Related to Human
Breast Cancer. University of Minnesota Press, Minneapolis, 1958.

[2] R. L. Bennett, K. A. Steinhaus, S. B. Uhrich, C. K. O’Sullivan, R. G. Resta,
D. Lochner-Doyle, D. S. Markel, V. Vincent, and J. Hamanishi. Recom-
mendations for standardized human pedigree nomenclature. American J
of Human Genetics, 56:745–752, 1995.

[3] J. Blangero and L. Almasy. Solar: sequential oligogenic linkage analysis
routines. Population Genetics Laboratory Technical Report 6, Southwest
Foundation for Biomedical Research, 1996.

[4] P. P. Broca. Traites de Tumerus, volumes 1 and 2. Asselin, Paris, 1866.

[5] K. Lange. Mathematical and Statistical Methods for Genetic Analysis.
Springer-Verlag, New York, 1997.

[6] K. Lange. Mathematical and Statistical Methods for Genetic Analysis.
Springer-Verlag, New York, 2002.

52

[7] S. Ripatti and J. Palmgren. Estimation of multivariate frailty models using
penalized partial likelihood. Biometrics, 56:1016–1022, 2000.

[8] T. A Sellers, V. E. Anderson, J. D. Potter, S. A. Bartow, P. L. Chen,
L. Everson, R. A. King, C. C. Kuni, L. H. Kushi, P. G. McGovern, S. S.
Rich, J. F. Whitbeck, and G. L. Wiesner. Epidemiologic and genetic follow-
up study of 544 minnesota breast cancer families: Design and methods.
Genetic Epidemiology, 12:417–429, 1995.

[9] T.M. Therneau and P.M. Grambsch. Modeling Survival Data: Extending
the Cox Model. Springer-Verlag, New York, 2000.

[10] E. M. Wijsman, L. Almasy, C. I. Amos, I. Borecki, C. T. Falk, T. M.
King, M. M. Martinez, D. Meyers, R. Neuman, J. M. Olson, S. Rich, M. A.
Spence, D. C. Thomas, V. J. Vieland, J. S. Witte, and J. W. MacCluer.
Genetic analysis workshop 12: Analysis of complex genetic traits: Appli-
cations to asthma and simulated data. Genetic Epidemiology, 21(Suppl
1):S1–S853, 2001.

[11] K. K .W. Yau and C. A. McGilchrist. Use of generalised linear mixed
models for the analysis of clustered survival data. Biometrical Journal,
39:3–11, 1997.

53

	Introduction
	Software
	Random Effects Cox Model
	Sparse matrix computations
	Generalized Cholesky Decomposition
	Block Diagonal Symmetric matrices

	Kinship
	Linear Mixed Effects model
	Breast cancer data set
	Minnesota breast cancer family study
	Correlated Frailty
	Connections between breast and prostate cancer

	Random treatment effect
	Questions and Conclusion
	Sparse terms and factors
	Pedigree Plotting
	Background
	Plotting examples

	Manual pages
	 align.pedigree
	 autohint
	 bdsmatrix.ibd
	 bdsmatrix
	 besthint
	 coxme.control
	 coxme
	 familycheck
	 gchol
	 kinship
	 lmekin
	 makefamid
	 makekinship
	 pedigree
	 plot.pedigree
	 solve.bdsmatrix
	 solve.gchol

	Model statements

