
Using Package NMF

Renaud Gaujoux, <renaud@cbio.uct.ac.za>

June 16, 2010

This vignette presents the NMF package, which implements a framework for Nonegative Ma-
trix Factorization (NMF) algorithms in R [R Software, 2008]. The objective is to provide an
implementation of some standard algorithms, while allowing the user to easily implement new
methods that integrate into the package’s framework.

Contents

1 Overview 2
1.1 Package features . 2
1.2 Nonnegative Matrix Factorization . 3
1.3 Algorithms . 3
1.4 Initialization: seeding methods . 4
1.5 How to run NMF algorithms . 6
1.6 Performances . 6

2 Use case: Golub dataset 7
2.1 Single run . 8

2.1.1 Performing a single run . 8
2.1.2 Handling the result . 8
2.1.3 Extracting metagene-specific features . 10

2.2 Specifying the algorithm . 11
2.2.1 Built-in algorithms . 11
2.2.2 Custom algorithms . 12

2.3 Specifying the seeding method . 12
2.3.1 Built-in seeding method . 12
2.3.2 Numerical seed . 13
2.3.3 Fixed factorization . 13
2.3.4 Custom function . 14

2.4 Multiple runs . 14
2.4.1 Parallel computing on multi-core machines 15
2.4.2 High Performance Computing on a cluster 17
2.4.3 Forcing sequential execution . 18

2.5 Estimating the factorization rank . 18
2.5.1 Overfitting . 20

2.6 Visualization methods . 20
2.7 Comparing algorithms . 23

1

3 Extending the package 25
3.1 Custom algorithm . 26

3.1.1 Using a custom algorithm . 26
3.1.2 Using a custom distance measure . 28
3.1.3 Defining algorithms for mixed sign data 29
3.1.4 Specifying the NMF model . 30

3.2 Custom seeding method . 32

4 Advanced usage 33
4.1 Package specific options . 33

5 Session Info 33

References 34
The last stable version of the NMF package can be installed from any CRAN repository

mirror, , and loaded with the standard calls:

Not run

install.packages('NMF')
library(NMF)

1 Overview

1.1 Package features

This section provides a quick overview of the NMF package’s features. Section 2 provides more
details, as well as sample code on how to actually perform common tasks in NMF analysis.

The NMF package:

• 7 built-in algorithms;

• 4 built-in seeding methods;

• Single interface to perform all aglorithms, and combine them with the seeding methods;

• Provides a common framework to test, compare and develop NMF methods;

• Accept custom algorithms and seeding methods;

• Plotting utility functions to visualize and help in the interpretation of the results;

• Transparent parallel computations;

• Optimized and memory efficient C++ implementations of the standard algorithms;

• Optional layer for bioinformatics based on BioConductor [Gentleman et al., 2004];

2

http://cran.r-project.org

1.2 Nonnegative Matrix Factorization

This section gives a formal definition for Nonnegative Matrix Factorization problems, and defines
the notations used throughout the vignette.

Let X be a n × p non-negative matrix, (i.e with xij ≥ 0, denoted X ≥ 0), and r > 0 an
integer. Non-negative Matrix Factorization (NMF) consists in finding an approximation

X ≈WH , (1)

where W,H are n×r and r×p non-negative matrices, respectively. In practice, the factorization
rank r is often chosen such that r � min(n, p). The objective behind this choice is to summarize
and split the information containned in X into r factors: the columns of W .

Depending on the application field, these factors are given different names: basis images,
metagenes, source signals. In this vignette we equivalenty and alternatively use the terms
basis matrix or metagenes to refer to matrix W , and mixture coefficient matrix and metagene
expression profiles to refer to matrix H.

The main approach to NMF is to estimate matrices W and H as a local minimum:

min
W,H≥0

[D(X,WH) + R(W,H)]︸ ︷︷ ︸
=F (W,H)

(2)

where

• D is a loss function that measures the quality of the approximation. Common loss func-
tions are based on either the Frobenius distance

D : A,B 7→ Tr(ABt)

2
=

1

2

∑
ij

(aij − bij)
2,

or the Kullback-Leibler divergence.

D : A,B 7→ KL(A||B) =
∑
i,j

aij log
aij
bij
− aij + bij .

• R is an optional regularization function, defined to enforce desirable properties on matrices
W and H, such as smoothness or sparsity [A. Cichocki et al., 2004].

1.3 Algorithms

NMF algorithms generally solve problem (2) iteratively, by building a sequence of matrices
(Wk, Hk) that reduces at each step the value of the objective function F . Beside some variations
in the specification of F , they also differ in the optimization techniques that are used to compute
the updates for (Wk, Hk).

For reviews on NMF algorithms see [Berry et al., 2006, Chu et al., 2004] and references
therein.

The NMF package implements a number of published algorithms, and provides a general
framework to implement other ones.

The built-in algorithms are listed or retrieved with function nmfAlgorithm. A given algo-
rithm is retrieved by its name (a character key), that is partially matched against the list of
available algorithms:

list all available algorithms

nmfAlgorithm()

3

Key Description
brunet Standard NMF. Based on Kullbach-Leibler divergence, it uses simple mul-

tiplicative updates from [Lee and Seung, 2000], enhanced to avoid numer-
ical underflow.
Reference: [Brunet et al., 2004]

lee Standard NMF. Based on euclidean distance, it uses simple multiplicative
updates
Reference: [Lee and Seung, 2000]

nsNMF Nonsmooth NMF. Uses a modified version of Lee and Seung’s multiplica-
tive updates for Kullbach-Leibler divergence to fit a extension of the stan-
dard NMF model. It is meant to give sparser results.
Reference: [Pascual-Montano et al., 2006]

offset Uses a modified version of Lee and Seung’s multiplicative updates for
euclidean distance, to fit a NMF model that includes an intercept.
Reference: [Badea L., 2008]

pe-nmf Pattern-Expression NMF. Uses multiplicative updates to minimize an ob-
jective function based on the Euclidean distance and regularized for effec-
tive expression of patterns with basis vectors.
Reference: [Zhang et al., 2008]

snmf/r, snmf/l Alternating Least Square (ALS) approach. It is meant to be very fast.
Reference: [Kim and Park, 2007]

Table 1: Description of the implemented NMF algorithms. The first column gives the key to
use in the call to the nmf function.

[1] "brunet" "lee" "nsNMF" "offset" "pe-nmf" "snmf/l" "snmf/r"

retrieve a specific algorithm: 'brunet'
nmfAlgorithm('brunet')

<object of class: NMFStrategyIterative >

name: brunet

objective: 'KL'

NMF model: NMFstd

<Iterative schema:>

Update : 'nmf.update.brunet'

Stop : 'nmf.stop.consensus'

WrapNMF : ''

partial match is also fine

identical(nmfAlgorithm('br'), nmfAlgorithm('brunet'))
[1] TRUE

Table 1 gives a short description of each one of the built-in algorithms:

1.4 Initialization: seeding methods

NMF algorithms need to be initialized with a seed (i.e. a value for W0 and/or H0
1), from which

to start the iteration process. Because there is no global minimization algorithm, and due to
the problem’s high dimensionality, the choice of the initialization is in fact very important to
ensure meaningful results.

1Some algorithms only need one matrix factor (either W or H) to be initialized. See for example the
SNMF/R(L) algorithm of Kim and Park [Kim and Park, 2007].

4

Key Description
ica Uses the result of an Independent Component Analysis (ICA) (from the fastICA

package). Only the positive part of the result are used to initialize the factors.
nnsvd Nonnegative Double Singular Value Decomposition. The basic algorithm contains

no randomization and is based on two SVD processes, one approximating the data
matrix, the other approximating positive sections of the resulting partial SVD
factors utilizing an algebraic property of unit rank matrices. It is well suited to
initialize NMF algorithms with sparse factors. Simple practical variants of the
algorithm allows to generate dense factors.
Reference: [?]

none Fix seed. This method allows the user to manually provide initial values for both
matrix factors.

random The entries of each factors are drawn from a uniform distribution over [0,max(V)],
where V is the target matrix.

Table 2: Description of the implemented seeding methods to initialize NMF algorithms. The
first column gives the key to use in the call to the nmf function.

The more common seeding method is to use a random starting point, where the entries of W
and/or H are drawn from a uniform distribution, usually within the same range as the target
matrix’s entries. This method is very simple to implement. However, a major drawback is that
to achieve stability it requires to perform multiple runs, each with a different starting point.
This significantly increases the computation time needed to obtain the desired factorization.

To tackle this problem, some methods have been proposed so as to compute a reasonnable
starting point from the target matrix itself. The objective is to produce deterministic algorithms
that need to run only once, still giving meaningful results.

For a review on some existing NMF initializations see [Albright et al., 2006] and references
therein.

The NMF package implements a number of already published seeding methods, and provides
a general framework to implement other ones.

The built-in seeding methods are listed or retrieved with function nmfSeed. A given seeding
method is retrieved by its name (a character key) that is partially matched against the list of
available seeding methods:

list all available seeding methods

nmfSeed()

[1] "ica" "nndsvd" "none" "random"

retrieve a specific method: 'nndsvd'
nmfSeed('nndsvd')

<object of class: NMFSeed >

name: nndsvd

method: <function>

partial match is also fine

identical(nmfSeed('nn'), nmfSeed('nndsvd'))
[1] TRUE

Table 2 gives a short description of each one of the built-in seeding methods:

5

1.5 How to run NMF algorithms

Method nmf provides a single interface to run NMF algorithms. It can directly perform NMF on
object of class matrix or data.frame and ExpressionSet – if the Biobase package is installed.
The interface has four main parameters:

nmf(x, rank, method, seed, ...)

x is the target matrix, data.frame or ExpressionSet 2

rank is the factorization rank, i.e. the number of columns in matrix W .

method is the algorithm used to estimate the factorization. The default algorithm is given
by the package specific option ’default.algorithm’, which defaults to ’brunet’ on
installation [Brunet et al., 2004].

seed is the seeding method used to compute the starting point. The default method is given by
the package specific option ’default.seed’, which defaults to ’random’ on initialization
(see method ?rnmf for details on its implementation).

See also ?nmf for details on the interface and extra parameters.

1.6 Performances

Since version 0.4, some built-in algorithms are optimized in C++, which results in a significant
speed-up and a more efficient memory management, especially on large scale data. The older R
versions of the concerned algorithms are still available, and accessible by adding the prefix ’.R#’

to the algorithms’ access keys (e.g. the key ’.R#offset’ corresponds to the R implementation
of NMF with offset [Badea L., 2008]). Moreover they do not show up in the listing returned by
the nmfAlgorithm function, unless argument all=TRUE:

nmfAlgorithm(all=TRUE)

[1] "brunet" "lee" "nsNMF" "offset" "pe-nmf" ".R#brunet"

[7] ".R#lee" ".R#nsNMF" ".R#offset" "snmf/l" "snmf/r"

to get all the algorithms that have a secondary R version

nmfAlgorithm(type='R')
brunet lee nsNMF offset

".R#brunet" ".R#lee" ".R#nsNMF" ".R#offset"

Table 3 shows the speed-up achieved by the algorithms that benefit from the optimized code.
All algorithms were run once with a factorization rank equal to 3, on the Golub data set which
contains a 5000×38 gene expression matrix. The same numeric random seed (seed=123456) was
used for all factorizations. The columns C and R show the elapsed time (in seconds) achieved
by the C++ version and R version respectively. The column Speed.up contains the ratio R/C.

retrieve all the methods that have a secondary R version

meth <- nmfAlgorithm(type='R')
meth <- c(names(meth), meth)

meth

2ExpressionSet is the base class for handling microarray data in BioConductor, and is defined in the Biobase

package.

6

brunet lee

"brunet" "lee" "nsNMF" "offset" ".R#brunet" ".R#lee"

nsNMF offset

".R#nsNMF" ".R#offset"

load the Golub data

data(esGolub)

compute NMF for each method

res <- nmf(esGolub, 3, meth, seed=123456)

extract only the elapsed time

t <- sapply(res, runtime)[3,]

C R Speed.up
brunet 4.72 11.83 2.50

lee 7.90 11.65 1.47
nsNMF 8.04 16.13 2.01

offset 8.97 21.67 2.42

Table 3: Performance speed up achieved by the optimized C++ implementation for some of the
NMF algorithms.

2 Use case: Golub dataset

We illustrate the functionalities and the usage of the NMF package on the – now standard
– Golub dataset on leukemia. It was used in several papers on NMF [Brunet et al., 2004,
Gao and Church, 2005] and is included in the NMF package’s data, wrapped into an Expres-

sionSet object. For performance reason we use here only the first 200 genes. Therefore the
results shown in the following are not meant to be biologically meaningful, but only illustrative:

data(esGolub)

esGolub

ExpressionSet (storageMode: lockedEnvironment)

assayData: 5000 features, 38 samples

element names: exprs

protocolData: none

phenoData

sampleNames: ALL_19769_B-cell, ALL_23953_B-cell, ..., AML_7 (38 total)

varLabels and varMetadata description:

Sample: Sample name from the file ALL_AML_data.txt

ALL.AML: ALL/AML status

Cell: Cell type

featureData

featureNames: M12759_at, U46006_s_at, ..., D86976_at (5000 total)

fvarLabels and fvarMetadata description:

Description: Short description of the gene

experimentData: use 'experimentData(object)'

Annotation:

esGolub <- esGolub[1:200,]

7

Note: To run this example, the Biobase package from BioConductor is required.

2.1 Single run

2.1.1 Performing a single run

To run the default NMF algorithm on data esGolub with a factorization rank of 3, we call:

default NMF algorithm

res <- nmf(esGolub, 3)

Here we did not specify either the algorithm or the seeding method, so that the computation
is done using the default algorithm and is seeded by the default seeding methods. These defaults
are set in the package specific options ’default.algorithm’ and ’default.seed’ respectively.

See also sections 2.2 and 2.3 for how to explicitly specify the algorithm and/or the seeding
method.

2.1.2 Handling the result

The result of a single NMF run is an object of class NMFfit, that holds both the fitted NMF
model and data about the run:

res

<Object of class: NMFfit >

Model:

<Object of class: NMFstd >

features: 200

basis/rank: 3

samples: 38

Details:

algorithm: brunet

seed: random

distance metric: 'KL'

residuals: 543535.7

Iterations: 510

Timing:

user system elapsed

0.530 0.000 0.536

The fitted model can be retrieved via method fit, which returns an object of class NMF:

fit(res)

<Object of class: NMFstd >

features: 200

basis/rank: 3

samples: 38

8

The estimated target matrix can be retrieved via the generic method fitted, which returns
a – generally big – matrix:

V.hat <- fitted(res)

dim(V.hat)

[1] 200 38

Quality and performance measures about the factorization are computed by method sum-

mary:

summary(res)

rank sparseness.basis sparseness.coef residuals

3.000000e+00 6.392676e-01 6.217884e-01 5.435357e+05

niter cpu cpu.all nrun

5.100000e+02 5.300000e-01 5.300000e-01 1.000000e+00

More quality measures are computed, if the target matrix is provided:

summary(res, target=esGolub)

rank sparseness.basis sparseness.coef rss

3.000000e+00 6.392676e-01 6.217884e-01 1.535504e+09

evar residuals niter cpu

8.232656e-01 5.435357e+05 5.100000e+02 5.300000e-01

cpu.all nrun

5.300000e-01 1.000000e+00

If there is some prior knowledge of classes present in the data, some other measures about
the unsupervised clustering’s performance are computed (purity, entropy, . . .). Here we use the
phenotypic variable Cell found in the Golub dataset, that gives the samples’ cell-types (it is a
factor with levels: T-cell, B-cell or NA):

summary(res, class=esGolub$Cell)

rank sparseness.basis sparseness.coef purity

3.000000e+00 6.392676e-01 6.217884e-01 8.157895e-01

entropy residuals niter cpu

3.926954e-01 5.435357e+05 5.100000e+02 5.300000e-01

cpu.all nrun

5.300000e-01 1.000000e+00

The basis matrix (i.e. matrix W or the metagenes) and the mixture coefficient matrix (i.e
matrix H or the metagene expression profiles) are retrieved using methods basis and coef

respectively:

get matrix W

w <- basis(res)

dim(w)

9

[1] 200 3

get matrix H

h <- coef(res)

dim(h)

[1] 3 38

If one wants to keep only part of the factorization, one can directly subset on the NMF object
on features and samples (separately or simultaneously). The result is a NMF object composed of
the selected rows and/or columns:

keep only the first 10 features

res.subset <- res[1:10,]

class(res.subset)

[1] "NMFfit"

attr(,"package")

[1] "NMF"

dim(res.subset)

[1] 10 38 3

keep only the first 10 samples

dim(res[,1:10])

[1] 200 10 3

subset both features and samples:

dim(res[1:20,1:10])

[1] 20 10 3

2.1.3 Extracting metagene-specific features

In general NMF matrix factors are sparse, so that the metagenes can usually be characterized
by a relatively small set of genes. Those are determined based on their relative contribution to
each metagene.

Kim and Park [Kim and Park, 2007] defined a procedure to extract the relevant genes for
each metagene, based on a gene scoring schema.

The NMF package implements this procedure in methods featureScore and extractFea-

ture:

only compute the scores

s <- featureScore(res)

summary(s)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0001208 0.0162700 0.0548900 0.1185000 0.1210000 1.0000000

compute the scores and characterize each metagene

s <- extractFeatures(res)

str(s)

10

List of 3

$ 1: int [1:8] 2 39 74 91 103 167 174 190

$ 2: int [1:13] 1 8 25 26 41 42 59 64 69 94 ...

$ 3: int [1:5] 43 120 128 129 130

- attr(*, "threshold")= num 0.251

2.2 Specifying the algorithm

2.2.1 Built-in algorithms

The NMF package provides a number of built-in algorithms, that are listed or retrieved by function
nmfAlgorithm. Each algorithm is identified by a unique name. The following algorithms are
currently implemented (cf. Table 1 for more details):

nmfAlgorithm()

[1] "brunet" "lee" "nsNMF" "offset" "pe-nmf" "snmf/l" "snmf/r"

The algorithm used to compute the NMF is specified in the third argument (method). For ex-
ample, to use the Lee and Seung [Lee and Seung, 2000] NMF algorithm based on the Frobenius
euclidean norm, one make the following call:

using Lee and Seung's algorithm

res <- nmf(esGolub, 3, 'lee')
algorithm(res)

[1] "lee"

To use the Nonsmooth NMF algorithm from [Pascual-Montano et al., 2006]:

using the Nonsmooth NMF algorithm with parameter theta=0.7

res <- nmf(esGolub, 3, 'ns', theta=0.7)

algorithm(res)

[1] "nsNMF"

fit(res)

<Object of class: NMFns >

features: 200

basis/rank: 3

samples: 38

theta: 0.7

Or to use the PE-NMF algorithm from [Zhang et al., 2008]:

11

using the PE-NMF algorithm with parameters alpha=0.01, beta=1

res <- nmf(esGolub, 3, 'pe', alpha=0.01, beta=1)

res

<Object of class: NMFfit >

Model:

<Object of class: NMFstd >

features: 200

basis/rank: 3

samples: 38

Details:

algorithm: pe-nmf

seed: random

distance metric: <function>

residuals: 67.35798

parameters:

$alpha

[1] 0.01

$beta

[1] 1

Iterations: 2000

Timing:

user system elapsed

1.820 0.000 1.819

2.2.2 Custom algorithms

The NMF package provides the user the possibility to define his own algorithms, and benefit from
all the functionalities available in the NMF framework. There are only few contraints on the
way the custom algorithm must be defined. See the details in Section 3.1.1.

2.3 Specifying the seeding method

The seeding method used to compute the starting point for the chosen algorithm can be set via
argument seed. Note that if the seeding method is deterministic there is no need to perform
multiple run anymore.

2.3.1 Built-in seeding method

Similarly to the algorithms, the nmfSeed function can be used to list or retrieve the built-in
seeding methods.

The following seeding methods are currently implemented:

nmfSeed()

[1] "ica" "nndsvd" "none" "random"

To use a specific method to seed the computation of a factorization, one can provide the
name of the seeding method:

12

res <- nmf(esGolub, 3, seed='nndsvd')
res

<Object of class: NMFfit >

Model:

<Object of class: NMFstd >

features: 200

basis/rank: 3

samples: 38

Details:

algorithm: brunet

seed: nndsvd

distance metric: 'KL'

residuals: 547143.5

Iterations: 1090

Timing:

user system elapsed

1.140 0.000 1.145

2.3.2 Numerical seed

Another possibility, useful when comparing methods or testing the reproducibility of the results,
is to set the seed of the random generator by passing a numerical value in argument seed. This
will call the function set.seed from package base before using the ’random’ seeding method:

res <- nmf(esGolub, 3, seed=123456)

res

<Object of class: NMFfit >

Model:

<Object of class: NMFstd >

features: 200

basis/rank: 3

samples: 38

Details:

algorithm: brunet

seed: 123456

distance metric: 'KL'

residuals: 543535.7

Iterations: 510

Timing:

user system elapsed

0.540 0.000 0.542

By default the value of the random seed is restored when the nmf function exits. This
behaviour can be changed by specifying the option restore.seed=FALSE or ’-r’.

2.3.3 Fixed factorization

Yet another option is to completely specify the initial factorization, by passing values for ma-
trices W and H:

13

n <- nrow(esGolub); p <- ncol(esGolub)

res <- nmf(esGolub, 3, seed=NULL, W=matrix(0.5, n, 3), H=matrix(0.3, 3, p))

res

<Object of class: NMFfit >

Model:

<Object of class: NMFstd >

features: 200

basis/rank: 3

samples: 38

Details:

algorithm: brunet

seed: none

distance metric: 'KL'

residuals: 818694.4

Iterations: 420

Timing:

user system elapsed

0.440 0.000 0.441

Important: in this case, argument seed must absolutely be set to NULL, otherwise the model
instanciated with matrices W and H would only be used as a template, and reset passing it to
the default seeding method.

Two alternative ways of doing this would be to pass matrices W and H through argument
model, or a NMF model to argument seed:

res <- nmf(esGolub, 3, seed=NULL

, model=list(W=matrix(0.5, n, 3), H=matrix(0.3, 3, p)))

or

res <- nmf(esGolub, 3, seed=nmfModel(W=matrix(0.5, n, 3), H=matrix(0.3, 3, p)))

2.3.4 Custom function

The NMF package provides the user the possibility to define his own seeding method, and benefit
from all the functionalities available in the NMF framework. There are only few contraints on
the way the custom seeding method must be defined. See the details in Section 3.2.

2.4 Multiple runs

When the seeding method is stochastic, multiple runs are usually required to achieve stability
or a resonable result. This can be done by setting argument nrun to the desired value. For
performance reason we use nrun=5 here, but a typical choice would lies between 100 and 200:

res.multirun <- nmf(esGolub, 3, nrun=5)

res.multirun

14

<Object of class: NMFfitX1 >

Method: brunet

Runs: 5

Total timing:

user system elapsed

1.450 0.100 2.494

By default, the returned object only contains the best fit over all the runs. That is the
factorization that achieved the lowest approximation error (i.e. the lowest objective value).
Even during the computation, only the current best factorization is kept in memory. This
limits the memory requirement for performing multiple runs, which in turn allows to perform
more runs.

The object res.multirun is of class NMFfitX1 that inherit from class NMFfit, the class
returned by single NMF runs. It can therefore be handled as the result of a single run and
benefit from all the methods defined for single run results.

If one is interested in keeping the results from all the runs, one can set the option keep.all=TRUE:

explicitly setting the option keep.all to TRUE

res <- nmf(esGolub, 3, nrun=5, .options=list(keep.all=TRUE))

res

<Object of class: NMFfitXn >

Method: brunet

Runs: 5

Total timing:

user system elapsed

4.460 0.130 2.613

Sequential timing:

user system elapsed

4.29 0.02 4.52

or using letter code 'k' in argument .options

nmf(esGolub, 3, nrun=5, .options='k')

The result is an object of class NMFfitXn that also inherits from class list

Note that keeping all the results may be memory consuming. For example, a 3-rank NMF fit3

for the Golub gene expression matrix (5000× 38) takes about 27096Kb4.

2.4.1 Parallel computing on multi-core machines

To speed-up the analysis whenever possible, the NMF package implements transparent parallel
computations when run on multi-core machines. It uses the foreach framework developed
by REvolution Computing [foreach, 2009], together with the related doMC parallel backend
[doMC, 2009] – based on the multicore package – to make use of all the CPUs available
on the system. Each core will simultaneously perform part of the runs. Therefore, the required

3i.e. the result of a single NMF run with rank equal 3.
4This size might change depending on the architecture (32 or 64 bits)

15

memory increases linearly with the number of cores used. When only the best run is of interest,
the memory usage is optimized by using shared memory and mutex objects from the bigmemory
package, to only keep the current best factorization.

IMPORTANT NOTE: because it uses the multicore package, parallel computation over
multi-cores is available only for Unix and Mac machines. The parallel computation is based on
the doMC and multicore packages, so the same care should be taken as stated in the vignette
of doMC:

It is not safe to use doMC from R.app on MacOS X. Instead, you should use doMC
from a terminal session, starting R from the command line.

Therefore, the nmf function does not allow to run multicore computation from the MacOS X
GUI.

The default parallel backend used by the nmf function is defined by the package specific
option ’parallel.backend’, which defaults to ’mc’ – for doMC. The backend can also be set
on runtime via argument ’.pbackend’.

There are two other runtime options, parallel and parallel.required, that can be passed
via argument .options, to control the behaviour of the parallel computation (see below).

A call for multiple runs will be computed in parallel if one of the following condition is
satisfied:

• call with option ’P’ or parallel.required set to TRUE (note the upper case in ’P’). In
this case, if for any reason the computation cannot be run in parallel (packages require-
ments, OS, ...), then an error is thrown. Use this mode to force the parallel execution.

• call with option ’p’ or parallel set to TRUE. In this case if something prevents a parallel
computation, the factorizations will be done sequentially.

• a valid parallel backend is specified in argument .pbackend. For the moment can either
be the string ’mc’ or a single numeric value specifying the number of core to use. Unless
option ’P’ is specified, it will run using option ’p’ (i.e. try-parallel mode).

Examples
The following exmaples are run with .options=’v’ which turn on verbosity. However Sweave
do not show all the messages. The user is therefore encouraged to run these commands on his
machine to see the internal differences of each call.

the default call will try to run in parallel using all the cores

=> will be in parallel if all the requirements are satisfied

nmf(esGolub, 3, nrun=5, .opt='v')
Runs: 2 1 4 3 5 ... DONE

<Object of class: NMFfitX1 >

Method: brunet

Runs: 5

Total timing:

user system elapsed

4.060 0.150 2.348

16

specifying the number of cores to use

nmf(esGolub, 3, nrun=5, .opt='v', .pbackend=2)

force parallel computation: use option 'P'
nmf(esGolub, 3, nrun=5, .opt='vP')

2.4.2 High Performance Computing on a cluster

To achieve further speed-up, the computation can be run on an HPC cluster. In our tests we
used the doMPI package to perform 100 factorizations using hybrid parallel computation on 4
quadri-core machines – i.e. making use of all the cores computation on each machine.

The scripts used to launch and run the factorizations can be found in file mpi.R in the
package’s examples directory:

file.show(file.system('examples/mpi.R', package='NMF'))
and

file.show(file.system('examples/mpi_run.sh', package='NMF'))

The script file mpi.R contains some extra code to log and trace the computation. Reducing
it to the essential gives the following piece of code:

0. Create and register an MPI cluster

library(doMPI)

cl <- startMPIcluster()

registerDoMPI(cl)

library(NMF)

1. Schedule the runs accross the workers

nrun <- 100;

nworker <- getDoParWorkers();

ntasks <- rep(round(nrun/nworker), nworker)

allocate remainder runs

if((remain <- nrun %% nworker) > 0)

ntasks[1:remain] <- ntasks[1:remain] + 1

2. Send the jobs to the workers using a foreach loop

t <- system.time({

res <- foreach(i=1:getDoParWorkers(), n=ntasks,

.packages = c('NMF', 'doMC', 'Biobase')) %dopar% {

each worker run its factorizations in parallel

#Note: only the best result is kept

data(esGolub)

nmf(esGolub, 3, 'brunet', nrun=n, .opt='p')
}

})

3. reduce the result and save it in a file

res <- NMF:::join(res, runtime.all=t)

17

save(res, file='result.RData')
4. Shutdown the cluster and quit MPI

closeCluster(cl)

mpi.quit()

Passing the following shell script to qsub should launch the execution on a Sun Grid Engine
HPC cluster, with OpenMPI. Some adaptation might be necessary for other queueing systems.

#!/bin/bash

#$ -cwd

#$ -q opteron.q

#$ -pe mpich 5

echo "Got $NSLOTS slots. $TMP/machines"

orterun -v -n $NSLOTS -hostfile $TMP/machines R --slave -f mpi.R

2.4.3 Forcing sequential execution

When running on a single core machine, NMF package has no other option than performing the
multiple runs sequentially, one after another. This is done via the sapply function.

On multi-core machine, one usually wants to perform the runs in parallel, as it speeds up
the computation (cf. section 2.4.1). However in some situation (e.g. while debugging), it might
be useful to force the sequential execution of the runs. This can be done via the option ’-p’

or by setting the parallel backend to NULL, ’seq’ or :

force sequential computation by sapply: use option '-p' or .pbackend=''
nmf(esGolub, 3, nrun=5, .opt='v-p')
nmf(esGolub, 3, nrun=5, .opt='v', .pbackend='')
or use the SEQ backend of foreach: .pbackend=NULL or 'seq'
nmf(esGolub, 3, nrun=5, .opt='v', .pbackend=NULL)

nmf(esGolub, 3, nrun=5, .opt='v', .pbackend='seq')

2.5 Estimating the factorization rank

A critical parameter in NMF is the factorization rank r. It defines the number of metagenes
used to approximate the target matrix. Given a NMF method and the target matrix, a common
way of deciding on r is to try different values, compute some quality measure of the results, and
choose the best value according to this quality criteria.

The NMF package provides functions to run this procedure and plot the quality measures.
Note that this can be lenghty. Whereas the standard NMF procedure usually involves several
hundreds of random initialization, performing 30-50 runs is considered sufficient to get a robust
estimate of the factorization rank [Brunet et al., 2004, Hutchins et al., 2008]. For performance
reason, we perform here only 10 runs for each value of the rank.

18

 − cophenetic −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: c
op

he
ne

tic

●

●

●

●

●

2 3 4 5 6

0.
96

0
0.

97
0

0.
98

0
0.

99
0

 − rss −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: r
ss

●

●

●

●

●

2 3 4 5 6

1.
2e

+
09

1.
6e

+
09

 − residuals −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: r
es

id
ua

ls

●

●

●

●

●

2 3 4 5 6

40
00

00
50

00
00

60
00

00

 − dispersion −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: d
is

pe
rs

io
n

●

●

●

●

●

2 3 4 5 6

0.
82

0.
86

0.
90

 − evar −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: e
va

r

●

●

●

●

●

2 3 4 5 6

0.
78

0.
82

0.
86

 − sparseness −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: s
pa

rs
en

es
s

●

●

●

●
●

● sparseness.basis
sparseness.coef

2 3 4 5 6

0.
60

0.
62

0.
64

0.
66

0.
68

NMF rank estimation

Figure 1: Estimation of the rank: Quality measures computed from 10 runs for each value of r

perform 10 runs for each value of r in range 2:6

estim.r <- nmfEstimateRank(esGolub, range=2:6, nrun=10, seed=123456)

The result is a S3 object of class NMF.rank, that contains a data.frame with the quality
measures in column, and the values of r in row. It also contains a list of the consensus matrix
for each value of r.

All the measures can be plotted at once by the following call, the result is shown in Figure
2.5:

plot(estim.r)

Several approaches have been proposed to choose the optimal value of r. For example,
[Brunet et al., 2004] proposed to take the first value of r for which the cophenetic coefficient
starts decreasing, [Hutchins et al., 2008] suggested to choose the first value where the RSS curve
presents an inflection point, and [Frigyesi and Höglund, 2008] considered the smallest value at

19

which the decrease in the RSS is lower than the decrease of the RSS obtained from random
data.

2.5.1 Overfitting

Even on random data, increasing the factorization rank would lead to decreasing residuals,
as more variables are available to better fit the data. In other words, there is potentially an
overfitting problem.

In this context, the approach from [Frigyesi and Höglund, 2008] may be useful to prevent or
detect overfitting as it takes into account the results for unstructured data. However it requires
to compute the quality measure(s) for the random data. The NMF package provides a function
that shuffles the original data, by permuting the rows of each column, using each time a different
permutation. The rank estimation procedure can then be applied to the randomized data, and
the the “random” measures is easily added to the plot for comparison (see Figure 2.5.1):

shuffle original data

V.random <- randomize(esGolub)

estimate quality measures from the shuffled data (use default NMF algorithm)

estim.r.random <- nmfEstimateRank(V.random, range=2:6, nrun=10, seed=123456)

plot measures on same graph

plot(estim.r, ref=estim.r.random)

2.6 Visualization methods

Error track

If the NMF computation is performed with error tracking enabled – using argument .options
– the trajectory of the objective value can be plot with method plot (see Figure 3):

res <- nmf(esGolub, 3, .options='t')
or alternatively:

res <- nmf(esGolub, 3, .options=list(track=TRUE))

plot(res)

Heatmaps

Method metaHeatmap provides an easy way to vizualize the resulting metagenes, metaprofiles
and, in the case of multiple runs, the consensus matrix. It produces pre-configured heatmaps
based on function heatmap.2 from package gplots. Examples of those heatmaps are shown in
figures 4, 5, 6 and 7.

The following – default – call plots the metaprofiles matrix (see result Figure 4):

default is to plot metaprofiles

metaHeatmap(res)

20

 − cophenetic −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: c
op

he
ne

tic

● ●
● ●

●

●
● ●

● ●

2 3 4 5 6

0.
70

0.
80

0.
90

1.
00

 − rss −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: r
ss

●

●
●

● ●

●

●

●

●
●

2 3 4 5 6

1e
+

09
3e

+
09

5e
+

09
7e

+
09

 − residuals −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: r
es

id
ua

ls

●
●

● ● ●

●

●

●

●
●

2 3 4 5 6

50
00

00
15

00
00

0
25

00
00

0

 − dispersion −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: d
is

pe
rs

io
n ● ●

●

●
●

●

●

●

●

●

2 3 4 5 6

0.
2

0.
4

0.
6

0.
8

 − evar −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: e
va

r ●

●
●

● ●

●

●

●

●
●

2 3 4 5 6

0.
2

0.
4

0.
6

0.
8

 − sparseness −

Factorization rank

Q
ua

lit
y

m
ea

su
re

: s
pa

rs
en

es
s

●
●

●
● ●

● sparseness.basis
sparseness.coef

●

●

●

●

●

2 3 4 5 6

0.
3

0.
4

0.
5

0.
6

0.
7

NMF rank estimation

Figure 2: Estimation of the rank: Comparison of the quality measures with those obtained
from randomized data. The curves for the actual data are in blue and green, those for the
randomized data are in red and pink. The estimation is based on Brunet’s algorithm.

21

100 200 300 400 500

54
40

00
54

50
00

54
60

00
54

70
00

54
80

00

NMF Residuals
rank=3

Iterations

O
bj

ec
tiv

e
va

lu
e

(K
L)

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 3: Error track for a single NMF run

The metagenes matrix can be plotted specifying the second argument what (see result Figure
5). We use argument filter to select only the genes that are specific to each metagene. With
filter=TRUE, the selection method is the one described in [Kim and Park, 2007].

metaHeatmap(res, what='features', filter=TRUE)

In the case of multiple runs method metaHeatmap plots the consensus matrix, i.e. the average
connecticity matrix accross the runs (see results Figures 6 and 7 for a consensus matrix obtained
with 100 runs of Brunet’s algorithm on Golub dataset):

The cell type is used to label rows and columns

metaHeatmap(res.multirun, labRow=esGolub$Cell, labCol=esGolub$Cell)

22

A
M

L_
7

A
M

L_
6

A
M

L_
5

A
M

L_
3

A
M

L_
2

A
M

L_
1

A
M

L_
20

A
M

L_
16

A
M

L_
14

A
M

L_
13

A
M

L_
12

A
LL

_7
09

2_
B

−
ce

ll
A

LL
_1

47
49

_B
−

ce
ll

A
LL

_5
49

_B
−

ce
ll

A
LL

_R
11

_B
−

ce
ll

A
LL

_5
98

2_
B

−
ce

ll
A

LL
_1

82
39

_B
−

ce
ll

A
LL

_2
01

85
_B

−
ce

ll
A

LL
_1

79
29

_B
−

ce
ll

A
LL

_2
04

14
_B

−
ce

ll
A

LL
_1

91
83

_B
−

ce
ll

A
LL

_1
72

81
_B

−
ce

ll
A

LL
_9

33
5_

B
−

ce
ll

A
LL

_2
83

73
_B

−
ce

ll
A

LL
_1

97
69

_B
−

ce
ll

A
LL

_2
39

53
_B

−
ce

ll
A

LL
_2

24
74

_T
−

ce
ll

A
LL

_1
76

38
_T

−
ce

ll
A

LL
_1

44
02

_T
−

ce
ll

A
LL

_1
72

69
_T

−
ce

ll
A

LL
_9

72
3_

T
−

ce
ll

A
LL

_9
18

6_
T

−
ce

ll
A

LL
_1

98
81

_T
−

ce
ll

A
LL

_1
64

15
_T

−
ce

ll
A

LL
_R

23
_B

−
ce

ll
A

LL
_1

11
03

_B
−

ce
ll

A
LL

_2
13

02
_B

−
ce

ll
A

LL
_9

69
2_

B
−

ce
ll

3

2

1

Sample view
[mixture coefficients]0.2

Value

0

Color Key
and Histogram

C
ou

nt

Figure 4: Heatmap of metaprofiles

2.7 Comparing algorithms

To compare the results from different algorithms, one can pass a list of methods in argument
method. To enable a fair comparison, a deterministic seeding method should also be used. Here
we fix the random seed to 123456.

res.multi.method <- nmf(esGolub, 3, list('brunet', 'lee', 'ns'), seed=123456)

Passing the result to method compare produces a data.frame that contains summary mea-
sures for each method. Again, prior knowledge of classes may be used to compute clustering
quality measures:

compare(res.multi.method)

method seed metric rank sparseness.basis sparseness.coef

brunet brunet 123456 'KL' 3 0.6392676 0.6217884

lee lee 123456 'euclidean' 3 0.7268875 0.4465608

nsNMF nsNMF 123456 'KL' 3 0.6777185 0.7350386

residuals niter cpu cpu.all nrun

23

1 2 3

U76189_at
M16336_s_at
U76421_at
M32053_at
U09578_at
M12759_at
M23178_s_at
L42379_at
U64998_at
X57579_s_at
M22324_at
M54915_s_at
M23197_at
X53296_s_at
U40434_at
X61587_at
X63469_at
X86691_at
Z69881_at
U73167_cds5_at
D61391_at
L29376_at
K01911_at
U46006_s_at
M54992_at
M91196_at
M21186_at
M22638_at
X03100_cds2_at
U51240_at

Feature view
[Basis components]0 0.6

Value

0

Color Key
and Histogram

C
ou

nt

Figure 5: Heatmap of metagenes

brunet 543535.7 510 0.55 0.55 1

lee 673513120.5 1780 1.87 1.87 1

nsNMF 585106.4 970 1.37 1.37 1

If prior knowledge of classes is available

compare(res.multi.method, class=esGolub$Cell)

method seed metric rank sparseness.basis sparseness.coef

brunet brunet 123456 'KL' 3 0.6392676 0.6217884

lee lee 123456 'euclidean' 3 0.7268875 0.4465608

nsNMF nsNMF 123456 'KL' 3 0.6777185 0.7350386

purity entropy residuals niter cpu cpu.all nrun

brunet 0.8157895 0.3926954 543535.7 510 0.55 0.55 1

lee 0.5789474 0.7231282 673513120.5 1780 1.87 1.87 1

nsNMF 0.7894737 0.4691212 585106.4 970 1.37 1.37 1

When the computation is performed with error tracking enabled, an error plot is produced
by method plot (see figure 8):

24

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

T
−

ce
ll

T
−

ce
ll

T
−

ce
ll

T
−

ce
ll

T
−

ce
ll

T
−

ce
ll

T
−

ce
ll

T
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B−cell
B−cell

B−cell
B−cell
B−cell
B−cell
T−cell
T−cell
T−cell
T−cell
T−cell
T−cell
T−cell
T−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell

Consensus matrix
0 0.6
Value

0

Color Key
and Histogram

C
ou

nt

Figure 6: Heatmap of consensus matrix

res <- nmf(esGolub, 3, list('brunet', 'lee', 'ns'), seed=123456, .options='t')
plot(res)

3 Extending the package

We developed the NMF package with the objective to facilitate the integration of new NMF
methods, trying to impose only few requirements on their implementations. All the built-in
algorithms and seeding methods are implemented as strategies that are called from within the
main interface method nmf.

The user can define new strategies and those are handled in exactly the same way as the
built-in ones, benefiting from the same utility functions to interpret the results and assess their
performance.

25

T
−

ce
ll

T
−

ce
ll

T
−

ce
ll

T
−

ce
ll

T
−

ce
ll

T
−

ce
ll

T
−

ce
ll

B
−

ce
ll

T
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B
−

ce
ll

B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell
B−cell

B−cell
T−cell
B−cell
T−cell
T−cell
T−cell
T−cell
T−cell
T−cell
T−cell

Consensus matrix

0 0.4 1
Value

0
80

0

Color Key
and Histogram

C
ou

nt

Figure 7: Heatmap of consensus matrix (100 runs of Brunet’s algorithm on Golub dataset)

3.1 Custom algorithm

3.1.1 Using a custom algorithm

To define a strategy, the user needs to provide a function that implements the complete
algotihm. It must be of the form:

my.algorithm <- function(x, seed, param.1, param.2){

do something with starting point

...

return updated starting point

return(seed)

}

Where:

target is a matrix;

start is an object that inherits from class NMF. This S4 class is used to handle NMF models
(matrices W and H, objective function, etc. . .);

26

0 500 1000 1500

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

NMF Residuals

Iterations

N
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
es

Algorithm

brunet
lee
nsNMF

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●
● ● ● ● ● ●

●
● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●●

Figure 8: Error tracks comparing methods ’brunet’, ’lee’, ’nsNMF’

param.1, param.2 are extra parameters specific to the algorithms;

The function must return an object that inherits from class NMF

For example:

my.algorithm <- function(x, seed, scale.factor=1){

do something with starting point

...

for example:

1. compute principal components

pca <- prcomp(t(x), retx=TRUE)

2. use the absolute values of the first PCs for the metagenes

Note: the factorization rank is stored in object 'start'
factorization.rank <- nbasis(seed)

metagenes(fit(seed)) <- abs(pca$rotation[,1:factorization.rank])

use the rotated matrix to get the mixture coefficient

use a scaling factor (just to illustrate the use of extra parameters)

metaprofiles(fit(seed)) <- t(abs(pca$x[,1:factorization.rank])) / scale.factor

27

return updated data

return(seed)

}

To use the new method within the package framework, one pass my.algorithm to main
interface nmf via argument method. Here we apply the algorithm to some matrix V randomly
generated:

n <- 50; r <- 3; p <- 20

V <-syntheticNMF(n, r, p, noise=TRUE)

nmf(V, 3, my.algorithm, scale.factor=10)

<Object of class: NMFfit >

Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 20

Details:

algorithm: NMF.algo.88bd3ec

seed: random

distance metric: 'euclidean'

residuals: 637.5985

parameters:

$scale.factor

[1] 10

Timing:

user system elapsed

0.000 0.000 0.031

3.1.2 Using a custom distance measure

The default distance measure is based on the euclidean distance. If the algorithm is based on an-
other distance measure, this one can be specified in argument objective, either as a character

string corresponding to a built-in objective function, or a custom function definition:

based on Kullbach-Leibler divergence

nmf(V, 3, my.algorithm, scale.factor=10, objective='KL')
<Object of class: NMFfit >

Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 20

28

Details:

algorithm: NMF.algo.2e75443d

seed: random

distance metric: 'KL'

residuals: 1631.873

parameters:

$scale.factor

[1] 10

Timing:

user system elapsed

0.000 0.000 0.003

based on custom distance metric

nmf(V, 3, my.algorithm, scale.factor=10

, objective=function(target, x){

(sum((target-fitted(x))^4))^{1/4}

}

)

<Object of class: NMFfit >

Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 20

Details:

algorithm: NMF.algo.2e7ccae3

seed: random

distance metric: <function>

residuals: 9.356993

parameters:

$scale.factor

[1] 10

Timing:

user system elapsed

0.000 0.000 0.003

3.1.3 Defining algorithms for mixed sign data

All the algorithms implemented in the NMF package assume that the input data is nonnegative.
However, some methods exist in the litterature that work with relaxed constraints, where the
input data and one of the matrix factors (W or H) are allowed to have negative entries (eg. semi-
NMF [Chris Ding et al., 2008, Le Roux et al., 2008]). Strictly speaking these methods do not
fall into the NMF category, but still solve constrained matrix factorization problems, and could
be considered as NMF methods when applied to non-negative data. Moreover, we received user
requests to enable the development of semi-NMF type methods within the package’s framework.
Therefore, we designed the NMF package so that such algorithms – that handle negative data –
can be integrated. This section documents how to do it.

By default, as a safe-guard, the sign of the input data is checked before running any method,
so that the nmf function throws an error if applied to data that contain negative entries 5. To

5Note that on the other side, the sign of the factors returned by the algorithms is never checked, so that one
can always return factors with negative entries.

29

extend the capabilities of the NMF package in handling negative data, and plug mixed sign NMF
methods into the framework, the user needs to specify the argument mixed=TRUE in the call to
the nmf function. This will skip the sign check of the input data and let the custom algorithm
perform the factorization.

As an example, we reuse the previously defined custom algorithm6:

put some negative input data

V.neg <- V; V.neg[1,] <- -1;

this generates an error

err <- try(nmf(V.neg, 3, my.algorithm, scale.factor=10))

err

[1] "Error in .local(x, rank, method, ...) : \n Input matrix x contains some negative entries.\n"

attr(,"class")

[1] "try-error"

this runs my.algorithm without error

nmf(V.neg, 3, my.algorithm, mixed=TRUE, scale.factor=10)

<Object of class: NMFfit >

Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 20

Details:

algorithm: NMF.algo.43c518b6

seed: random

distance metric: 'euclidean'

residuals: 639.6262

parameters:

$scale.factor

[1] 10

Timing:

user system elapsed

0.010 0.000 0.003

3.1.4 Specifying the NMF model

If not specified in the call, the NMF model that is used is the standard one, as defined in
equation (1). However, some NMF algorithms have different underlying models, such as non-
smooth NMF [Pascual-Montano et al., 2006] which uses an extra matrix factor that introduces
an extra parameter, and change the way the target matrix is approximated.

The NMF models are defined as S4 classes that extends class NMF. All the available models
can be retireved calling the nmfModel() function with no argument:

nmfModel()

[1] "NMFstd" "NMFOffset" "NMFns"

6As it is defined here, the custom algorithm still returns nonnegative factors, which would not be desirable
in a real example, as one would not be able to closely fit the negative entries.

30

One can specify the NMF model to use with a custom algorithm, using argument model.
Here we first adapt a bit the custom algorithm, to justify and illustrate the use of a different
model. We use model NMFOffset [Badea L., 2008], that includes an offset to take into account
genes that have constant expression levels accross the samples:

my.algorithm.offset <- function(x, seed, scale.factor=1){

do something with starting point

...

for example:

1. compute principal components

pca <- prcomp(t(x), retx=TRUE)

retrieve the model being estimated

data.model <- fit(seed)

2. use the absolute values of the first PCs for the metagenes

Note: the factorization rank is stored in object 'start'
factorization.rank <- nbasis(data.model)

metagenes(data.model) <- abs(pca$rotation[,1:factorization.rank])

use the rotated matrix to get the mixture coefficient

use a scaling factor (just to illustrate the use of extra parameters)

metaprofiles(data.model) <- t(abs(pca$x[,1:factorization.rank])) / scale.factor

3. Compute the offset as the mean expression

data.model@offset <- rowMeans(x)

return updated data

fit(seed) <- data.model

seed

}

Then run the algorithm specifying it needs model NMFOffset:

run custom algorithm with NMF model with offset

nmf(V, 3, my.algorithm.offset, model='NMFOffset', scale.factor=10)

<Object of class: NMFfit >

Model:

<Object of class: NMFOffset >

features: 50

basis/rank: 3

samples: 20

offset: [0.6761489 0.5007902 0.848937 0.3704305 0.8774585 ...]

Details:

algorithm: NMF.algo.3e256674

seed: random

distance metric: 'euclidean'

residuals: 353.7908

parameters:

$scale.factor

31

[1] 10

Timing:

user system elapsed

0.000 0.000 0.003

3.2 Custom seeding method

The user can also define custom seeding method as a function of the form:

start: object of class NMF

target: the target matrix

my.seeding.method <- function(model, target){

use only the largest columns for W

w.cols <- apply(target, 2, function(x) sqrt(sum(x^2)))

metagenes(model) <- target[,order(w.cols)[1:nbasis(model)]]

initialize H randomly

metaprofiles(model) <- matrix(runif(nbasis(model)*ncol(target))

, nbasis(model), ncol(target))

return updated object

return(model)

}

To use the new seeding method:

nmf(V, 3, 'snmf/r', seed=my.seeding.method)

<Object of class: NMFfit >

Model:

<Object of class: NMFstd >

features: 50

basis/rank: 3

samples: 20

Details:

algorithm: snmf/r

seed: NMF.seed.c699814

distance metric: 'euclidean'

residuals: 154.3545

Iterations: 80

Timing:

user system elapsed

0.460 0.000 0.472

32

4 Advanced usage

4.1 Package specific options

The package specific options can be retieved or changed using the nmf.getOption and nmf.options

functions. These behave similarly as the getOption and nmf.options base functions:

#show default algorithm and seeding method

nmf.options('default.algorithm', 'default.seed')
retrieve a single option

nmf.getOption('default.seed')
All options

nmf.options()

Currently the following options are available:

Option Default value Description
default.algorithm brunet Default NMF algorithm used by the nmf function

when argument method is missing. The value should
the key of one of the available NMF algorithms. See
?nmfAlgorithm.

track.interval 30 Number of iterations between two points in the resid-
ual track. This option is relevant only when residual
tracking is enabled. See ?nmf.

error.track FALSE Toggle default residual tracking. When TRUE, the
nmf function compute and store the residual track
in the result – if not otherwise specified in argument
.options. Note that tracking may significantly slow
down the computations.

default.seed random Default seeding method used by the nmf function
when argument seed is missing. The value should
the key of one of the available seeding methods. See
?nmfSeed.

parallel.backend mc Default parallel backend used used by the nmf func-
tion when argument .pbackend is missing. Currently
the following values are supported: ’mc’ for multi-
core, ’seq’ for sequential, for sapply.

verbose FALSE Toggle verbosity.
debug FALSE Toggle debug mode, which is an extended verbose

mode.

5 Session Info

R version 2.11.1 (2010-05-31)

x86_64-pc-linux-gnu

33

locale:

[1] LC_CTYPE=en_ZA.utf8 LC_NUMERIC=C

[3] LC_TIME=en_ZA.utf8 LC_COLLATE=en_ZA.utf8

[5] LC_MONETARY=C LC_MESSAGES=en_ZA.utf8

[7] LC_PAPER=en_ZA.utf8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_ZA.utf8 LC_IDENTIFICATION=C

attached base packages:

[1] tools stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] RColorBrewer_1.0-2 synchronicity_1.0.8 bigmemory_4.2.3

[4] doMC_1.2.1 multicore_0.1-3 foreach_1.3.0

[7] codetools_0.2-2 iterators_1.0.3 xtable_1.5-6

[10] NMF_0.4.5 Biobase_2.8.0

References

[Albright et al., 2006] R. Albright, J. Cox, D. Duling, A. Langville, C. Meyer (2006). Algo-
rithms, initializations, and convergence for the nonnegative matrix factorization. NCSU Tech-
nical Report Math 81706. http://meyer.math.ncsu.edu/Meyer/Abstracts/Publications.html.

[Badea L., 2008] Badea L. (2008). Profiles Common to Colon and Pancreatic Adenocarci-
noma Using Simultaneous nonNegative. In Pacific Symposium on Biocomputing, Volume 290
2008:279–290.

[Berry et al., 2006] Berry et al. (2006). Algorithms and Applications for Approximate Nonneg-
ative Matrix Factorization. Comput. Stat. Data Anal.

[Brunet et al., 2004] Brunet, J.˜P., Tamayo, P., Golub, T.˜R., and Mesirov, J.˜P. (2004). Meta-
genes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A,
101(12), 4164–4169.

[A. Cichocki et al., 2004] Andrzej Cichocki , Rafal Zdunek, and Shun-ichi Amari (2004). New
algorithms For Non-negative Matrix Factorization In Application To Blind Source Separation.

[Chu et al., 2004] M.T. Chu, F. Diele, R. Plemmons, S. Ragni. Optimality, computation, and
interpretation of nonnegative matrix factorizations. Technical Report, Departments of Math-
ematics and Computer Science, Wake Forest University, USA.

[Chris Ding et al., 2008] Ding, C., Li, T., Jordan, M.˜I.. Convex and Semi-Nonnegative Matrix
Factorizations IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, vol.
32, no. 1, pp. 45-55 [http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.277]

[doMC, 2009] REvolution Computing: doMC: Foreach parallel adaptor for the multicore pack-
age 2009, [http://CRAN.R-project.org/package=doMC]. [R package version 1.2.0].

[foreach, 2009] REvolution Computing: doMC: Foreach parallel adaptor for the multicore pack-
age 2009, [http://CRAN.R-project.org/package=doMC]. [R package version 1.3.0].

34

http://meyer.math.ncsu.edu/Meyer/Abstracts/Publications.html
[http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.277]
[http://CRAN.R-project.org/package=doMC]
[http://CRAN.R-project.org/package=doMC]

[Frigyesi and Höglund, 2008] Frigyesi A, Höglund M: Non-negative matrix factorization
for the analysis of complex gene expression data: identification of clinically rele-
vant tumor subtypes. Cancer informatics 2008, 6:275–292, [http://view.ncbi.nlm.nih.gov/
pubmed/19259414].

[Gao and Church, 2005] Gao Y, Church G: Improving molecular cancer class discovery
through sparse non-negative matrix factorization. Bioinformatics 2005, 21(21):3970–
3975, [http://dx.doi.org/10.1093/bioinformatics/bti653].

[Gentleman et al., 2004] Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit
S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry
R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L,
Yang JYH, Zhang J: Bioconductor: open software development for computational
biology and bioinformatics. Genome biology 2004, 5:R80, [http://www.ncbi.nlm.nih.gov/
pubmed/15461798].

[Hutchins et al., 2008] Hutchins LNN, Murphy SMM, Singh P, Graber JHH: Position-
Dependent Motif Characterization Using Nonnegative Matrix Factorization.
Bioinformatics (Oxford, England) 2008, [http://view.ncbi.nlm.nih.gov/pubmed/18852176].

[Kim and Park, 2007] Kim H, Park H: Sparse non-negative matrix factorizations via
alternating non-negativity-constrained least squares for microarray data anal-
ysis. Bioinformatics (Oxford, England) 2007, 23:1495–502, [http://www.ncbi.nlm.nih.gov/
pubmed/17483501].

[Le Roux et al., 2008] Le Roux, J., de CheveignÃl’, A., Parra, L.˜C. Adaptive Template Match-
ing with Shift-Invariant Semi-NMF. In NIPS 2008, 921-928. [http://dblp.uni-trier.de/db/
conf/nips/nips2008.html#RouxCP08]

[Lee and Seung, 2000] Lee, D.˜D. and Seung, H.˜S. (2000). Algorithms for non-negative matrix
factorization. In NIPS , 556-562.

[Pascual-Montano et al., 2006] Pascual-Montano, A., Carazo, J.˜M., Kochi, K., Lehmann, D.,
and Pascual-Marqui, R.˜D. (2006). Nonsmooth nonnegative matrix factorization (nsnmf).
IEEE transactions on pattern analysis and machine intelligence, 28(3), 403-415.

[R Software, 2008] R Development Core Team. R: A Language and Environment for Statistical
Computing. Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.

[Zhang et al., 2008] Zhang J, Wei L, Feng X, Ma Z, Wang Y: Pattern expression nonnega-
tive matrix factorization: algorithm and applications to blind source separation.
Computational intelligence and neuroscience 2008, [http://view.ncbi.nlm.nih.gov/pubmed/
18566689].

35

[http://view.ncbi.nlm.nih.gov/pubmed/19259414]
[http://view.ncbi.nlm.nih.gov/pubmed/19259414]
[http://dx.doi.org/10.1093/bioinformatics/bti653]
[http://www.ncbi.nlm.nih.gov/pubmed/15461798]
[http://www.ncbi.nlm.nih.gov/pubmed/15461798]
[http://view.ncbi.nlm.nih.gov/pubmed/18852176]
[http://www.ncbi.nlm.nih.gov/pubmed/17483501]
[http://www.ncbi.nlm.nih.gov/pubmed/17483501]
[http://dblp.uni-trier.de/db/conf/nips/nips2008.html#RouxCP08]
[http://dblp.uni-trier.de/db/conf/nips/nips2008.html#RouxCP08]
http://www.R-project.org
[http://view.ncbi.nlm.nih.gov/pubmed/18566689]
[http://view.ncbi.nlm.nih.gov/pubmed/18566689]

	Overview
	Package features
	Nonnegative Matrix Factorization
	Algorithms
	Initialization: seeding methods
	How to run NMF algorithms
	Performances

	Use case: Golub dataset
	Single run
	Performing a single run
	Handling the result
	Extracting metagene-specific features

	Specifying the algorithm
	Built-in algorithms
	Custom algorithms

	Specifying the seeding method
	Built-in seeding method
	Numerical seed
	Fixed factorization
	Custom function

	Multiple runs
	Parallel computing on multi-core machines
	High Performance Computing on a cluster
	Forcing sequential execution

	Estimating the factorization rank
	Overfitting

	Visualization methods
	Comparing algorithms

	Extending the package
	Custom algorithm
	Using a custom algorithm
	Using a custom distance measure
	Defining algorithms for mixed sign data
	Specifying the NMF model

	Custom seeding method

	Advanced usage
	Package specific options

	Session Info
	References

