
Metadata Harvesting with R and OAI-PMH

Kurt Hornik

2009-09-15

The Open Archives Initiative (http://www.openarchives.org/) develops and promotes in-
teroperability standards that aim to facilitate the efficient dissemination of content. One key
project is the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH, http:

//www.openarchives.org/pmh/) which provides “a low-barrier mechanism for repository inter-
operability” for archives (institutional repositories) containing digital content (digital libraries).
OAI-PMH allows people (service providers, such as the ones registered with the OAI listed
on http://www.openarchives.org/service/listproviders.html) to harvest metadata (from
data providers, such as the ones registered with and validated by the OAI listed on http:

//www.openarchives.org/Register/BrowseSites/). Data Providers administer systems that
support the OAI-PMH as a means of exposing metadata. Service Providers use metadata har-
vested via the OAI-PMH as a basis for building value-added services.

OAI-PMH, currently in version 2.0, defines a mechanism for data providers to expose their
metadata. The protocol mandates that individual archives map their metadata to the Dublin Core
(DC, http://dublincore.org/), a simple and common metadata set for cross-domain information
resource description. OAI-PMH is a set of six verbs or services that are invoked within HTTP,
returning the request results in XML format. The OAI-PMH specification can be found at http://
www.openarchives.org/OAI/openarchivesprotocol.html. Here, we summarize the basic facts
and terminology.

A harvester is a client application that issues OAI-PMH requests. A harvester is operated by
a service provider as a means of collecting metadata from repositories. Repositories are network
accessible servers that can process the six OAI-PMH requests, and are managed by a data provider
to expose metadata to harvesters. OAI-PMH distinguishes between three distinct entities related
to the metadata made accessible by the OAI-PMH:

resource the object or “stuff” that metadata is “about”. Its nature is outside the scope of the
OAI-PMH.

item a constituent of a repository from which metadata about a resource can be disseminated.

record metadata in a specific metadata format. A record is returned as an XML-encoded byte
stream in response to a protocol request to disseminate a specific metadata format from a
constituent item.

For each item there is an unambiguous unique identifier which is used in OAI-PMH requests for
extracting metadata from the item. Items may contain metadata in multiple formats; Dublin Core
is mandatory.

Selective harvesting allows harvesters to limit harvest requests to portions of the metadata
available from a repository. The OAI-PMH supports selective harvesting with two types of har-
vesting criteria that may be combined in an OAI-PMH request: datestamps and membership in
sets, an optional construct for grouping items.

The XML encoding of records is organized into the following parts:

header contains the unique identifier, a datestamp (the date of creation, modification or deletion
of the record), zero or more setSpec elements indicating the set membership of the item,
and an optional status attribute for indicating the withdrawal of availability of the specified
metadata format for the item, dependent on the repository support for deletions.

1

http://www.openarchives.org/
http://www.openarchives.org/pmh/
http://www.openarchives.org/pmh/
http://www.openarchives.org/service/listproviders.html
http://www.openarchives.org/Register/BrowseSites/
http://www.openarchives.org/Register/BrowseSites/
http://dublincore.org/
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.openarchives.org/OAI/openarchivesprotocol.html

metadata a single manifestation (format) of the metadata from an item.

about an optional and repeatable container to hold data about the metadata part of the record.
Contents of the containers must conform to an XML Schema. Common uses of these con-
tainers include rights statements and provenance statements.

The OAI-PMH verbs (requests) are as follows.

GetRecord retrieve an individual metadata record from a repository.

Identify retrieve information about a repository.

ListIdentifiers an abbreviated form of ListRecords which retrieves only headers rather than
records.

ListMetadataFormats retrieve the metadata formats available from a repository, or optionally
the formats available for a specific item.

ListRecords harvest records from a repository.

ListSets retrieve the set structure of a repository.

Optional arguments to ListRecords and ListIdentifiers permit selective harvesting of headers
based on set membership and/or datestamp.

Some of these requests return a list of discrete entities: ListRecords returns a list of records,
ListIdentifiers returns a list of headers, and ListSets returns a list of sets. These lists may
be large, and it may be practical to partition them among a series of requests and responses.
Repositories may reply with incomplete results and a resumption token, which the harvester can
use to issue an additional request (and repeat until completion).

The R package OAIHarvester provides functions for performing each of the six OAI-PMH
requests. List requests will automatically be re-issued until complete results are obtained. The
names of these verb functions start with ‘oaih’ and follow a “combine words with underscores”
scheme (e.g., oaih_list_records, corresponding to the OAI-PMH ListRecords verb, for har-
vesting records). The functions return the actual (aggregated) result of the repository’s response
to the harvester’s request.

In addition to these functions for performing OAI-PMH requests, function oaih_harvest is
a high-level harvester which allows specifying several metadata formats or sets, and giving dat-
estamps as Date or POSIXt date/time objects. Finally, function oaih_transform provides func-
tionality for transforming the XML results to “useful” R data structures for further processing or
analysis. The results of the verb requests are transformed by default.

The ideas underlying these transformations are best illustrated for harvesting records. In a list
context, the result is a list of records, each containing the header (with identifier and datestamp
and arbitrarily many set specs), metadata in a certain format, and arbitrarily many about entries.
Conceptually, we can think of identifier, datestamp, setSpec, metadata and about as variables
“observed” for the items in the repository as cases, suggesting the usual rectangular case by vari-
ables data organization. When obtaining a single record, it seems natural to transform to a list
with these variables. If the rectangular data structure were a data frame, selecting one row (corre-
sponding to a single record) would not straightforwardly yield the single record list transformation
(because subscripting list variables in the data frame would give length one sublists rather than
the elements). Thus, in the rectangular cases we instead treat rows and columns symmetrically
by arranging data in a “list matrix” (a list with a dim attribute, or equivalently, a matrix of list
elements). As matrix subscripting drops dimensions when a single row or column is selected, one
gets the expected simple list (without a dim attribute) in these cases. (Equivalently, the trans-
formed oaih_list_records result is the same as combining the transformed oaih_get_record

results by rows rbind.)
When harvesting records, identifiers and datestamps naturally transform to character strings,

and set specs (a header may contain arbitrarily many of these) to character vectors. On the

2

other hand, metadata can be made available in different formats, with different “variables”. We
find it more convenient to use a constant set of variables for a single transformation of a certain
“kind” of OAI-PMH XML results. Thus, we do not immediately transform the metadata, but
instead leave them as lists of XML nodes to be transformed in a second stage (with variables
differing according to the metadata format; currently, metadata in the Dublin Core and RFC 1807
(http://www.rfc-editor.org/rfc/rfc1807.txt) formats can be transformed).

These principles (using lists of single observations on variables and possibly arranging them in
a rectangular way, and transforming to constant sets of variables) applies for all transformations
of OAI-PMH XML results. Transformations can be added by assigning functions in the (currently
internal) environment oaih_transform_methods_db.

As an example consider ePubWU, an electronic publication platform for research output pro-
vided by WU (Wirtschaftsuniversität Wien), which provides an OAI repository at http://epub.
wu.ac.at/cgi/oai2.

> library("OAIHarvester")

> baseurl <- "http://epub.wu.ac.at/cgi/oai2"

We can use oaih_identify to retrieve information about the repository.

> x <- oaih_identify(baseurl)

> rbind(x, deparse.level = 0)

repositoryName baseURL protocolVersion

[1,] "ePubWU" "http://epub.wu.ac.at/cgi/oai2" "2.0"

earliestDatestamp deletedRecord granularity

[1,] "2010-09-14T14:58:32Z" "persistent" "YYYY-MM-DDThh:mm:ssZ"

adminEmail compression description

[1,] "epub@wu.ac.at" Character,0 List,2

Here, rbind achieves “pretty-printing”: we can see that the repository provides no compression
support, and 2 further description entries of kind

> sapply(x$description, xmlName)

[1] "oai-identifier" "eprints"

where entry 1 indicates that the repository complies with the OAI format for unique record iden-
tifiers:

> oaih_transform(x$description[[1L]])

$scheme

[1] "oai"

$repositoryIdentifier

[1] "epub.wu-wien.ac.at"

$delimiter

[1] ":"

$sampleIdentifier

[1] "oai:epub.wu-wien.ac.at:498"

We can use oaih_list_metadata_formats and oaih_list_sets to find out about available
metadata formats and sets:

> oaih_list_metadata_formats(baseurl)

3

http://www.rfc-editor.org/rfc/rfc1807.txt
http://epub.wu.ac.at/cgi/oai2
http://epub.wu.ac.at/cgi/oai2

metadataPrefix schema

[1,] "oai_dc" "http://www.openarchives.org/OAI/2.0/oai_dc.xsd"

metadataNamespace

[1,] "http://www.openarchives.org/OAI/2.0/oai_dc/"

> sets <- oaih_list_sets(baseurl)

> rbind(head(sets, 3L), tail(sets, 3L))

setSpec

"796561723D32303031"

"796561723D32303037"

"796561723D31393935"

[31,] "74797065733D706174656E74"

[32,] "74797065733D7465616368696E675F7265736F75726365"

[33,] "74797065733D736F667477617265"

setName setDescription

"Year = 2001" List,0

"Year = 2007" List,0

"Year = 1995" List,0

[31,] "Type = Patent" List,0

[32,] "Type = Teaching Resource" List,0

[33,] "Type = Software" List,0

Only the mandatory Dublin Core format is offered, and there is a fairly refined set hierarchy for
selective harvesting. If we only want the doctoral theses, we need the spec of the set corresponding
to type theses:

> spec <- unlist(sets[sets[, "setName"] == "Type = Thesis", "setSpec"])

To obtain all records for the theses:

> x <- oaih_list_records(baseurl, set = spec)

This gives a “list matrix” with observations of 5 variables on 96 items:

> dim(x)

[1] 96 5

> colnames(x)

[1] "identifier" "datestamp" "setSpec" "metadata" "about"

Transforming the Dublin Core metadata is achieved by calling oaih_transform on the metadata
column, after first removing empty metadata (from deleted records):

> m <- x[, "metadata"]

> m <- oaih_transform(m[sapply(m, length) > 0L])

> dim(m)

[1] 94 15

giving observations on the 15 (simple) Dublin Core elements:

> colnames(m)

[1] "title" "creator" "subject" "description" "publisher"

[6] "contributor" "date" "type" "format" "identifier"

[11] "source" "language" "relation" "coverage" "rights"

4

Finally, the topics of the theses are available in the ‘subject’ DC variable, with comment
“Typically, the subject will be represented using keywords, key phrases, or classification codes.
Recommended best practice is to use a controlled vocabulary.” (see http://dublincore.org/

documents/dcmi-terms/#terms-subject), but without a more detailed syntactic or semantic
specification.

Inspecting the output of m[, "subject"], e.g.,

> m[c(1L, 6L, 7L), "subject"]

[[1]]

[1] "Stock management / marketing / risk behavior / stochastic model /"

[[2]]

[1] "TETRA <telecommunication> / acceptance"

[[3]]

[1] "LINDA <Programmiersprache> / Rechnernetz /"

suggests that “keywords” are separated by slashes, so we can obtain all keywords via

> sep <- "[[:space:]]*/[[:space:]]*"

> keywords_by_thesis <- strsplit(unlist(m[, "subject"]), sep)

> keywords <- unlist(keywords_by_thesis)

giving a total of 557 keywords. Most of these only occur once:

> counts <- table(keywords)

> table(counts)

counts

1 2 3 4 15

467 25 7 1 1

(re-iterating the above comment on using controlled vocabularies). The most frequently used
keywords are

> sort(counts[counts >= 3L], decreasing = TRUE)

keywords

Österreich Umfrage Austria

15 4 3

China Internet Wirtschaftsentwicklung

3 3 3

XML economic development simulation

3 3 3

which unfortunately does not include ‘R’: but there is at least one such entry

> counts["R"]

R

1

from David Meyer’s 2003 thesis

> lapply(m[sapply(keywords_by_thesis, function(kw) any(kw == "R")),

+ c("title", "creator")], strwrap)

5

http://dublincore.org/documents/dcmi-terms/#terms-subject
http://dublincore.org/documents/dcmi-terms/#terms-subject

$title

[1] "A generic simulation environment for heterogeneous agents. With"

[2] "applications in marketing and technological choice."

$creator

[1] "Meyer, David"

whereas Ingo Feinerer’s thesis on text mining (describing in particular the R text mining infras-
tructure provided by package tm (Feinerer, 2008; Feinerer, Hornik, and Meyer, 2008)) has

> m[grep("^Feinerer", unlist(m[, "creator"])), c("title", "creator",

+ "subject")]

$title

[1] "A text mining framework in R and its applications"

$creator

[1] "Feinerer, Ingo"

$subject

[1] "text mining / R <program> / framework / infrastructure /"

(again re-iterating the above comment about controlled vocabularies).

References

I.˜Feinerer. tm: Text Mining Package, 2008. URL http://CRAN.R-project.org/package=tm. R package
version 0.3-3.

I.˜Feinerer, K.˜Hornik, and D.˜Meyer. Text mining infrastructure in R. Journal of Statistical Software,
25(5), March 2008. URL http://www.jstatsoft.org/v25/i05/.

6

http://CRAN.R-project.org/package=tm
http://www.jstatsoft.org/v25/i05/

