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1 Overview

This vignette provides an overview about the usage of QuACN.
Chapter 2 will give you an idea how to import already exiting networks. In Chapter 3 a brief description of

the implemented measures is presented, and it demonstrates how to call the related method in R.

2 Networks

> library("QuACN")

> set.seed(666)

> g <- randomGraph(1:8, 1:5, 0.36)

> plot(g, "neato")

> g

A graphNEL graph with undirected edges

Number of Nodes = 8

Number of Edges = 16

We generate a random graph with 8 nodes. This graph will be used to explain the implemented methods. To
analyze a network the network has to be represented by a graphNEL-object, which is part of the Bioconductor
graph package.

If you have already created networks that you want to analyze with QuACN, R offers several ways to import
them. (It is important to know that networks have to be represented by graphNEL-objects.) Note that there is
no general procedure to get your networks into an R-workspace. Some possibilities to import network data are
listed below:

• Adjacency matrix: A representation of your network as an adjacency matrix can be easily imported and
converted into a graphNEL object.

• Node- and Edge-List: With a list of nodes and Edges it is easy to create a graphNEL-object.

• read.graph(): The read.graph() method of the graph-package offers the possibility to import graphs
that a represented in different formats. For details see the manual of the graph-package.
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• System Biology Markup Language(SBML) [1]: With the RSBML-package it is possible to import
SBML-Models.

• igrah-package: Networks created with the igraph-package can be converted into graphNEL objects.

3 Network Descriptors

This section provides a overview of the network descriptors that are included in the QuACN package. Here we
describe the respective descriptor and how to call it in R.

Note that every descriptor has at least two parameters, the graphNEL-object and the distance matrix repre-
senting the network. It is not necessary to pass the distance matrix to a function. If the parameters stays empty
or is set to NULL the distance matrix will be estimated within each function. But if you want to calculate more
than one descriptor, it is recommended to calculate the distance matrix separately and pass it to each method.
Some of the methods need the degree of each node or the adjacency matrix to calculate their results. If they
were calculated once they should have kept for later use. Specially with large networks it saves a lot of time, not
to calculate these parameters for each descriptor again, and will enhance the performance of your script.

> mat.adj <- adjacencyMatrix(g)

> mat.dist <- distanceMatrix(g)

> vec.degree <- graph::degree(g)

> ska.dia <- diameter(g)

> ska.dia <- diameter(g, mat.dist)

3.1 Descriptors Based on Distances in a Graph

This section describes network measures based on distances in the network.

Wiener Index [2]:

W (G) :=
1

2

|N |∑
i=1

|N |∑
j=1

d(vi, vj). (1)

where |N(G)| := |N | denotes the number of Nodes of the complex network. d(vi, vj) stands for shortest distances
between vi, vj ∈ V .

> wien <- wiener(g)

> wiener(g, mat.dist)

[1] 43

Hararay Index [3]:

H(G) :=
1

2

|N |∑
i=1

|N |∑
j=1

(d(vi, vj))
−1, i 6= j. (2)

> harary(g)

[1] 21.16667

> harary(g, mat.dist)

[1] 21.16667
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Balaban J Index [4]:

J(G) :=
|E|
µ+ 1

∑
(vi,vj)∈E

[DSiDSj ]
− 1

2 , (3)

> balabanJ(g)

[1] 2.414364

> balabanJ(g, mat.dist)

[1] 2.414364

where |E(G)| := |E| denotes the number of edges of the complex network, DSi denotes the distance sum (row
sum) of vi and µ := |E|+ 1− |N | denotes the cyclomatic number.

Mean distance deviation [5]:

∆µ(G) :=
1

N

N∑
i=1

|µ(vi)− µ̄|, (4)

where

µ(vi) :=

N∑
j=1

d(vi, vj), (5)

and

µ̄ :=
2W

N
. (6)

> meanDistanceDeviation(g)

[1] 1.6875

> meanDistanceDeviation(g, mat.dist)

[1] 1.6875

Compactness [6]:

C(G) :=
4W

|N |(|N | − 1)
. (7)

> compactness(g)

[1] 3.071429

> compactness(g, mat.dist)

[1] 3.071429

> compactness(g, mat.dist, wiener(g, mat.dist))

[1] 3.071429

Product of Row Sums index [7]:

PRS(G) =

|N |∏
i=1

µ(vi) or log
(
PRS(G)

)
= log

|N |∏
i=1

µ(vi)

 . (8)

> productOfRowSums(g, log = FALSE)

[1] 157464000

> productOfRowSums(g, log = TRUE)
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[1] 27.23045

> productOfRowSums(g, mat.dist, log = FALSE)

[1] 157464000

> productOfRowSums(g, mat.dist, log = TRUE)

[1] 27.23045

Hyper-distance-path index [8]

DP (G) :=
1

2

|N |∑
i=1

|N |∑
j=1

d(vi, vj) +
1

2

|N |∑
i=1

|N |∑
j=1

(
d(vi, vj)

2

)
. (9)

> hyperDistancePathIndex(g)

[1] 60

> hyperDistancePathIndex(g, mat.dist)

[1] 60

> hyperDistancePathIndex(g, mat.dist, wiener(g, mat.dist))

[1] 60

3.2 Descriptors Based on Other Graph-Invariants

This section describes network measures based on other invariants than distances.

Index of total adjacency [9]:

A(G) :=
1

2

|N |∑
i=1

|N |∑
j=1

aij . (10)

> totalAdjacency(g)

[1] 17

> totalAdjacency(g, mat.adj)

[1] 17

Zagreb group indices [10]:

Z1(G) :=

|N |∑
i=1

kvi , (11)

where kvi is the degree of the node vi.

Z2(G) :=
∑

(vi,vj)∈E

kvikvj . (12)

> zagreb1(g)

[1] 32

> zagreb1(g, vec.degree)

[1] 32

> zagreb2(g)

[1] 298

> zagreb2(g, vec.degree)

[1] 298
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Randić connectivity index [11]:

R(G) :=
∑

(vi,vj)∈E

[kvikvj ]−
1
2 . (13)

> randic(g)

[1] 3.602215

> randic(g, vec.degree)

[1] 3.602215

The complexity index B [9]:

B(G) :=

|N |∑
i=1

kvi
µ(vi)

. (14)

> complexityIndexB(g)

[1] 3.255556

> complexityIndexB(g, mat.dist)

[1] 3.255556

> complexityIndexB(g, mat.dist, vec.degree)

[1] 3.255556

Normalized edge complexity [9]:

EN (G) :=
A(G)

|N |2
. (15)

> normalizedEdgeComplexity(g)

[1] 0.265625

> normalizedEdgeComplexity(g, totalAdjacency(g, mat.adj))

[1] 0.265625

3.3 Classical entropy based descriptors

These measures are based on grouping the elements of an arbitrary graph invariant (vertices, edges, and distances
etc.) using an equivalence criterion.

Topological information content [12, 13]:

IVorb(G) := −
k∑
i=1

|NV
i |
|N |

log

(
|NV

i |
|N |

)
. (16)

|NV
i | denotes the number of vertices belonging to the i-th vertex orbit.

> topologicalInfoContent(g)

[1] 2.25

> topologicalInfoContent(g, mat.dist)

[1] 2.25

> topologicalInfoContent(g, mat.dist, vec.degree)

[1] 2.25
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Bonchev - Trinajstić indices [14]:

ID(G) := − 1

|N |
log

(
1

|N |

)
−
ρ(G)∑
i=1

2ki
|N |2

log

(
2ki
|N |2

)
, (17)

IWD (G) := W (G) log(W (G))−
ρ(G)∑
i=1

iki log(i). (18)

ki is the occurrence of a distance possessing value i in the distance matrix of G.

> #I_D(G)

> bonchev1(g)

[1] 1.208931

> bonchev1(g,mat.dist)

[1] 1.208931

> #I^W_D(G)

> bonchev2(g)

[1] 170.3098

> bonchev2(g,mat.dist)

[1] 170.3098

> bonchev2(g,mat.dist,wiener(g))

[1] 170.3098

BERTZ complexity index [15]:

C(G) := 2N log(|N |)−
k∑
i=1

|Ni| log (|Ni|) . (19)

|Ni| are the cardinalities of the vertex orbits as defined in Eqn. (16).

> bertz(g)

[1] 42

> bertz(g, mat.dist)

[1] 42

> bertz(g, mat.dist, vec.degree)

[1] 42

Radial centric information index [16]:

IC,R(G) :=

k∑
i=1

|Ne
i |
|N |

log

(
|Ne

i |
|N |

)
. (20)

|Ne
i | is the number of vertices having the same eccentricity.

> radialCentric(g)

[1] 0.954434

> radialCentric(g, mat.dist)

[1] 0.954434
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Vertex degree equality-based information index [16]:

Ideg(G) :=

k̄∑
i=1

|Nkv
i |
|N |

log

(
|Nkv

i |
|N |

)
. (21)

|Nkv
i | is the number of vertices with degree equal to i and k̄ := maxv∈V kv.

> vertexDegree(g)

[1] 2.25

> vertexDegree(g, vec.degree)

[1] 2.25

Balaban-like information indices [17]:

U(G) :=
|E|
µ+ 1

∑
(vi,vj)∈E

[u(vi)u(vj)]
− 1

2 , (22)

X(G) :=
|E|
µ+ 1

∑
(vi,vj)∈E

[x(vi)x(vj)]
− 1

2 , (23)

where

u(vi) := −
σ(vi)∑
j=1

j|Sj(vi, G)|
µ(vi)

log

(
j

µ(vi)

)
, (24)

x(vi) := −µ(vi) log(d(vi))− yi, (25)

yi :=

σ(vi)∑
j=1

j|Sj(vi, G)| log(j), (26)

µ(vi) :=

|N |∑
j=1

d(vi, vj) =

|N |∑
j=1

j|Sj(vi, G)|. (27)

> #Balaban-like information index U(G)

> balabanlike1(g)

[1] 8.831362

> balabanlike1(g,mat.dist)

[1] 8.831362

> #Balaban-like information index X(G)

> balabanlike2(g)

[1] 0.8436946

> balabanlike2(g,mat.dist)

[1] 0.8436946

Graph vertex complexity index [18]:

IV (G) :=

N∑
i=1

vci , (28)

where vci is the so-called vertex complexity expressed by

vci :=

σ(vi)∑
j=0

kvij
N

log

(
kvij
N

)
. (29)

kvik is the number of distances starting from Vi ∈ V equal to j.
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> graphVertexComplexity(g)

[1] -12.08022

> graphVertexComplexity(g, mat.dist)

[1] -12.08022

3.4 Parametric Graph Entropy Measures

Measures of this group [19, 20] assign a probability value to each vertex of the network using a so-called information
functional f which captures structural information of the network G. We yield [19],

If (G) := −
|N |∑
i=1

f(vi)∑|N |
j=1 f(vj)

log

(
f(vi)∑|N |
j=1 f(vj)

)
, (30)

where If (G) represents a family of graph entropy [19] measures depending on the information functional. Further
we implemented the following measurement[20]:

Iλf (G) := λ

log(|N |) +

|N |∑
i=1

p(vi) log(p(vi))

 , (31)

p(vi) :=
f(vi)∑|N |
j=1 f(vj)

, (32)

where pV (vi) are the vertex probabilities, λ > 0 a scaling constant. This measure can be interpreted as the
distance between the entropy defined in equation 30 and maximum entropy (log(|N |)).

We integrated 3 different information functionals:

1. An information functional using the j-spheres (”sphere”):

fV (vi) := c1|S1(vi, G)|+ c2|S2(vi, G)|+ · · ·+ cρ(G)|Sρ(G)(vi, G)|, (33)

where ck > 0.

2. An information functional using path lengths (”pathlength”):

fP2(vi) := c1l(P (LG(vi, 1))) + c2l(P (LG(vi, 2))) + · · ·+ cρ(G)l(P (LG(vi, ρ(G)))), (34)

where ck > 0.

3. An information functional using vertex centrality(”vertcent”) :

fC2(vi) := c1β
LG(vi,1)(vi) + c2β

LG(vi,2)(vi) + · · ·+ cρ(G)β
LG(vi,ρ(G))(vi), (35)

where ck > 0.

We implemented 4 different settings (as example settings) of the weighting parameter ci:

1. constant
c1 := 1, c2 := 1, . . . , cρ(G) := 1. (36)

2. linear
c1 := ρ(G), c2 := ρ(G)− 1, . . . , cρ(G) := 1. (37)

3. quadratic
c1 := ρ(G)2, c2 := (ρ(G)− 1)2, . . . , cρ(G) := 1. (38)

4. exponential
c1 := ρ(G), c2 := ρ(G)e−1, . . . , cρ(G) := ρ(G)e−ρ(G)+1. (39)

ρ(G) represents the diameter of the network.
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To call this type of network measure we provide the method infoTheoreticGCM. It has following input pa-
rameters:

• g : the network as a graphNEL object - it is the only mandatory parameter

• dist : the distance matrix of g

• coeff: specifies the weighting parameter: ”const”, ”lin”, ”quad”, ”exp”, ”const” or ”cust” are available con-
stants. If it is set to ”cust” you have to specify your customized weighting schema with the parameter
custCoeff.

• infofunct : specifies the information functional: ”sphere”, ”pathlength” or ”vertcent” are available settings.

• lamda: scaling constant for the distance, default set to 1000.

• custCoeff : specifies the customized weighting schema. To use it you need to set coeff =”const”.

The method returns a list with following entries:

• entropy : contains the entropy, see formula 30

• distance: contains the distance described in formula 31

• pis: contains the probability distribution, see formula 32

• fvi : contains the values of the used information functional for each vertex vi

> l1 <- infoTheoreticGCM(g)

> l2 <- infoTheoreticGCM(g, mat.dist, coeff = "lin", infofunct = "sphere",

+ lamda = 1000)

> l3 <- infoTheoreticGCM(g, mat.dist, coeff = "exp", infofunct = "sphere",

+ lamda = 1000)

> l4 <- infoTheoreticGCM(g, mat.dist, coeff = "const", infofunct = "pathlength",

+ lamda = 4000)

> l5 <- infoTheoreticGCM(g, mat.dist, coeff = "quad", infofunct = "vertcent",

+ lamda = 1000)

> l1

$entropy

[1] 2.990011

$distance

[1] 9.9892

$pis

1 2 3 4 5 6 7 8

0.1376812 0.1304348 0.1304348 0.1376812 0.1376812 0.0942029 0.1159420 0.1159420

$fvis

1 2 3 4 5 6 7 8

19 18 18 19 19 13 16 16

> l5

$entropy

[1] 2.924897

$distance

[1] 75.10322

$pis

1 2 3 4 5 6 7

0.16666667 0.12851406 0.12851406 0.16666667 0.15160643 0.04518072 0.10642570
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0.10642570

$fvis

1 2 3 4 5 6 7 8

55.33333 42.66667 42.66667 55.33333 50.33333 15.00000 35.33333 35.33333

4 Session Info

> sessionInfo()

R version 2.11.0 (2010-04-22)

x86_64-unknown-linux-gnu

locale:

[1] LC_CTYPE=en_US.utf8 LC_NUMERIC=C

[3] LC_TIME=en_US.utf8 LC_COLLATE=en_US.utf8

[5] LC_MONETARY=C LC_MESSAGES=en_US.utf8

[7] LC_PAPER=en_US.utf8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.utf8 LC_IDENTIFICATION=C

attached base packages:

[1] grid tools stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] QuACN_1.0 combinat_0.0-7 igraph_0.5.3 Rgraphviz_1.26.0

[5] RBGL_1.24.0 graph_1.26.0
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