
RBrownie User’s Guide (Version 0.0.4)

J. Conrad Stack with credit due to others(1)

September 12, 2010

1 Introducing Brownie

RBrownie is an R package constructed around the C++ command-line pro-
gram Brownie (available here) which was designed by Brian O’Meara in order
to fascilitate the estimation and comparison of rates and means of character
evolution over different parts of a phylogeny (O’Meara, et al., 2006). It it
built on three primary analyses: First are censored rate tests under Brownian
motion which allow for the comparison of the rates of evolution of morphologi-
cal traits across two monophyletic sister-clades or between a monophyletic and
paraphyletic clade. This analysis allows you to answer questions about differ-
ences in the evolutionary rate of two distinct clades (e.g. large subspecies vs.
small subspecies). Second are non-censored ratetests, so called because they do
not remove (censor) any branches of the phylogeny being tested. This class of
analyses allows you to compare the rates (Brownian motion model) or means
(Ornstein-Uhlenbeck model) of evolution under different character states which
are mapped onto the phylogeny. For example, if you had a tree with binary char-
acters mapped onto it branches indicating possession a certain trait and you also
had morphological data for all the taxa present in the tree (the tips), then, using
a model-testing approach, this analysis allows to you statistically assess whether
or not that binary trait is associated with the significantly different rate of evo-
lution of the morphological characteristic measured. Lastly, Brownie performs
discrete ancestral state evolution (maximum likelihood approach), which pro-
duces branch-annotated trees which can used in these non-censored rate tests.

RBrownie’s aim is to exposes all of Brownies capabilities to R users so that
they can be used in conjuction with R’s existing phylogenetic toolkit. It provides
users with easy ways to run common Brownie analyses and the flexibility to write
more complex analyses if desired. Below I give a short introduction to Brownie
and RBrownie, discusses the main datatypes in RBrownie and how to use them,
and then a number of examples of the sort of evolutionary analyses that can be
completed in RBrownie, including visualizing and understanding the results.

1

http://www.brianomeara.info/brownie

1.1 More information

Brownie has a large number of functions in addition to the rate tests de-
scribed above that we cannot describe in full here, but are worth looking into at
least because they will help you better understand RBrownie’s capabilities and
will allow you to exploit all the useful functions RBrownie) has to offer. The
manual for Brownie can be found here.

2 Introducing RBrownie

It was mentioned before that RBrownie is an R wrapper for the Brownie
program described briefly above. Using the Rcpp package, RBrownie links R
with the exact same Brownie code that is used in the Brownie command line
program. In addition to providing a streamlined interface to Brownie’s core
functionality, RBrownie adds plotting and visualization functions which make
working with the output data much more easy and flexible.

Like PAUP*,Mesquite, and other phylogenetic programs, Brownie uses spe-
cially formatted nexuses files to load phylogenetic data into the program. RBrownie
adds functions and classes to help the user read, write, and manipulate these
tailored nexus files, supplementing the more generic NEXUS read/write func-
tions found in the ape and phylobase packages (see ape:::read.nexus.data,
ape:::write.nexus.data, phylobase:::writeNexus).

To get started using the package (once it has been installed), type the fol-
lowing:

> require(RBrownie)

Note that the other packges on which RBrownie depends are listed. Now that
we have the package loaded, we can look into how to load and/or manipulate
our phylogenetic data in RBrownie.

2.1 Reading nexus files

Nexus files can be read into R using a number of packages. ape and phylobase

both include the functionality to read in standard trees and sequence data, while
phylobase also reads standard CHARACTERS (or DATA) blocks. For more
information on the options presented by these too packages, check out their
documentation:

> ?read.nexus # ape

> ?read.nexus.data # ape

> ?readNexus # phylobase

However, Brownie uses nexus blocks beyond those supported by ape and
phylobase and RBrownie extends the methods above to accomadate. For ex-
ample, Brownie uses an ASSUMPTIONS block to define subsets of the taxa
which can be used in its various rate tests. It also uses a BROWNIE block to

2

http://www.brianomeara.info/brownie/manual

store a list of brownie commands to be run automatically if the file is “executed”
within the Brownie environment (this is similar to how PAUP* executes files).
So, RBrownie has its own functions for reading and writing nexus files with these
special blocks, readBrownie and writeBrownie.

To illustrate how they work we’ll use the parrot dataset which is included
with RBrownie (NOTE: you need to have write access to the directory you are
in to run this example).

> data(parrot)

> writeBrownie(parrot, file = "parrotdata.nex")

> newparrot = readBrownie("parrotdata.nex")

The two objects parrot and newparrot should be indentical. It would also
be instructive to open the parrotdata.nex file to see how RBrownie writes
ASSUMPTIONS blocks, but this isn’t necessary. You may have also noticed
that parrot and newparrot are both of class list. The list class (a very
common class in R) is used when multiple trees are found in a single nexus file.
For example, if you opened parrotdata.nex, you would find 10 trees in the
TREES block. Each element in the parrot (and newparrot) list contains one
of these trees and is of class brownie:

> class(parrot) # list class

> length(parrot) # == 10

> class(newparrot) # list class

> length(newparrot) # == 10

> #

> class(parrot[[1]]) # brownie class representing the first tree in the list

brownie is the main class that RBrownie uses to represent phylogenetic data.
It and other RBrownie classes are discussed in the next section,

2.2 Classes in RBrownie

At its core RBrownie is built around two major classes, phylo4d_ext and
brownie, which both extend phylo4d from phylobase. In fact, phylo4d_ext

extends phylo4d and brownie in turn extends phylo4d_ext. In non-computer-
ese this mean that phylo4d_ext adds a few new data containers (or “slots” as
they are known in the S4 world) to phylo4d and brownie adds a few new data
containers to phylo4d_ext. To illustrate this run the R code below. It shows
which new slots have been added to phylo4d.

> require(RBrownie,quietly=TRUE,warn.conflicts=FALSE)

> phylo4d_slots = names(getSlots("phylo4d"))

> phylo4d_ext_slots = names(getSlots("phylo4d_ext"))

> brownie_slots = names(getSlots("brownie"))

> phylo4d_slots

3

[1] "data" "metadata" "edge" "edge.length"

[5] "label" "edge.label" "order" "annote"

> # set of differences between phylo4d and phyl4d_ext

> setdiff(phylo4d_ext_slots,phylo4d_slots)

[1] "subnode.id" "subnode.data" "subnode.branch"

[4] "subnode.pos" "weight"

> # set of differences between phyl4d_ext and brownie

> setdiff(brownie_slots,phylo4d_ext_slots)

[1] "commands" "datatypes"

2.2.1 phylo4d ext class

This class (as implied by the name) is an extension of the phylo4d class from
phylobase. This base class holds a phylogenetic tree and a data.frame contain-
ing data for each node of the tree. The code below shows how to construct a
random coalescent tree and add junk data to the tips of tree which in practice
might represent morphological data for each of the taxa.

> require(phylobase)

> # generate a random coalescent tree with 10 tips

> ape_tree = rcoal(10)

> #

> # convert tree from 'phylo' (ape) to 'phylo4' (phylobase) format

> phy_tree = as(ape_tree,"phylo4")

> #

> # generate junk data for the tips

> sample_tipdata = runif(10)

> #

> # combine the phylogenetic tree and the sample data

> phyd_tree = phylo4d(phy_tree,tip.data=sample_tipdata)

> plot(phyd_tree)

4

●

●

●

●

●

t7

t8

t10

t6

t3

t4

t9

t2

t1

t5

dt

phylo4d_ext adds to this class “subnodes” and tree weights. Subnodes are
internal nodes mapped directly onto an existing branches and are conceptually
similar to singleton nodes (but offer a bit more flexibility from a programming
standpoint). The phylo4d_ext class was created mainly to handle SIMMAP-
formatted nexus trees, but instances can be created from scratch as well. For
example, the code below constructs a random coalescent tree like we did in the
last section, but with binary data representing say the presence or absence of
a life history trait and also with subnodes along different branches of the tree
each representing either loss(0) or gain(1) of the trait along the branch.

> require(RBrownie)

> ape_tree = rcoal(10,br=runif(9,5,15))

> phy_tree = as(ape_tree,"phylo4")

> #

> # Discrete trait data:

> # (Loosely simulate the evolution of a binary trait down a tree,

> # choosing a random value for the tip and then changing

> # the trait based on the the change matrix.)

> #

> phy_tree = reorder(phy_tree,order="preorder")

> sample_binarydata = data.frame(rep(0,19)) # junk data

> names(sample_binarydata) <- "hasTrait"

> sample_binarydata[rootNode(phy_tree),1] = sample(c(0,1),1) # choose root value

5

> changemat = matrix(c(0.8,0.2,0.2,0.8),byrow=T,nrow=2) # prob. of changing on branch

> sample_edges = integer(0) # track edges where change occurs

> for(i in seq(nrow(edges(phy_tree))))

+ {

+ anc = edges(phy_tree)[i,1]

+ desc = edges(phy_tree)[i,2]

+ if(anc == 0)

+ next

+

+ newvalue = sample(c(0,1),1,prob=changemat[(sample_binarydata[anc,1]+1),])

+ sample_binarydata[desc,1] = newvalue

+ if(newvalue != sample_binarydata[anc,1])

+ sample_edges = append(sample_edges,i)

+ }

> #

> #

> # Subnodes

> # (put subnodes on the branches where the trait changed showing

> # where on the branch the change happened. Note that the

> # subnode data.frame must have the same structure as the

> # parent data.frame)

> #

> tmpdata = as.integer(!sample_binarydata[edges(phy_tree)[sample_edges,2],1])

> sample_subnodedata = data.frame(tmpdata)

> names(sample_subnodedata) <- "hasTrait"

> #

> # Position the subnodes along their respective branches

> # using the fraction of the overall branch length. In

> # this case, I'll put them near the middle of the branch.

> sample_positions = runif(n=length(tmpdata),min=0.25,max=0.75)

> #

> # Create the phylo4d_ext object, which first creates

> # a phylo4d object and then adds the subnodes to it.

> #

> # NOTE: any "extra" arguments (all.data) are passed

> # on to the phylo4d constructor via the ellipsis argument (...).

> phyext_tree = phyext(phy_tree,

+ snode.data=sample_subnodedata,

+ snode.branch=edges(phy_tree)[sample_edges,],

+ snode.pos=sample_positions,

+ all.data=sample_binarydata)

> # nodes, subnodes, and branches without the "trait" (state 0) are colored black

> # nodes, subnodes, and branches with the "trait" (state 1) are colored red

> plot(phyext_tree,states=c(0,1),states.col=c("black","red"))

6

t3

t7

t5

t1

t2

t8

t10

t9

t4

t6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

In the plot above, the subnodes are clearly seen as dots on an existing branch
where the state (colors) change. We roughly simulated the evolution of a binary
trait down the tree, added subnodes to show that those changes occurred at a
certain point along the branch (instead of only at nodes), and then plotted the
tree colored to represent which state it was in. Another example of the use of
subnodes can be seen in the parrot data set:

> require(RBrownie)

> data(parrot)

> plot(parrot[[1]])

7

Cryptotomus_roseus
Sparisoma_atomarium
Sparisoma_radians
Sparisoma_chrysopterum
Sparisoma_viride
Sparisoma_aurofrenatum
Sparisoma_rubripinne
Leptoscarus_vaigiensis
Calotomus_carolinus
Calotomus_spinidens
Bolbometopon_muricatum
Cetoscarus_bicolor
Hipposcarus_longiceps
Chlorurus_sordidus
Chlorurus_bleekeri
Chlorurus_microrhinos
Scarus_psittacus
Scarus_schlegeli
Scarus_flavipectoralis
Scarus_chameleon
Scarus_quoyi
Scarus_rivulatus
Scarus_globiceps
Scarus_oviceps
Scarus_spinus
Scarus_rubroviolaceus
Scarus_niger
Scarus_forsteni
Scarus_altipinnis
Scarus_dimidiatus
Scarus_frenatus
Scarus_ghobban
Scarus_taeniopterus
Scarus_iseri

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

Now the binary state data are represented by the default colors in RBrownie

and a state change is clearly visible on the branch from the taxon Sparisoma chrysopterum.
In this case, state 0 and state 1 represent a life history trait of parrot fish, namely
whether they scrape (0) or excavate (1) coral. You can clearly see that, in this
tree at least, that life history trait changes throughout the evolutionary his-
tory of the parrot fish at both internal nodes and along a branch at a subnode.
Brownie uses this state information, as we will see later, to address questions
such as ”Does coral excavatingscraping limit morphological evolution in parrot-
fishes” (Bodega Phylogenetics Wiki , 2010)

To view subnode information these, accessor functions are available:

> snid(phyext_tree) # access subnode ids (not currently used)

> sndata(phyext_tree) # access subnode data.frame (should reflect the parents d.f)

> snposition(phyext_tree) # access subnode positions

> snbranch(phyext_tree) # access branches subnodes are on

> showSubNodes(phyext_tree) # print a textual representation of the subnodes

In the example above where we simulated the evolution of a binary trait down
a tree, we created an instance of phylo4d_ext using its constructor phyext. If
you would like to add a new subnode manually to this tree you would use
addSubNode. For example:

> #

> ancestor.node = edges(phyext_tree)[1,1]

8

> descendant.node = edges(phyext_tree)[1,2]

> node.position = 0.5

> node.data = data.frame(1)

> names(node.data) <- "hasTrait"

> #

> phyext_tree = addSubNode(phyext_tree,

+ ancestor.node,

+ descendant.node,

+ node.position,

+ node.data)

weight is an aspect of the phylo4d_ext class that will be supported better
in future versions and will not be discussed here.

Finally, subnodes will most be read in from SIMMAP-formatted nexus files
and not added manually. The SIMMAP format was created represent state
mappings onto branches (subnodes) in nexus tree files and the standard has
gone through a number of iterations. Currently, only SIMMAP version 1.0 and
1.1 are supported by RBrownie but we are working to add support for the latest
version (1.5) which is used by Mesquite. RBrownie can be used to read and
write trees with subnodes in SIMMAP (vers 1.0, 1.1) format: (NOTE: you need
to have write access to the directory you are in to run this example).

> data(parrot)

> write.nexus.simmap(parrot, file = "parrottmp.nex")

> newparrot = read.nexus.simmap("parrottmp.nex")

2.2.2 brownie class

Many examples in the last section where the phylo4d ext class was explained
used the parrot dataset included in RBrownie. But, the parrot object is a list of
brownie objects, right? Yes, the brownie class extends the phylo4d_ext class
further adding two new slots to fascillitate doing Brownie analyses. This can be
seen using the following code:

> data(parrot)

> class(parrot[[1]])

> inherits(parrot[[1]], "phylo4d_ext")

The purpose of the commands slot is to hold the text strings that will even-
tually be executed in Brownie itself. That is, once the phylogenetic tree and
any node data is loaded into the Brownie core, these commands are run. They
describe actions that the brownie core should take: analyses might need to be
run on certain trees and not others, choose which models to use when model
tests are done, etc. A full list and description of all the commands can be found
in the Brownie manual.

In common use however, these commands will be filled in automatically by
some higher level functions (e.g. addCensored) which were designed to make

9

http://www.brianomeara.info/brownie/manual

it easy to set up and execute common analysis. If you do find yourself needing
to manipulate these commands, there are a series of functions to manipulate
commands directly (clearCommands, removeCommands, etc) that are probably
irrelevant to most end users and are not discussed here.

The datatypes slot is a character vector which contains a description of
each column in the data slot. RBrownie uses this information in order to write
different parts of the data data.frame to different blocks in a nexus file. For
example, discrete and continuous data are treated differently in Brownie and
each require their own nexus block (CHARACTERS and CHARACTERS2 are
used). Also, taxa sets are stored in the data slot as binary data (1 is taxon is in
the set, 0 if not) and they are written to an ASSUMPTIONS nexus block. To
illustrate this, lets look at the data in parrot data set. (NOTE: The data slot
comes from phylobase, its accessor functions also come from there. tdata is an
example)

> require(RBrownie)

> data(parrot)

> # How many columns are in the data.frame?

> ncol(tdata(parrot[[1]]))

[1] 5

> # What are their names?

> names(tdata(parrot[[1]]))

[1] "simmap_state" "pc1"

[3] "pc2" "TAXSET_all"

[5] "TAXSET_intrajoint"

> # What are their types?

> datatypes(parrot[[1]])

[1] "discrete" "cont" "cont" "taxset" "taxset"

We can see here that this brownie object contains five columns in its data.frame
and they are of 3 different types. The first discrete, indicates discrete data; the
second and third cont indicate continuous data, and the forth and fifth taxset

indicate a special binary data column showing which taxa are in a certain set
of taxa.

There are handy ways to access these datatype strings when using them:

> discData()

> contData()

> taxData()

> genericData() # undefined data (shouldn't be used)

> brownie.datatypes() # show all

Adding new data to a brownie object is done like so:

10

> #

> require(RBrownie)

> data(parrot)

> #

> # junk morphological data for tips

> junkcont = runif((nNodes(parrot[[1]])+1),-10,10)

> #

> # junk discrete data for tips / nodes

> junkdisc = sample(letters[1:4], length(junkcont) + nNodes(parrot[[1]]),replace=TRUE)

> #

> # (Note: if dataTypes argument is left out, the RBrownie will

> # attempt to guess the right datatype. It is always better to specify.)

> #

> parrot_new = addData(parrot, tip.data=junkcont, dataTypes=contData())

> parrot_new = addData(parrot_new, all.data=junkdisc, dataTypes=discData())

> #

> datatypes(parrot_new)

[1] "discrete" "cont" "cont" "taxset" "taxset"

[6] "cont" "discrete"

Now there are two new datatypes in the parrot data which we specified. Also
note how addData() and datatypes() can be called on list objects as well as
brownie objects - the list variant of these functions actually adds the data to
each object in that list. RBrownie has a number of such convenient functions.

Adding taxa set data is a bit different. There is an accessor function in
RBrownie called taxasets() which gives the user access to all the data columns
representing sets of taxa. It can also be used to create new taxasets:

> hasTaxasets(parrot) # see if there are any taxasets

> taxasets(parrot) # return taxasets as data.frame

> #

> #

> # Use taxa names to indicate membership in a taxa set:

> all_sparisoma = grep("Sparisoma",tipLabels(parrot[[1]]),value=TRUE)

> taxasets(parrot,taxnames="sparisomas") <- all_sparisoma

Notice how we can both view all the sets of taxa and assign a new taxaset
using the same command, taxasets(). This is a quirk of S4 methodology -
just remember that if you call the function alone it will show you all the sets of
taxa and if you “assign” a new value the function a new taxa set will be created
(using <-). You can visualize a set of taxa as well:

> require(RBrownie)

> data(parrot)

> plot.taxaset(parrot[[3]],2) # plot the second taxaset

11

Cryptotomus_roseus
Sparisoma_atomarium
Sparisoma_radians
Sparisoma_chrysopterum
Sparisoma_viride
Sparisoma_aurofrenatum
Sparisoma_rubripinne
Leptoscarus_vaigiensis
Calotomus_carolinus
Calotomus_spinidens
Bolbometopon_muricatum
Cetoscarus_bicolor
Hipposcarus_longiceps
Chlorurus_sordidus
Chlorurus_bleekeri
Chlorurus_microrhinos
Scarus_psittacus
Scarus_schlegeli
Scarus_flavipectoralis
Scarus_chameleon
Scarus_quoyi
Scarus_rivulatus
Scarus_globiceps
Scarus_oviceps
Scarus_spinus
Scarus_rubroviolaceus
Scarus_niger
Scarus_forsteni
Scarus_altipinnis
Scarus_dimidiatus
Scarus_frenatus
Scarus_ghobban
Scarus_taeniopterus
Scarus_iseri

Taxaset: intrajoint

And that is the brownie class which can be thought of as a specialization
of generic phylogentic trees + data. It would be instructive to take some of
the examples above, where data is added to data contained within RBrownie,
write it out to a file using writeBrownie, and look at how the different changes
manifest in the nexus file itself.

3 Running Analyses

Now that you are familiar with the data structures in RBrownie, we can
move on to using their methods effectively. RBrownie includes a number of high-
level functions to perform the most common evolutionary analyses (discussed in
the first three subsections), but also exposes a number of lower-level functions
making it easier for the user to tweak or customize the commands the will
eventually be run on the Brownie core.

RBrownie provides two general ways to run any of these analyses. First,
they can be run directly by calling one of the pre-packaged functions of the form
runTEST. These functions clear away anything currently in the commands block
and run the TEST specified. Alternatively, commands can be added to a brownie

objects one by one using functions of the form addTEST or addOPTION and then
all the commands in the brownie object can be executed using run.asis. We’ll
see examples of all of these below.

12

3.1 Censored Rate Test

Briefly, the purpose of this test is to calculate and compare rate of continuous
character evolution in different parts of a tree. A detailed description of this
test is beyond the scope of this guide, but can be found in the Brownie manual.

Brownie uses the ’ratetest’ command to perform this test allowing the user
to specify a number of optional parameters and so function RBrownie provides
functions which add this command along with various options to the commands

slot of a brownie object. It requires the use of a phylo4d_ext object as input
(see the manual) - Let’s look at an example:

> require(RBrownie)

> data(parrot)

> test.results = runCensored(parrot, taxset = "intrajoint",

+ reps = 1000, charloop = T)

> summaryRatetest(test.results)

The last command, summaryRatetest, provides a summary of the ratetest
results - it’s a very handy command, providing a rough interpretation of the
data in test.results. Again, the reader is referred to the brownie manual for
a more detailed description of the data.frame and its summary.

3.1.1 Plots

In addition to the summaryRatetest function, there is also a specialized
plotting function for visualizing which branches of a tree the ratetest command
will remove (see the brownie manual for more information on this). The branches
to be removed are shown as dashed, the branches of the taxa in the taxaset
’intrajoint’ are shown in red.

> require(RBrownie)

> data(parrot)

> taxaset.names(parrot) # we want to look at 'intrajoint', so use taxind=2

[1] "all" "intrajoint"

> plot.censored(parrot[[2]],taxind=2)

13

http://www.brianomeara.info/brownie/manual#Testingcontinuousratesoriginalcensoredapproach
http://www.brianomeara.info/brownie/manual#Testingcontinuousratesoriginalcensoredapproach

Cryptotomus_roseus
Sparisoma_atomarium
Sparisoma_radians
Sparisoma_chrysopterum
Sparisoma_viride
Sparisoma_aurofrenatum
Sparisoma_rubripinne
Leptoscarus_vaigiensis
Calotomus_carolinus
Calotomus_spinidens
Bolbometopon_muricatum
Cetoscarus_bicolor
Hipposcarus_longiceps
Chlorurus_sordidus
Chlorurus_bleekeri
Chlorurus_microrhinos
Scarus_psittacus
Scarus_schlegeli
Scarus_flavipectoralis
Scarus_chameleon
Scarus_quoyi
Scarus_rivulatus
Scarus_globiceps
Scarus_oviceps
Scarus_spinus
Scarus_rubroviolaceus
Scarus_niger
Scarus_forsteni
Scarus_altipinnis
Scarus_dimidiatus
Scarus_frenatus
Scarus_ghobban
Scarus_taeniopterus
Scarus_iseri

Taxaset: intrajoint

3.2 Non-Censored Rate Test

The non-censored rate test is similar to the original censored version, except
that where exactly on the branch the state changes matters to the likelihood
estimate. Agian, describing the test in full is outside of the scope of this guide,
but a full description is available in the Brownie manual and (O’Meara, et al.,
2006).

Brownie uses the ’cont’ command to perform this test - let’s look at an
example where we will run and compare two different models of morphological
evolution (in this case, the two models are based on brownian motion, to view
all the available models call the brownie.models.continuous(T) command):

> require(RBrownie)

> data(parrot)

> # brownie.models.continuous(T) will print out available models and descriptions

> test.results = runNonCensored(parrot,models=brownie.models.continuous()[1:2],

+ treeloop=T,charloop=T)

> summaryCont(test.results)

In the example above runNonCensored removes all commands currently in
the commands slot and replaces them with custom commands and then executes
the resulting brownie list.

14

http://www.brianomeara.info/brownie/manual#Testingcontinuousratesnoncensoredapproach

test.results is again a data.frame with the log-likelihood and and AIC
values calculated for each tree, character, and model used and summaryCont

prints out the model comparisons for each character, averaging over all the
trees used. For more information about the test and how to interpret it, check
out the Brownie manual and (Bodega Phylogenetics Wiki , 2010).

3.2.1 Plots

Some of the models tested return values that can be plotted on top of phy-
logenetic trees for easier visualization. One such model is ”BMS”, Brownian
motion with rate varying by state of the stochastically. It returns two different
evolutionary rates, one for when the internal state is 0 and one is 1.

> # run non-censored rate test

> require(RBrownie)

> data(parrot)

> test.results = runNonCensored(parrot,models=brownie.models.continuous()[1:2],

+ treeloop=T,charloop=T)

> #

> # Plot the evo rates from the BMS model

> # use tree #1 and character #1

> modname = "BMS"

> tree = 1

> char = 1

> x = parrot[[tree]]

> states = c(0,1)

> state.cols = c(1,2)

> line.widths = c(2,2)

> state.ratename = c("Rate_in_state_0","Rate_in_state_1")

> rowind = which(test.results$Tree==tree &

+ test.results$Char==char &

+ test.results$Model == modname)

> junkrow = test.results[rowind,]

> colinds = which(colnames(junkrow) %in% state.ratename)

> legends = paste(names(junkrow[colinds]),junkrow[colinds],sep=" = ")

> plot(x,states=states,states.col=state.cols,line.widths=line.widths,plot.points=T)

> #

> # Add jury-rigged legend

> fontsize=10

> boxSize = unit(fontsize, "points")

> for(ii in seq(length(states)))

+ {

+ yoff = unit(((ii-1)*fontsize)+ ifelse(ii==1,0,2) ,"points")

+ grid.text(legends[ii],

+ x=unit(2, "mm"),

+ y=unit(1, "npc") - unit(2, "mm") - yoff,

15

+ just=c("left", "top"),

+ gp=gpar(fontsize = fontsize))

+ grid.rect(x=unit(2, "mm") - boxSize,

+ y=unit(1, "npc") - unit(2, "mm") - boxSize - yoff,

+ width = boxSize, height = boxSize,

+ just = "bottom", gp = gpar(fill = state.cols[ii]))

+ }

Cryptotomus_roseus
Sparisoma_atomarium
Sparisoma_radians
Sparisoma_chrysopterum
Sparisoma_viride
Sparisoma_aurofrenatum
Sparisoma_rubripinne
Leptoscarus_vaigiensis
Calotomus_carolinus
Calotomus_spinidens
Bolbometopon_muricatum
Cetoscarus_bicolor
Hipposcarus_longiceps
Chlorurus_sordidus
Chlorurus_bleekeri
Chlorurus_microrhinos
Scarus_psittacus
Scarus_schlegeli
Scarus_flavipectoralis
Scarus_chameleon
Scarus_quoyi
Scarus_rivulatus
Scarus_globiceps
Scarus_oviceps
Scarus_spinus
Scarus_rubroviolaceus
Scarus_niger
Scarus_forsteni
Scarus_altipinnis
Scarus_dimidiatus
Scarus_frenatus
Scarus_ghobban
Scarus_taeniopterus
Scarus_iseri

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

Rate_in_state_0 = 91.263039
Rate_in_state_1 = 752.717426

3.3 Discrete Ancestral State Reconstruction

Brownie can do discrete character reconstructions about which more infor-
mation can be found here. Also check out the addDiscrete documentation.

Brownie uses the ’discrete’ command to run these tests. Unlike the Censored
and Non-Censored rate tests, this command simply requires a phylogenetic tree
(with no branch annotations) and discrete data at the tree tips. Let’s see an
example using the geospiza ext dataset built into RBrownie:

> require(RBrownie)

> data(geospiza_ext)

> junkrun=runDiscrete(geospiza_ext,

+ models=c("nonrev","nonrev"),

+ freqs=c("unif","equilib"),

16

http://www.brianomeara.info/brownie/manual#Discretecharacterevolution

+ reconstruct=T)

> #

> # (View the reconstruction results for the first tree;

> # under the model 'nonrev' and using freq 'unif'):

> plot(junkrun$trees[[1]])

Pinaroloxias

fusca

Platyspiza

difficilis

scandens

conirostris

magnirostris

fuliginosa

fortis

pallida

pauper

parvulus

psittacula

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Unlike the previous two analyses, runDiscrete returns a list containing the
trees with ancestral state reconstructions and a data.frame giving details about
the support each model/freq has. More details about the discrete reconstruction
function (and options that can be passed to the run function above) can be found
by typing ?addDiscrete.

3.4 Custom Tests

The examples above show how to execute the three most common commands
RBrownie has to offer, using function of the format runTEST. In all cases, it is
possible to manually put together an analysis using addTEST and addOPTION

commands. There are add commands for most Brownie options and commands
- to view these, see:

> help.search("add", package = "RBrownie")

Once an the commands slot of a brownie object has been filled with all
the commands you want executed, the object can be executed directly using

17

run.asis. A further vignette aimed at power users will describe in detail how
to piece together custom analyses, so we will leave this thread here. Check back
fo

4 Getting Help

We’d like to invite anyone who has questions about how to use Brownie

or RBrownie to post them to the Brownie-users google group. Also, we are
continually updating RBrownie and would love your feedback on how it can be
improved. Feel free to also suggest new features, bring bugs to our notice, or
give general feedback - it would be appreciated!

5 Final Thoughts

More work is currently in progress to have RBrownie support more branch
annotation formats (those currently supported by Mesquite and BEAST) and
work being done to support returning confidence intervals for rate tests and
reconstructions. Check back soon to see if there are any updates or more detailed
tutorials.

References

Price, S., Wainwright, P. (2010). Testing for differ-
ent rates of continuous trait evolution using likelihood.
(http://bodegaphylo.wikispot.org/Morphological Diversification and Rates of Evolution)

O’Meara, B. C., Ane, C., Sanderson, M. J. and Wainwright, P. C. (2006). Testing
for different rates of continuous trait evolution using likelihood. In Evolution,
60 ,922–933.

18

http://groups.google.com/group/brownie-users

	Introducing Brownie
	More information

	Introducing RBrownie
	Reading nexus files
	Classes in RBrownie
	phylo4d_ext class
	brownie class

	Running Analyses
	Censored Rate Test
	Plots

	Non-Censored Rate Test
	Plots

	Discrete Ancestral State Reconstruction
	Custom Tests

	Getting Help
	Final Thoughts

