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1 Summary

These are notes on how we wrote pREC A and pREC S in C, and how we
modified the algorithm for finding pREC S. Up to RJaCGH v. 1.2-5, pREC A
and pREC S were essentially all R code (that made calls to C to obtain the
Viterbi path). Now, all of pREC A and pREC S is done in C. In addition,
the algorithm for pREC S has been modified substantially, compared to the
algorithm as in the first verision of the common regions paper (up to May
2008).

We explain the major steps, design decissions, etc, and provide references to
the C and R code. Please read these notes as guided pointers to the code, not
as a complete description of what is done. For that, look at the code.

2 Introduction

In the previous code, there were two main reasons the implementation was slow.
First, after the complete run of RJaCGH, a new call to C was needed to obtain
the Viterbi sequences. Second, the algorithms themselves were implemented in
R, not C. In addition, some algorithms operating on the sequences read them
repeatedly and had to do several intermediate operations.

Since we are having to run Viterbi as a routine part of the main RJaCGH
calculation, we can store those sequences in that first Viterbi run, without a
need for second call. Storing, however, could take up lots of space, so the
sequences are compressed (using the zip library) after being coded in a slightly
more compact format (the same used in the RJaCGH v.1.2-5).

Next, when we want to do either pREC A or pREC S, we will need to
transfer those (compressed) sequences to C, read and manipulate them, and
run the algorithms themselves.

Thus, the major steps in all cases are:

1. Obtain the viterbi paths in the first run of RJaCGH. Move them from C
to R.

2. Store the paths in R.

3. When any pREC is desired move the Viterbi paths from R to C.

4. In C, compute on those paths and apply the appropriate algorithm.

3 Viterbi paths: C → R

Each Viterbi path in C is stored in a compact representation: for a segment of
probes with identical state we only store the state and the position of the last
probe with that state. Thus, for a given array we will have several of these paths.
Viterbi paths are stored as a linked list (see struct Sequence). In addition,
we keep track of the number of hidden states that sequence corresponds to.

Storing Viterbi paths this way decreases storage demands and makes it faster
to assess if a given sequence is equal to a previous one (see next). The smaller
the number of sequences we have, the faster the subsequent pREC computations
will be (since we need to loop over all sequences).
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We record the sequences when we call the viterbi function. The main func-
tion is viterbi_to_Sequence, called from within viterbi. It takes a Viterbi
sequence, produces the compact representation above and updates the linked
list of compact sequences (Compare_Add_Seq). However, before adding a se-
quence to the linked list (addSeq), we verify if that sequence has already been
observed and, thus, stored (CompareSeq_tmp). If it has, we do not store again
the sequence (only update the counter, MCMC_num).

At the very end of the run (at the end of MetropolisSweep), the linked list is
written, as a gzipped file, by Sequence_to_gzfile. If the R function RJaCGH
was called with model=’’none’’, only one file per array is written. Otherwise
(i.e., if there are chromosomes), one file per array * chromosome is written.

The (gzipped) files are read by R via readBin at the end of the function
MetropolisSweep.C and their content (plus some extra stuff) stored as the list
component viterbi. By default, the gzipped files are deleted. (This explains
that the viterbi list component is present at the same level as the mu, k, etc,
in an RJaCGH object).

We can examine the files with the Viterbi sequences by setting .__DELETE_GZIPPED <- FALSE
in R. Each file has the Viterbi sequences corresponding to one array (or to one
array by chromosome). In addition to the compact representation above, the
first fields are:

k The hidden state.

count viterbi The MCMC_num mentioned above. The number of times we have
seen this sequence (of course, this sequence AND this k).

sum viterbi
∑
count viterbi for a given k. In other words, the total number

of Viterbi sequences for a given k.

count k Number of times state k is visited.

sum k
∑
count k.

These fields will be used next.

4 Viterbi paths: R → C

Finding common regions involves repeatedly examining the Viterbi sequences
(over different possible combinations of arrays and probes). Thus, we want to
have the Viterbi sequences in such a way that traversing and computing on
them will be as fast as possible. The best point where this is done is when
transferring the sequences from R to C. This is done only once (for a single call
of any of the pREC functions).

Thus, for every Viterbi sequence in compact form in R we will do the fol-
lowing when transferring to C:

1. “Stretch it”: go from the compact representation to the representation of
one entry per probe (i.e., each sequence has length equal to the number
of probes).

2. Replace the state of every probe in the previous step by its probability
of being altered. This probability is the one given by the component
state.labels in the R object.
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3. Obtain the probability of a sequence. Using the components stored above
this is: (count viterbi ∗ count k)/(sum viterbi ∗ sum k)

4. Multiply the entry for each probe by the probability just computed.

This way, all subsequent calculations will only involve computing the mini-
mum, or summing over arrays (optionally weighted by array weights).

The conversion from the gzipped and compacted sequence stored in R to
the stretched and premultiplied sequences in C is done inside the C function
wrap_pREC. This is the very function called by R. The main work of conversion
is done by the function read_convert_prob_seq, which is called once for every
array. Going from the state of a probe to its probability (and multiplying by
the probability of the sequence) is done by state_to_prob.

state_to_prob has to use, thus, the mappings of state to probability of alter-
ation stored in the $state.labels component. Note that, because of the algo-
rithm used by state_to_prob, and in contrast to previous versions of RJaCGH,
even models that have not been visited have a non-null $state.labels compo-
nent. To catch possible errors, the $state.labels component when that k has
not been visited is set to −9. Extraction and “stretching” of the $state.labels
component, in R, is done by function getStretchedStateProbs.

Note: if there is a Chromosome component in the RJaCGH object, the call to
the pREC functions is done once for each chromosome. Only the corresponding
Viterbi sequences are transferred to C, and only for those is the stretching, etc,
done; look at the loops in the pREC function in R:

#####################################################
## Main loop: each chromosome is done separately.
## For each chrom, do all arrays.
#####################################################

## [other stuff: deleted here]...
for(chromNum in 1:nchrom) {

## do stuff
res <- .C("wrap_pREC",
...

}

So, after transferring the Viterbi sequences to C, in C we have an array with
number of columns = number of probes and number of rows = sum of the num-
ber of sequences over all arrays (for the given chromosome). This is the array
we call stretched in C. Which of the rows in stretched correspond to each ar-
ray is something we know from the vector starting_indices_sequences. The
entries in this vector we use as offsets (to increase the pointer to the right place
in the array) when calling read_convert_prob_seq, both to access the correct
probabilities of a sequence, and to write to the correct rows in stretched (and
analogoyusly with the state.labels entries), as is done in wrap_pREC:

for(int i = 0; i < (*numarrays); i++) {
index_seq = starting_indices_sequences[i];
index_state_probs = starting_indices_state_probs[i];
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read_convert_prob_seq(prob_row_seq + index_seq,
stretched + index_seq,
filenames[i],
state_probs + index_state_probs,
*alteration, num_sequences[i]);

}

5 pREC: probability of a sequence

This is a big, major change. Up to now, a given state, say, “Gain-1” had a
probability of being gained of 1, and 0 of being everything else. This is now
changed, so there is (potentially) non-zero probability of being anything and, as
well, the probability of being gained is not exactly 1. Yes, we can recover the
old behavior by using, in the R function relabelStates singleState = TRUE.
But for several reasons, in general, having the smoothness is good. But this
raises an issue. Suppose we are looking for common regions of “Gain” and we
have the sequence:

G1 G1 G1 G1 G1 N

where “G1” means, say, the “Gain-1” state, and “N” normal. Up to now,
in that sequence it is obvious that P (S1 = 1, S2 = 1, . . . , S5 = 1) = 1 but
P (S1 = 1, S2 = 1, . . . , S6 = 1) = 0, as the sixth probe is not gained. But
suppose we replace the “G1” and “N” by the probabilities that state “G1” is
gained and “N” is gained. For example, suppose we have, in the state.labels
the matrix:

Loss Normal Gain
Normal 0.1 0.7 0.2
Gain-1 0.01 0.1 0.89
Gain-2 0 0.01 0.99

We replace the entries above with the probs of being gained:

0.89 0.89 0.89 0.89 0.89 0.2

We can easily argue that we want P (S1 = 1, S2 = 1, . . . , S5 = 1) = 0.89.
We do not want to multiply the entries, for suppose the sequence had been

G1 G1 G1 G1 G1 G2

It makes no sense to have P (S1 = 1, S2 = 1, . . . , S6 = 1) < P (S1 = 1, S2 =
1, . . . , S5 = 1), when the sixth probe has a prob of being gained much larger
than any of the previous probes.

We do not want to average either: in the original sequence, we want an
abrupt drop at the sixth probe, and we want that abrupt drop to happen as
soon as a probe with low prob of being gained shows up. We do not want to
smooth that drop because we could have strong effects of length of sequence
before the probe with the small probability.

What makes sense is to compute the minimum. First, this returns the orig-
inal behavior if we have probabilities of being gained only in {0, 1}. Second, it
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gives abrupt drops. Third, given a sequence, as we add probes, the probability of
it being altered can never increase. (Which is also convenient for computations).

For instance, in

G1 G1 G1 G1 G1 G2

we would have P (S1 = 1, S2 = 1, . . . , S6 = 1) = 0.89(= min(0.89, 0.99)).
Then, given a sequence of m probes, the probability of alteration when we

consider the next probe is
min(prob alteration sequence up to new probe, prob alteration new probe). So
updating probabilities of alteration is just computing the minimum of two num-
bers, the current one, and the prob of the new probe. This is what
update_prob_alteration_seq does. Yes, we had previously pre-multiplied the
entries in the sequence by (count viterbi ∗ count k)/(sum viterbi ∗ sum k); see
next.

Given all the sequences for an array, the probability of alteration of a se-
quence of m probes is simply the sum of the probabilities of alterations over
the sequences. Recall we had previously pre-multiplied the entries in the se-
quence by (count viterbi ∗ count k)/(sum viterbi ∗ sum k), so all we need to
do is sum; had we not premultiplied, we would need to do a weighted sum
(weighted by (count viterbi∗count k)/(sum viterbi∗sum k)). Adding the min
of the premultiplied is the same as computing the weighted sum of the (non-
premultiplied) mins. However, adding the min of the premultiplied entires is a
lot faster. (Many, many, many fewer multiplications).

prob_seq_array computes the probability of alteration for an array. This
is used by pREC S. For pREC A we use prob_seq_all which does the compu-
tation over arrays (weighting by array weights if needed).

6 wrap pREC

This is the entry point from R. We use a single function (that later calls pREC A
or pREC S) to avoid code duplication: the first part of the function deals with
reading the gzipped and compressed Viterbi sequences and with obtaining the
stretched array.

7 pREC A

The function pREC_A is a straightforward implementation of the algorithm. Only
some care is needed to properly capture events in the first, second, last, and
one-before-last probes. Note that, in contrast to the former R code, we do not
need to check for “i + 2” as breaks, etc, are placed in different locations in the
code.

8 pREC S

8.1 Two calls

We store the sequences in a linked list (see struct regionS). This is a global
variable, as we have to preserve this object over to calls to C. I’ve tried to avoid
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using “.Call”, but I have no idea of the size of return objects I’d need for the
output from pREC S. What we do follows somewhat what is done in rpart,
specifically s to rp.c and rpart.s (comments in R-devel from BDR, D. Murdoch
and Dirk Eddelbuettel helped me understand how to do this).

We make a first call from R and do the computations of pREC S. We return
to R the object sizes, and we do a second call from R to C to retrieve the result in
the call res <-.C("return_pREC_S", with appropriately sized return vectors.
But so that we can access the object (the linked list with the common regions)
in the second call, we make it a global. Moreover, and in contrast to the other
linked lists in the C code, memory allocation is done via calls to malloc, not
R_alloc. The R Extensions manual says of R alloc “Here R will reclaim the
memory at the end of the call to .C.”. In fact, using gc() between the first and
second calls to .C (between “wrap pREC” and ”return pREC S”) can lead to
weird errors if we use R alloc. Thus we use malloc, and free the memory as we
return the vectors to R in the second call to .C, in return_pREC_S.

8.2 pREC S algorithm

for Start← 1 to TotalNumberOfProbes do1

SetArrays A← φ ;2

for array ← 1 to TotalNumberOfArrays do3

if P (SStart = 1|array) ≥ pw then4

SetArrays A← SetArrays A ∪ array;5

if |SetArrays A| ≥ freq.arrays then6

End← Start+ 1;7

while End ≤ TotalNumberOfProbes do8

SetArrays B ← φ;9

foreach candidate array in SetArrays A do10

if P (SStart, . . . , SEnd = 1|candidate array) ≥ pw then11

SetArrays B ← SetArrays B ∪ candidate array;12

if |SetArrays B| < |SetArrays A| then13

UpdateRegionS(Start, End− 1, SetArrays A);14

if |SetArrays B| ≥ freq.arrays then15

SetArrays A← SetArrays B;16

else17

break out of the while loop18

End← End+ 1;19

if End = (TotalNumberOfProbes+ 1) then20

UpdateRegionS(Start, End− 1, SetArrays B);21

Algorithm 1: pREC S algorithm

Some explanations of the algorithm.
The function UpdateRegionS (called in lines 14 and 21) simply adds a region

to the set of regions already stored. Adding a region means storing the first
probe of the region (Start), the last probe of the region (End − 1), and the
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arrays that compose the region (those in one of the SetArrays). The function
UpdateRegionS, however, must check that the region to be added is not a subset
of some previously added region. Suppose in the run that started with probe S2
we found the region ((S2, S3, S4), (A1, A2)). Now, in the run that starts with
probe S3 we find the region ((S3, S4), (A1, A2)); obviously, the newly found
region is simply a completely contained subset of the previously found region,
and we should not add this newly found region as a new region.

The conditions in lines 4 and 11 refer to one of the conditions of the algo-
rithm: an array can only be considered part of a common region if the proba-
bility of the given sequence of probes (starting at Start and ending at End or,
in the one-probe case, starting and ending at Start) is larger than pw.

Likewise, the conditions in lines 6 and 17 refer to the second condition: at
least freq.arrays arrays must fulfill that the sequence has a probability larger
than pw.

Line 13 represents the condition where the number of arrays that fulfill the
condition when we add a probe decreases. In other words, at step t, with
End = Start+ t, we had a set of arrays that fulfilled pw. As soon as we add a
new probe (i.e., “stretch” the region by one probe, so we are at step t+ 1 with
End = Start+ t+ 1), at least one array no longer satisfies pw. This means that
at step t we had one common region over a set of arrays to which we cannot add
another probe. (Note that we know this regardless of how many arrays fulfill
pw at step t + 1). Therefore, as soon as the number of arrays in SetArrays B
becomes smaller than SetArrays A, we know we found a common region in the
previous step, and we have to update the set of regions.

Line 16 is needed to allow capturing subsequent decreases (if there were any)
in the number of arrays that meet the condition as we keep stretching the region
(adding probes). Strictly the condition check in line 15 is not needed, but with it
in place we avoid doing an assignment operation (really as many assignments as
there are elements in SetArrays B) when we know we will not keep stretching
the region (because the current number of arrays is below freq.arrays).

We use a while loop (line 8) and we will often exit out of the loop (line 17)
via a break statement (or whichever similar construct is provided in the specific
programming language). We could avoid the “break” and rewrite the loop in a
different way, but as currently written the algorithm provides for straightforward
condition checks and conditional branches.

The condition in line 20 only happens when we reach the end of the probes;
thus, if we have met the conditions so far (pw and freq.arrays) we must add
the current set of arrays (from probes Start up to the last one) to the regions.
(We could have made the “while” in line 8 always a true condition, and add
another “break” when we reach the end of probes).

In any specific implementation, it is not necessary to explicitly do assigments
as in lines 2 and 9. In our current C implementation, we use two additional
variables (one for the vector that represents SetArrays A and one for the vector
that represents SetArrays B) that tell us how many valid elements there are
in each set, and we only access and use those valid elements. Likewise, the set
union operation as in lines 5 and 12 can instead be implemented as simply an
assignment to a specific position of a vector. Similar comments apply to line
16. For instance, we could rewritte lines 4 and 5 as:
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valid elements← 0;1

if P (SStart = 1|array) ≥ pw then2

valid elements← valid elements+ 1;3

SetArrays A[valid elements] = array;4

valid elements is also the cardinality of the set. (Note that, in C, and other
languages that index arrays starting at 0, we would increase valid elements
after the assignment to SetArrays).

9 Miscellaneous comments

9.1 Transposing stretched and accumulating on it

In both pREC A and pREC S we do not operate on stretched directly, but
on its transpose. As we loop over probes, by having stretched_tr be probe by
sequence, we have all the entries for a probe contiguous in memory.

Moreover, once a given probe, say t has been considered as the origin of a
sequence, that probe t is never revisited. Thus, we can accumulate the updates
of the probability of a sequence in stretched_tr[t].

9.2 A single pREC function

We used to have two pREC functions, one for pREC A and one for pREC S,
with possible variants depending on the type of RJaCGH object (chromosome,
array, etc). We only have one now, which leads to deleting more than 8 pages
of R code. First, a lot of the R code in pREC is involved in preparing the files
and similar functions, which are identical to the two pREC algorithms. Second,
the code does not really change depending on whether the object is array, or
chrom, or whatever. The only main difference is that if the object is of type
“none” there is one fewer level of nesting. That is taken care of via the minor
kludge:

} else {
narrays <- 1
nchrom <- length(unique(obj$Chrom))
if(nchrom == 0) nchrom <- 1
## To prevent from further handling the single array case
## as a special one:
obj.tmp <- obj
obj <- list()
obj[[1]] <- obj.tmp
rm(obj.tmp)
gc()

}

Likewise, the main difference between a ”genome” and a ”chromosome” type
object is that, for ”genome”, the state.labels component is common to all
chromosomes, whereas for the chromosome object there is one state.labels
element per chromosome. Again, this is easy to deal with as in
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## If Genome or None type objects probs of states common for all
## chroms.
if(!objChrom) {

stretchedProbsList <- lapply(obj[1:narrays],
getStretchedStateProbs)

}

There are a few other places where the type of object had to be accounted
for, but this seemed better than duplicating code, or writing minor functions
with lots of parameters and potentially expensive copy of objects.

9.3 Speed comparisons

The code for RJaCGH is slightly faster; for example, for the fits for Douglas and
Pollack, it now takes 85% of the time it used to take (23300 vs. 27000 seconds
for Pollack with the new and old code, and 23500 and 27600 for Douglas). The
most impressive improvements are, of course, in the pREC computations. These
are two tables of some of them.

For pREC S:

Fit New code Old code
Gain4.tumors 171 6547
Loss4.tumors 159 824
Gain2 3.8 131842
Gain2.MSI 2.98 7500
Loss2.MSI 2.98 153
Gain1 2.15 50310
Loss1 2.16 46236

For pREC A:

Fit New code Old code
Gain.35 9 10248
Gain.50 9 3050
Loss.50 9 3057
Loss.35 9 7573
Gain.MSI 0.85 16575
Loss.MSI 0.84 157
Gain.CIN 1.43 42702
Loss.CIN 1.39 47598
Gain.50 (Douglas) 2.1 16076
Loss.50 (Douglas) 2.1 7485
Gain.50.weights 2.1 10542
Loss.50.weights 2.14 3078
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9.4 Code changes

The code has changed a lot. Just as a couple of figures: the lines of code of R
have gone from 4500 to 3300, so the new code is about 75% of the size of what
it used to be. The C code, however, has doubled: from about 1700 to 3600 lines
(without comments).
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