RPPaHalyzer (Version 1.0.3)
Analyze reverse phase protein array data

User‘s Guide

Heiko Mannsperger and Stephan Gade
German Cancer Research Center
Heidelberg, Germany

May 28, 2010

Contents

(1 Introduction|

2 Data preparation|

P1

Sample description|

[2.1.1 Columns plate, row and column|
[2.1.2 Column sample_type
2.1.3 Column sample| o

P2

olide descriptionl.o

2.2.1 Column gpr|
[2.2.2 Columns pad, slide, incubation_run and spotting run|
[2.2.3 Columns target and AB_ID|

B3

Image analysis result files) 0.

13__Read datal

[4 Correct for background intensities|

[> Quantify concentration|

6 Quality control plots|

7D Tization

71

Total protem dyes|.

7.2

Housekeeping proteins| oL

N

CLOUU W = R R W w NN

00~ 1

[7.4 Protein quantification assays|. L. 8

8 Export data as text file 8
[9 Array and data selection| 9
[0 Visualizati 9
[10.1 Time coursesl e e e 9
[10.2 Boxplots| 10
[10.3 Correlation plots| 10
[10.4 Heatmaps| 10

1 Introduction

In systems biology as well as in biomarker discovery reverse phase protein arrays (RP-
PAs) have emerged as a useful tool for the large-scale analysis of protein expression
and protein activation (Paweletz et al., 2001)). The method follows the basic principle of
printing large numbers of raw protein extracts in parallel on a solid phase carrier to form
a single array. Multiple slides are printed in parallel and each (sub)array is probed with
a different monospecific antibody. To quantify protein expression or protein activation
detectable signals are generated via fluorescence, dye precipitation, or chemilumines-
cence. RPPanalyzer is a compact tool developed, to perform the basic data analysis on
RPPA data, and to visualize the resulting biological information. It does not contain
new algorithms for complex data analysis, but it will help you with the evaluation of
standard RPPA experiments. This vignette is a step by step instruction how to use the
RPPanalyzer especially written for people that are usually working in the lab and are
not familiar using R. Figure [I] shows an overview of the data analysis steps.

2 Data preparation

To avoid errors during data analysis it is very important to prepare the input data
exactly in the format as described in the following sections. It is not necessary to adjust
the benchwork to the software but to describe exactly what you have done in the lab.

2.1 Sample description

Every information concerning the samples has to be stored in a tab delimited text file
and named sampledescription.txt (use spreadsheet software like MS Excel or OOo
Spreadsheet to generate the table). The sample description file contains seven mandatory
columns that are required to identify the samples (described in detail below) and optional
columns holding any information describing the samples in more detail. To select sample
groups for separate analysis it is of advantage to store every type of information in a
separate column. To access example files load the RPPanalyzer package:

> library(RPPanalyzer)

image analysis

< sample description)¢ slide description)
~ P

~ -
~ I -
read.pata() .~
RPPA rawdata

correctBG()

background
corrected

Z ;g %g‘}f“re”’t”_co data calcLinear()
plotqg)/” Quality =~ N _calcogistic()
control \ p calcspc()
G
sample.median(O\ Phe
quantified
data
1
normalizeRPPAO! select.sample.group()
remove. arrays()
normalized — = ((selectea
data data
-, ~ !
a s ; Q
1 rppalL ist2Heatmap
;ﬁgﬁif‘gg;ggwnset() I 7 S ~ ! test.correlation()
data data rppaZboxplot (O
export visualization

Figure 1: Workflow for the analysis or reverse phase protein array data using the RPP-
analyzer package

An example sample description file describing a serially diluted samples set is included.

define path to example files

dataDir <- system.file('"data",package="RPPanalyzer")

change working directory

setwd (dataDir)

store example sample description in a variable
sampledescription <- read.delim("sampledescription.txt")
show sample description header

head (sampledescription)

V VVVVYV VYV

2.1.1 Columns plate, row and column

These columns describe the location of the samples in the spotting source well plate.
The column plate contains the number of the source well plate stored as an integer (1,
2, 3...). The Column row contains capital letters (e.g. A-P) and the column column
integers (e.g 1-24) to identify the position within one source well plate.

2.1.2 Column sample_type

The column sample_type holds information about the type of the appropriate sample.
Entries "measurement” indicate an experimental measurement whereas "control” denotes

spots for investigation of antibody binding dynamics. Accordingly "neg_control” is re-
served for control spots (e.g. BSA) which can be used to investigate unspecific binding.
Finally, "blank” indicates empty spots (e.g. only buffer).

2.1.3 Column sample

Provide an identifier for your samples in this column. It is of advantage to keep this
terms unique in case of clinical samples, for cell culture experiments put in the name of
the cell line and add more columns describing every experimental parameter.

2.1.4 Columns concentration and dilution

The column concentration provides numeric data with information of the sample con-
centration. In case of serially diluted samples describe the dilution steps (starting with
a 1 for the highest concentration) in column dilution.

2.2 Slide description

Write all information describing the slides and arrays in a tab delimited text file and
name it slidedescription.txt. Like in the sampledescription file seven obligatory
columns have to be provided and any optional column can be added.

dataDir <- system.file('"data",package="RPPanalyzer")
setwd (dataDir)

store example sample description in a variable
slidedescription <- read.delim("slidedescription.txt")
show sample description header
head(slidedescription)

V VvV VvV Vv VvV

2.2.1 Column gpr

To find the GenePix result files (gpr files) in the current folder, the terms stored in
the column gpr are used as identifier. That means you have to use exactly identical
terms for the names of the gpr files and in the gpr column. If you print multiple arrays
on one slide describe the arrays using the same order like on the slide. That means
start with describing the uppermost array, than the array below in the next row of the
slidedescription file) and so on.

2.2.2 Columns pad, slide, incubation_run and spotting run

The column pad holds the number of the pad or array on the slides. The column slides
holds the number of the slide. Arrays that were analyzed in parallel are identified via
the incubation_run column. Make sure that you have exact one blank array (incubated
with 2nd antibodies only) for each incubation run. The column spotting run specifies
the arrays that were printed in parallel. You have to provide at least one array with
normalizer signals per print run for the normalization method housekeeping. In case of
normalizing using a protein dye (method proteinDye), a whole slide has to be provided.

4

2.2.3 Columns target and AB_ID

In order to be able to assign the right proteins to the arrays the column target holds
the protein name and AB_ID the corresponding antibody ID. Please use only regular
characters (letters, digits, 7", and ™-").

2.3 Image analysis result files

So far the software is restricted to read GenePix result files (gpr files). For spot identi-
fication grid in the image analysis software (here GenePix) use the GenePix array list
(gal file) that is produced by the spotting device (e.g. Aushon 2470 or ArraylJet).

3 Read data

Change to the directory where your data files are stored. This can be done using the R
working menu (File > change directory...) or by using the command setwd. Following
a little example demonstrating the first steps.

> dataDir <- system.file('"data",package="RPPanalyzer")
> setwd(dataDir)

The data analysis starts with reading the data from the current working directory. The
argument blocksperarray gives the number of blocks that are printed in one array. This
number is used to separate multiple arrays on one slide that are incubated individually.
With the argument spotter the package takes in account the difference in the column ID
which is used to identify the samples. To get information about the manually flagged
spots, set the printFlags argument to TRUF to export these flags to CSV file.

> rawdata <- read.Data(blocksperarray = 4, spotter = "arrayjet",printFlags=FALSE)

After reading the RPPA data an R-object (list with four elements) is created. The
first element holds a matrix with the foreground (expression) intensity data, the second
a matrix with background intensities. The columns of the matrix are representing the
individual arrays described by the third element of the data list, a data frame holding the
array information. The rows of the matrix are described by the fourth element holding
the sample information.

4 Correct for background intensities

To correct for background signals, you can use all methods from the backgroundcorrect
functions of the limma package (Smyth, 2005) or use the method addmin which subtracts
the local background and adds a small constant value to avoid negative signals.

> dataBGcorrected <- correctBG(rawdata,method="normexp")

5 Quantify concentration

In case of serially diluted samples you have to calculate the (relative) concentration of
the samples. You can use either a linear model (function calcLinear) or a logistic
three parameter model (function calcLogistic). We recommend to use the Serial
Dilution Curve algorithm [Zhang et al.| (2009) which is the most recent development and
produces very robust concentration values (function calcSdc). Another possibility of
quantification is the SuperCurve package (Coombes et al. 2009) which can be accessed
using the wrapper function calcSuperCurve. To use the calcSuperCurve function you
have to download and install the package from the MD Anderson Bioinformatics home
page (http://bioinformatics.mdanderson.org/Software/00MPA/).

To run the serial dilution curve algorithm it is neccessary
to aggregate replicate spots first.

medianValues <- sample.median(dataBGcorrected)

calculate concentration (for the attributes see help pages)

c_Values <- calcSdc(medianValues,sample.id=c("sample", "sample.n"),
sel = c("measurement", "control"), DO = 2)

+ VVVVVYyV

For the arguments of the calcSdc function we want to refer to the help page which can
be accessed with

> ?calcSdc

6 Quality control plots

Signal validity and antibody dynamics can be checked by comparing the target specific
signals to the corresponding blank value of the serially diluted control samples (column
sample_type in the sampledesription file). For this function it is necessary to have one
blank array (incubated only with secondary antibodies) for each incubation run (col-
umn incubation_run in the slidedescription file). We included an additional data set
containing an experiment with siRNA transfected cell lines to demonstrate the plotting
routines.

> ## load data set
> data(HKdata)

> plotQC(HKdata,file = "control_samples.pdf",arrays2rm = c("protein"))

Additionally you can plot the blank signals against the target signal of the measurements
(column sample_type in the sample description file).

> plotMeasurements@C(HKdata,file = "control_measurements.pdf",
+ arrays2rm = c("protein"))

http://bioinformatics.mdanderson.org/Software/OOMPA/

To check the data distribution for each measured target you can generate a PDF file
with a quantile-quantile plot. This can be done before and after normalization of the
data.

> plotqq(HKdata,fileName = "qgplot_measurements.pdf")

7 Data normalization

Normalization is a crucial step in RPPA data analysis to ensure sample comparability
and to yield high quality data. The reference value to normalize RPPA is the total
protein amount per spot. There are different possibilities to generate this reference
value that will be described in detail below. The following signal normalization steps
can be applied directly to background corrected data if the samples are spotted in only
one concentration. For serially diluted samples the normalization step is performed on
the quantified data. Otherwise the information of the signal dynamics in one dilution
series is lost.

7.1 Total protein dyes

The most common method to normalize RPPA data is to stain one slide representative
for one print run with a total protein dye like Fast Green FCF (see also [Loebke et al.
(2007)) or Sypro Ruby or colloidal Gold (see also Spurrier et al.| (2008))).

After calculating the logs intensities the normalizer value can simply subtracted from
the target signal to obtain the relative protein expression. In case of multiple arrays on
one slide the normalization is working array wise (pad wise). That means each array
is normalized by the corresponding array on the normalizer slide. The normalization
method proteinDye requires one normalizer slide per print run and will be identified as
"protein” in the target column of the slidedescription file. If you want to obtain values
in native scale (instead of logy scale) you have to change the vals attribute to "native”.

> norm_values_pd <- normalizeRPPA(HKdata,method="proteinDye",vals="logged")

7.2 Housekeeping proteins

Proteins that are expected to be expressed at a constant level, not effected by the ex-
perimental conditions, can be used as housekeeping proteins for normalization. This
method is established for quantitative Western blots and can be utilized to normalize
RPPA. To obtain the normalizer value, the mean of all arrays identified with the "nor-
malizer” attribute (column target in the slidedescription file) is calculated within one
print run.

> norm_values_hk <- normalizeRPPA(HKdata,method="housekeeping",
+ normalizer="housekeeping",vals="logged")

In case of a fluorescent readout it is possible to incubate antibodies against housekeeping
proteins after the target specific antibodies and label them for detection at a different
wavelength. Using this approach it is possible to generate the normalizer signal from the
same spot as the target specific signal. This enables to correct for spotting imprecisions
that could not be identified on just one (or a few) representative slides per print run.

> norm_values_hk_sbs <- normalizeRPPA(HKdata,method="spotbyspot",
+ normalizer="housekeeping",vals="logged")

7.3 Median normalization

Assuming that all proteins measured in the RPPA experiment are reflecting the total
protein amount this can be used as a normalizer value. The median value of all protein
signals of each spot or sample is calculated and used as normalizer signal.

> norm_values_row <- normalizeRPPA(HKdata,method="row")#,vals="logged")

7.4 Protein quantification assays

The method extValue provides the possibility to utilize protein concentration values
determined with protein quantification assays (e.g. Bradford, BCA) as normalizer value.
The protein concentration has to be provided in a column in the sample description file
and will be accessed with the attribute useCol. This method needs very precise spotting
device since the value does not include spotting imprecisions.

> norm_values_eV <- normalizeRPPA(HKdata,method="extValue",
+ useCol="concentration",vals="logged")

> ## all normalization method were performed on a sample set that was spotted in

> ## replicates (not serially diluted). In this case you can aggregate the replicate
> ## spots after the normalization:

> norm_data <- sample.median(norm_values_pd)

8 Export data as text file

It is possible to export the RPPA data set as tab delimited text file at any point during
data analysis for further inspection using spreadsheet software. The data will be stored in
two files, representing the expression and background or expression and error, depending
on the analysis step. The rows of the table will be annotated with sample information,
the columns with array information.

> write.Data(norm_data,FileNameExtension="test_data'")

The text files will be stored in the current working directory.

9 Array and data selection

To select a sample group of interest for further analysis it is possible to access the samples
using any column (attribute params) of the sampledecription and define the samples of
interest (attribute sel).

> selectedSamples <- select.sample.group(norm_data,
+ params=list("replicate"=c("1")))

Furthermore, it is possible to exclude arrays from further analysis which you have iden-
tified as not valid or not necessary. They will be identified using the target information
in the slidedescription file.

> selectedData <- remove.arrays(selectedSamples,param="target",
+ arrays2rm=c ("protein", "blank","housekeeping"))

10 Visualizations

RPPanalyzer provides several standard visualization tools to get an overview of the
biological relevance of the data set.

10.1 Time courses

RPPAs allow the measurement of the phosporylation status of proteins. Therefore they
capacitate, in contrast to mRNA based techniques, to investigate signaling pathways
in a time resolved manner. Such time course experiments can be visualized with the
plotTimeCourse function.

The function will generate a PDF in the current working directory. The argument
tc.identifier combines the sample attributes which will identify the individual time course
experiments whereas the plot.split argument will be used to define which time course
experiments will be plotted in one graph. The argument plotformat defines the way the
data will be plotted: "rawdata” will plot the time points connected with dashed lines,
"splines” will plot a smoothed spline calculated using the package gam (Hastie, 2009).
To plot both set plotformat to "both”.

> ## load a time course data set

> data(dataIl)

> plotTimeCourse(datall,

+ tc.identifier = c("sample","stimulation","inhibition","stim_concentration"),
+ #tc.reference = NULL,

+ plot.split = "experiment", file = "Timeplot.pdf",

+ arrays2rm = c("protein", "Blank"), plotformat = "spline")

10.2 Boxplots

The (differential) expression of proteins between distinct groups can be visualized in
boxplots. To calculate the p-value associated with a test on differences, you have to
define a control within the parameter you want to plot. A PDF is generated and saved
in the current working directory.

load data set

data(dataIlIl)

normalize data

n.data <- normalizeRPPA(dataIII,method="row")

aggregate replicates

cl.data <- sample.median(n.data)

draw boxplots and generate PDF

rppa2boxplot(cl.data,param = "tissue", wilcoxtest = TRUE,
control = "A",file = "boxplot_groups.pdf")

+ VVVVVVVYV

10.3 Correlation plots

If you want to correlate the protein expression or phosphorylation status to numeric sam-
ple attributes, you can use the test.correlation function (a wrapper for cor.test).
Define the correlation method with themethod.cor argument and the method to correct
the p-values for multiple testing in method.padj. A PDF will be generated in the current
working directory.

> test.correlation(cl.data,
+ param = "concentration",method.cor = "kendall",
+ method.padj = "BH", file = "correlation_plot.pdf")

10.4 Heatmaps

A common method to present high dimensional biological data are heatmaps. The
RPPanalyzer provides a function to plot heatmaps annotated with any sample attribute
in order to check if the sample attribute corresponds to the clustering. Thereby the
parameter sampledesription defines which information is used for grouping the samples.
To ensure a stable and meaningful clustering removing control arrays and arrays of bad
quality is recommended preceding step.

> ## remove some arrays
> sel.data <- remove.arrays(cl.data,param="target",
+ arrays2rm=c("target10", "target2", "target21", "target22",

+ "target28", "target33", "target36", "target38", "target61",

+ "target47","target13", "target19"))

> rppalist2Heatmap (sel.data,

+ sampledescription = "sample'",side.color = "tissue",

+ remove = c("blank", "protein", "Abmix"), distance = "euclidean",

10

+ dendros = "both", cutoff = 0.005, fileName = "Heatmap.pdf",
+ cols = colorpanel(100, low = "blue", mid = "yellow", high = "red"))

References

K. R. Coombes, S. Neeley, C. Joy, J. Hu, K. Baggerly, , and P. Roebuck. SuperCurve:
SuperCurve Package, 2009. R package version 1.3.3.

T. Hastie. gam: Generalized Additive Models, 2009. URL http://CRAN.R-project.
org/package=gam. R package version 1.01.

C. Loebke, H. Sueltmann, C. Schmidt, F. Henjes, S. Wiemann, A. Poustka, and U. Korf.
Infrared-based protein detection arrays for quantitative proteomics. Proteomics, 7(4):
558-64, Feb 2007. doi: 10.1002/pmic.200600757. URL http://www3.interscience.
wiley.com/journal/114123572/abstract.

C. P. Paweletz, L. Charboneau, V. E. Bichsel, N. L. Simone, T. Chen, J. W. Gillespie,
M. R. Emmert-Buck, M. J. Roth, E. F. P. III, and L. A. Liotta. Reverse phase
protein microarrays which capture disease progression show activation of pro-survival
pathways at the cancer invasion front. Oncogene, 20(16):1981-1989, Apr 2001. doi:
10.1038/sj.onc.1204265. URL http://dx.doi.org/10.1038/sj.onc.1204265.

G. K. Smyth. Limma: linear models for microarray data. In R. Gentleman, V. Carey,
S. Dudoit, and W. H. R. Irizarry, editors, Bioinformatics and Computational Biology
Solutions using R and Bioconductor, pages 397-420. Springer, New York, 2005.

B. Spurrier, S. Ramalingam, and S. Nishizuka. Reverse-phase protein lysate microarrays
for cell signaling analysis. Nat Protoc, 3(11):1796-808, Jan 2008. doi: 10.1038/nprot.
2008.179. URL http://www.nature.com/nprot/journal/v3/nl1/abs/nprot.2008.
179.html.

L. Zhang, Q. Wei, L. Mao, W. Liu, G. Mills, and K. Coombes. Serial dilution
curve: a new method for analysis of reverse phase protein array data. Bioinformat-
ics, Jan 2009. doi: 10.1093/bioinformatics/btn663. URL http://bioinformatics.
oxfordjournals.org/cgi/reprint/btn663vl.

11

http://CRAN.R-project.org/package=gam
http://CRAN.R-project.org/package=gam
http://www3.interscience.wiley.com/journal/114123572/abstract
http://www3.interscience.wiley.com/journal/114123572/abstract
http://dx.doi.org/10.1038/sj.onc.1204265
http://www.nature.com/nprot/journal/v3/n11/abs/nprot.2008.179.html
http://www.nature.com/nprot/journal/v3/n11/abs/nprot.2008.179.html
http://bioinformatics.oxfordjournals.org/cgi/reprint/btn663v1
http://bioinformatics.oxfordjournals.org/cgi/reprint/btn663v1

	Introduction
	Data preparation
	Sample description
	Columns plate, row and column
	Column sample_type
	Column sample
	Columns concentration and dilution

	Slide description
	Column gpr
	Columns pad, slide, incubation_run and spotting_run
	Columns target and AB_ID

	Image analysis result files

	Read data
	Correct for background intensities
	Quantify concentration
	Quality control plots
	Data normalization
	Total protein dyes
	Housekeeping proteins
	Median normalization
	Protein quantification assays

	Export data as text file
	Array and data selection
	Visualizations
	Time courses
	Boxplots
	Correlation plots
	Heatmaps

