
spot: An R Package For Automatic and

Interactive Tuning of Optimization Algorithms

by Sequential Parameter Optimization

Thomas Bartz-Beielstein
Department of Computer Science,

Cologne University of Applied Sciences,
51643 Gummersbach, Germany

June 19, 2010

Abstract

The sequential parameter optimization (spot) package for R (R De-
velopment Core Team, 2008) is a toolbox for tuning and understanding
simulation and optimization algorithms. Model-based investigations are
common approaches in simulation and optimization. Sequential parame-
ter optimization has been developed, because there is a strong need for
sound statistical analysis of simulation and optimization algorithms. spot
includes methods for tuning based on classical regression and analysis of
variance techniques; tree-based models such as CART and random forest;
Gaussian process models (Kriging) and combinations of different meta-
modeling approaches. This article exemplifies how spot can be used for
automatic and interactive tuning.

1 Introduction

This article illustrates the functions of the spot package. The spot pack-
age can be downloaded from the comprehensive R archive network at http:

//CRAN.R-project.org/package=SPOT. spot is one possible implementation
of the sequential parameter optimization (SPO) framework introduced in Bartz-
Beielstein (2006). For a detailed documentation of the functions from the spot
package, the reader is referred to the package help manuals.

The performance of modern search heuristics such as evolution strategies (ES),
differential evolution (DE), or simulated annealing (SANN) relies crucially on
their parametrizations—or, statistically speaking, on their factor settings. The
term algorithm design summarizes factors that influence the behavior (perfor-
mance) of an algorithm, whereas problem design refers to factors from the op-
timization (simulation) problem. Population size in ES is one typical factor
which belongs to the algorithm design, the search space dimension belongs to

1

the problem design. We will consider SANN in the remainder of this article,
because it requires the specification of two algorithm parameters only.

One major goal of SPO is to detect the importance of certain parts (subrou-
tines such as recombination) by systematically varying the factor settings of the
algorithm design. This task is related to improving the algorithm’s efficiency
and will be referred to in the following as algorithm tuning, where the experi-
menter is seeking for an improved parameter setting, say ~p∗, for one problem
instance. Varying problem instances, e.g., search space dimensions or starting
points of the algorithm, are associated with effectivity or the algorithm’s ro-
bustness. In this case, the experimenter is interested in one parameter setting
of the algorithm with which the algorithm performs sufficiently good on several
problem instances. spot can be applied for both tasks. The focus of this article
lies on improving the algorithm’s efficiency.

Besides an improved performance of the algorithm, SPO may lead to a better
understanding of the algorithm. SPO combines several techniques from classi-
cal and modern statistics, namely design of experiments (DoE) and design and
analysis of computer experiments (DACE) (Bartz-Beielstein, 2006). Basic ideas
from SPO rely heavily on Kleijnen’s work on statistical techniques in simula-
tion (Kleijnen, 1987, 2008).

The paper is structured as follows: Section 2 presents an introductory exam-
ple which illustrates the use of tuning. The sequential parameter optimization
framework is presented in Sect. 3. Details of the sequential parameter optimiza-
tion toolbox are presented in Sect. 4. spot uses plugins. Typical plugins are
discussed in Sect. 5. How spot can be refined is exemplified in Sect. 6. Section 7
presents a summary and an outlook.

2 Motivation

2.1 A Typical Situation

We will discuss a typical situation from optimization. The practitioner is inter-
ested in optimizing an objective function, say f , with an optimization algorithm
A. She can use the optimization algorithm with default parameters. This may
lead to good results in some cases, whereas in other situations results are not
satisfactory. In the latter cases, practitioners try to determine improved pa-
rameter settings for the algorithms manually, e.g., by changing one algorithm
parameter at a time. Before we will discuss problems related to this approach,
we will take a broader view and consider the general framework of optimization
via simulation which occurs in many real-world optimization scenarios.

2.2 Optimization via Simulation

2.2.1 Modeling Layers

To illustrate the task of optimization via simulation, the following layers can be
used.

2

L1. biogas plantL1. biogas plant

L2. simulation model

L3. optimization
algorithm

L4. tuning procedureL4. tuning procedure

organic waste
mixture methan

process
parameters,
estimated
methan

simulated
organic waste
mixture

set of
simulated
organic waste
mixtures

optimized
organic
waste mixture

algorithm
parameter
set

optimized
algorithm
parameter

input output

Figure 1: Optimization via simulation. Illustration taken from Ziegenhirt et al.
(2010), who describe how spot can be applied to the optimization of a biogas-
simulation model. Four different layers of the biogas simulation of shown. The
first layer (L1) represents the real-world setting. Layer 2 (L2) shows the simula-
tor. An objective function f is defined at this layer. The optimization algorithm
A belongs to the third layer (L3). The fourth layer (L4) represents the algorithm
tuning procedure, e.g., sequential parameter optimization.

(L1) The real-world system, e.g., a biogas plant.

(L2) The related simulation model. The objective function f is defined at this
layer. In optimization via simulation, problem parameters are defined at
this layer.

(L3) The optimization algorithm A. It requires the specification of algorithm

parameters, say ~pi ∈ ~P , where ~P denotes the set of parameter vectors.

(L4) The experiments and the tuning procedure.

Figure 1 illustrates the situation. To keep the setting as simple as possible, we
consider an objective function f from layer (L2) and do not discuss interactions
between (L1) and (L2). Defining the relationship between (L1) and (L2) is
not a trivial task. The reader is referred to Law (2007) and Fu (2002) for an
introduction.

3

Figure 2: Plots of the Branin function. The contour plot (left) shows the location
of the three global minima

2.3 Description of the Objective Function

The Branin function

f(x1, x2) =

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10×
(

1− 1

8π

)
cos(x1) + 10,

with
x1 ∈ [−5, 10] and x2 ∈ [0, 15]. (1)

was chosen as a test function, because it is well-known in the global opti-
mization community, so results are comparable. It has three global minima,
~x∗1 = [3.1416, 2.2750], ~x∗2 = [9.4248, 2.4750] and ~x∗3 = [−3.1416, 12.2750] with
y∗ = f(~x∗i) = 0.39789, (i = 1, 2, 3), see Fig. 2.

2.4 Description of the Optimization Algorithm

In order to improve reproducibility of the examples presented in this article,
an algorithm which is an integral part of the R system, the method SANN,
was chosen. It is described in R’s help system as follows (R Development Core
Team, 2008): Method SANN is by default a variant of simulated annealing
given in Belisle (1992). Simulated annealing belongs to the class of stochastic
global optimization methods. It uses only function values but is relatively slow.
It will also work for non-differentiable functions. This implementation uses the
Metropolis function for the acceptance probability. By default the next candi-
date point is generated from a Gaussian Markov kernel with scale proportional
to the actual temperature. If a function to generate a new candidate point is
given, method SANN can also be used to solve combinatorial optimization prob-
lems. Temperatures are decreased according to the logarithmic cooling schedule
as given in Belisle (1992); specifically, the temperature is set to

4

temp / log(((t-1) \%/\% tmax)*tmax + exp(1))

where t is the current iteration step and temp and tmax are specifiable via
control. Note that the SANN method depends critically on the settings of the
control parameters. Summarizing, there are two algorithm parameters which
have to be specified before the algorithm is run:

1. temp controls the SANN method. It is the starting temperature for the
cooling schedule. Defaults to 10.

2. tmax is the number of function evaluations at each temperature for the
SANN method. Defaults to 10.

Note, tmax is an integer. How different parameter types can be handled is de-
scribed in Sec. 6.2. To simply the discussion, temp will be treated as a numerical
value in the remainder of this article.

2.5 Starting Optimization Runs

Now we discuss the typical situation from optimization: An experimenter ap-
plies an optimization algorithm A (SANN) to an objective function f (Branin
function) in order to determine the minimum.

First, we will set the seed to obtain reproducible results.

> set.seed(1)

Next, we will define the objective function.

> spotFunctionBranin <- function(x) {

+ x1 <- x[1]

+ x2 <- x[2]

+ (x2 - 5.1/(4 * pi^2) * (x1^2) + 5/pi * x1 - 6)^2 + 10 * (1 -

+ 1/(8 * pi)) * cos(x1) + 10

+ }

Then, the starting point for the optimization, ~x0, and the number of function
evaluations, maxit, are defined:

> x0 <- c(10, 10)

> maxit <- 250

The parameters specified so far belong to the problem design. Now we have to
consider parameters from the algorithm design, i.e., parameters that control the
behavior of the SANN algorithm, namely tmax and temp. Default values are
chosen first:

> tmax <- 10

> temp <- 10

Finally, we can start the optimization algorithm (SANN):

5

Table 1: Results from manually tuning SANN on Branin function. Smaller
values are better. Run 1 reports results from the default configuration. Run
2 uses a different temperature and obtains a better function value. However,
this result cannot be generalized, because modifying the seed leads to a worse
function value

run temp tmax seed result
1 10 10 1 4.067359
2 20 10 1 0.4570975
3 20 10 1000 7.989125

> y1 <- optim(x0, spotFunctionBranin, method = "SANN", control =

+ list(maxit = maxit, temp = temp, tmax = tmax))

SANN returns the following result:

> print(y1$value)

[1] 4.067359

Since the optimum value reads y∗ = 0.39789, the practitioner is interested in
improving this result by modifying the algorithm parameters tmax and temp:

> tmax <- 10

> temp <- 20

> y2 <- optim(x0, spotFunctionBranin, method = "SANN",

+ control = list(maxit = maxit, temp = temp, tmax = tmax))

Results obtained with the new tmax and temp values look promising:

> print(y2$value)

[1] 0.4570975

However, since SANN is a stochastic algorithm, the practitioner wants to in-
vestigate the dependency of the results on the random seed. So she performs
the same experiment with modified seed.

> set.seed(1000)

> y3 <- optim(x0, spotFunctionBranin, method = "SANN",

+ control = list(maxit = maxit, temp = temp, tmax = tmax))

> print(y3$value)

[1] 7.989125

This result is rather disappointing, because a worse value is obtained with this
seemingly better parameter settings. Results from these experiments are sum-
marized in Tab. 1.

6

The practitioner has modified one variable (temp) only. Introducing vari-
ations of the second variable (tmax) complicates the situation, because inter-
actions between these two variables might occur. And, the experimenter has
to take random effects into account. Here comes spot into play. spot was
developed for tuning algorithms in a reproducible way. It uses results from
algorithm runs to build up a meta model. This meta model enables the ex-
perimenter to detect important input variables, estimate effects, and determine
improved algorithm configurations in a reproducible manner. Last but not least,
the experimenter learns from these results.

One simple goal, which can be tackled with spot, is to determine the best
parameter setting of the optimization algorithm for one specific instance of an
optimization problem. It is not easy to define the term “best”, because it can
be defined in many ways and this definition is usually problem specific. Klein
(2002) presents interesting aspects from practice. See also the discussion in
chapter 7 of Bartz-Beielstein (2006). Therefore, we will take a naive approach
by defining our tuning goal as the following hypothesis:

(H-1) “We can determine a parameter setting ~p∗ which improves SANN’s per-
formance. To measure this performance gain, the average function values
from ten runs of SANN with default, i.e., ~p0 and tuned parameter ~p∗

settings are compared.”

2.6 Tuning with spot

Before spot is described in detail, we will demonstrate how it can be applied
to find an answer for hypothesis (H-1).

2.6.1 spot Projects

A spot project consists of a set of files with the same basename, but different
extensions, namely CONF, ROI, and APD. Here, we will discuss the project
demo7RandomForestSann, which is included in the spot package, see

> demo(package="SPOT")

for demos in the spot package. Demo projects, which are included in the spot
package, can be found in the directory of your local spot installation, e.g.,
~/Ri486-pc-linux-gnu-library/2.11/SPOT on Linux systems.

A configuration (CONF) file, which stores information about spot specific
settings, has to be set up. For example, the number of SANN algorithm runs,
i.e., the available budget, can be specified via auto.loop.nevals. spot imple-
ments a sequential approach, i.e., the available budget is not used in one step.
Evaluations of the algorithm on a subset of this budget, the so-called initial
design, is used to generate a coarse grained meta model F . This meta model
is used to determine promising algorithm design points which will be evaluated
next. Results from these additional SANN runs are used to refine the meta
model F . The size of the initial design can be specified via init.design.size.

7

To generate the meta model, we use random forest (Breiman, 2001). This
can be specified via seq.predictionModel.func = "spotPredictRandomFor-

est". Available meta models are listed in Sect. 5.3. Random forest was
chosen, because it is a robust method which can handle categorical and nu-
merical variables. In the following example, we will use the configuration file
demo7RandomForestSann.conf.

A region of interest (ROI) file specifies algorithm parameters and associated
lower and upper bounds for the algorithm parameters. Values for temp are
chosen from the interval [1; 50]. TEMP 1 50 FLOAT is the corresponding line for
the temp parameter which is added to the file demo7RandomForestSann.roi.

Optionally, an algorithm problem design (APD) file can be specified. This
file contains information about the problem and might be used by the algorithm.
For example, the starting point x0 = c(10,10) can be specified in the apd file.
The file demo7RandomForestSann.apd will be used in our example.

2.6.2 Starting spot in Automatic Mode

If these files are available, spot can be started from R’s command line via

> library(SPOT)

> spot(``demo7RandomForestSann.conf'')

spot is run in automatic mode, if no task is specified (this is the default setting).
Result from this run reads

Best solution found with 236 evaluations:

Y TEMP TMAX COUNT CONFIG

0.3992229 1.283295 41 10 36

spot has determined a configuration temp = 1.283295 and tmax = 41, which
gives an average function value from ten runs of y = 0.3998429. spot uses an in-
ternal counter (COUNT) for configurations. The best solution was found with
configuration 36. The tuning process is illustrated in Fig. 3. Figure 4 shows a
regression tree which is generated by the default report function spotReport-

Default.

2.7 Validating the Results

Finally, we will evaluate the result by comparing ten runs of SANN with default
parameter settings, say ~p0 to ten runs with the tuned configurations from spot,
say ~p∗. The corresponding R commands used for this comparison are shown
in the Appendix. First, we will set the seed to obtain reproducible results.
Next, we will define the objective function. Then, the starting point for the
optimization ~x0 and the number of function evaluations maxit are defined.
The parameters specified so far belong to the problem design.

Now we have to consider parameters from the algorithm design, i.e., param-
eters that control the behavior of the SANN algorithm, namely tmax and temp.
Finally, we can start the optimization algorithm (SANN). The run is finished
with the following summary:

8

●
●

● ●

●

●

●
●

●

● ● ● ●

●

2 4 6 8 10 12 14

0.
39

95
0.

40
10

Eval: 236 , Y: 0.399222931305286

step

Y

● ● ● ● ●
●

●

● ●

● ● ● ●

●

2 4 6 8 10 12 14

1.
5

2.
5

3.
5

step

T
E

M
P

● ● ● ● ●

●

● ● ●

● ● ● ●

●

2 4 6 8 10 12 14

32
36

40

step

T
M

A
X

Figure 3: Tuning SANN with spot. Random forest was chosen as a meta
model. This output can also be shown on-line, i.e., during the tuning process in
order to visualize the progress. The first panel shows the average function value
of the best configuration found so far. The second and third panel visualize
corresponding parameter settings. These values are updated each time a new
meta model (random forest) is build. Each time a meta model is build, the
step counter is increased. Altogether 14 meta models (random forest) are build
during this tuning process and 236 runs of the SANN algorithm were executed

9

TEMP <> 21.4090749091818

TEMP <> 9.14832512547146

●
0.408

213 obs

1 ●
1.1391
11 obs

2

●
3.0168
12 obs

3

Figure 4: Tuning SANN with spot. Random forest was chosen as a meta
model. This simple regression tree is generated by spot’s default report func-
tion spotReportDefault. The tree illustrates that temp has the largest effect.
Values at the terminal node ti show the average function value and the number
of observations (obs) which fulfill the conditions which are given by following
the tree from the root node to ti. Smaller temp values improve SANN’s per-
formance. A value of temp, which is smaller than 9.14, results in an average
function value of y = 0.408. This result is based on 213 observations

10

●

●

default spotRf

1
2

3
4

Figure 5: Comparison of SANN’s default parameter values (default) with pa-
rameter settings obtained with spot, where random forest was chosen as a meta
model (spotRf)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3995 0.4037 0.4174 0.9716 0.6577 4.0670

In order to illustrate the performance gain from spot’s tuning procedure,
SANN is run with the tuned parameter configuration, i.e., temp = 1.283295 and
tmax = 41. Results from these ten SANN runs can be summarized as follows:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3980 0.3982 0.3984 0.3995 0.3989 0.4047

Further statistical analyses, e.g., the box plot shown in Fig. 5, reveal that
this difference is statistically significant. Hence, hypothesis (H-1) cannot be
rejected. After this quick introduction we will have a closer look at spot.

3 Sequential Parameter Optimization

3.1 Definition

Definition 3.1 (Sequential Parameter Optimization). Sequential parameter
optimization (SPO) is a framework for tuning and understanding of algorithms
by active experimentation. SPO employs methods from error statistics to obtain
reliable results. It comprises the following elements:

11

scientific context

statistical context

measuring

systempreexperimental
planning

research question

t

scientific result

statistical hypothesis
scientific claim

statistical outcome

Figure 6: Steps and contexts of performing an experiment from research question
to scientific result

SPO-1: Scientific questions
SPO-2: Statistical hypotheses

SPO-3: Experiments
SPO-4: Scientific meaning

2

These elements can be explained as follows. Starting point of the investiga-
tion is a scientific question (SPO-1). This question often deals with assumptions
about algorithms, e.g., influence of parameter values or new operators. This
(complex) question is broken down into (simple) statistical hypotheses (SPO-2)
for testing, see Bartz-Beielstein (2008) for an example. Next, experiments can
be performed for each hypothesis, e.g., (H-1) as defined in Sect. 2.5.

a) Select a model F (e.g., random forest) to describe a functional relationship.

b) Select an experimental design, e.g., Latin hypercube design.

c) Generate data, i.e., perform experiments.

d) Refine the model until the hypothesis can be accepted/rejected.

Performing these experiments will be referred to as step (SPO-3). Finally, to
assess the scientific meaning of the results from an experiment, conclusions are
drawn from the hypotheses. This is step (SPO-4) in the sequential parame-
ter optimization framework, see Definition 3.1. Figure 6 illustrates the SPO
framework. spot implements the steps from the statistical context.

This article describes one specific instance of (SPO-3), which implements the
corresponding software programs in R. It will be referred to as spot.

3.2 Sequential Parameter Optimization Toolbox

We introduce R’s spot package as one possible implementation of step (SPO-3)
from the SPO framework. Implementations in other programming languages,
e.g., MATLAB, are also available but are not subject of this article.

12

The SPO toolbox was developed over recent years by Thomas Bartz-Beielstein,
Christian Lasarczyk, and Mike Preuss (Bartz-Beielstein et al., 2005). Main goals
of spot are (i) the determination of improved parameter settings for optimiza-
tion algorithms and (ii) to provide statistical tools for analyzing and under-
standing their performance.

Definition 3.2 (Sequential Parameter Optimization Toolbox). The sequential
parameter optimization toolbox implements the following features, which are re-
lated to step (SPO-3) from the SPO framework.
SPOT-1: Use the available budget (e.g., simulator runs, number of function

evaluations) sequentially, i.e., use information from the exploration
of the search space to guide the search by building one or several meta
models. Choose new design points based on predictions from the meta
model(s). Refine the meta model(s) stepwise to improve knowledge
about the search space.

SPOT-2: If necessary, try to cope with noise by improving confidence. Guar-
antee comparable confidence for search points.

SPOT-3: Collect information to learn from this tuning process, e.g., apply ex-
ploratory data analysis.

SPOT-4: Provide mechanisms both for interactive and automatic tuning.
2

The article entitled “sequential parameter optimization” (Bartz-Beielstein
et al., 2005) was the first attempt to summarize results from seminars and
tutorials given at conferences such as CEC and GECCO and make this approach
known to and available for a broader audience (Beielstein, 2002; Bartz-Beielstein
and Preuß, 2004; Bartz-Beielstein, 2005; Bartz-Beielstein and Preuß, 2005a,b).

spot was successfully applied in the fields of bioinformatics (Volkert, 2006;
Fober et al., 2009), environmental engineering (Konen et al., 2009; Flasch et al.,
2010), shipbuilding (Rudolph et al., 2009), fuzzy logic (Yi, 2008), multimodal
optimization (Preuss et al., 2007), statistical analysis of algorithms (Lasar-
czyk, 2007; Trautmann and Mehnen, 2009), multicriteria optimization (Bartz-
Beielstein et al., 2009), genetic programming (Lasarczyk and Banzhaf, 2005),
particle swarm optimization (Bartz-Beielstein et al., 2004; Kramer et al., 2007),
automatic and manual parameter tuning (Fober, 2006; Smit and Eiben, 2009;
Hutter et al., 2010a,b), graph drawing (Tosic, 2006; Pothmann, 2007), aerospace
and shipbuilding industry (Naujoks et al., 2006), mechanical engineering (Mehnen
et al., 2007), and chemical engineering (Henrich et al., 2008). Bartz-Beielstein
(2010) collects more than 100 publications related to the sequential parameter
optimization.

3.3 Elements of the SPOT Framework

3.3.1 The General SPOT Scheme

Algorithm 1 presents a formal description of the spot scheme. The utility is used
to measure algorithm’s performance. Typical measures are the estimated mean

13

Algorithm 1: SPOT

// phase 1, building the model:

let A be the tuned algorithm;1

generate an initial population ~P = {~p1, . . . , ~pm} of m parameter vectors;2

let k = k0 be the initial number of tests for determining estimated utilities;3

foreach ~pi ∈ ~P do4

run A with ~pi k times to determine the estimated utility ui (e.g., average5

function value from 10 runs) of ~pi;

// phase 2, using and improving the model:

while termination criterion not true do6

let ~p∗ denote the parameter vector from ~P with best estimated utility;7

let k the number of repeats already computed for ~p∗;8

build prediction model F based on ~P and u1, . . . , u|
~P |};9

generate a set ~P ′ of l new parameter vectors by random sampling;10

foreach ~pi ∈ ~P ′ do11

calculate f(~pi) to determine the predicted utility F (~pi);12

select set ~P ′′ of d parameter vectors from ~P ′ with best predicted utility13

(d� l);
run A with ~p∗ once and recalculate its estimated utility using all k + 1 test14

results; // (improve confidence)

update k, e.g., let k = k + 1;15

run A k times with each ~pi ∈ ~P ′′ to determine the estimated utility F (~pi);16

extend the population by ~P = ~P ∪ ~P ′′;17

or median from several runs of A. Algorithm 1 consists of two phases, namely the
first construction of the model (lines 1–5) and its sequential improvement (lines
6–17). Phase 1 determines a population of initial designs in algorithm parameter
space and runs the algorithm k times for each design. Phase 2 consists of a loop
with the following components:

1. Update the meta model F (or several meta models Fi) by means of the
obtained data.

2. Generate a (large) set of design points and compute their utility by sam-
pling the model.

3. Select the seemingly best design points and run the algorithm for these.

4. The new design points are added to the population and the loop starts
over if the termination criterion is not reached.

A counter k is increased in each cycle and used to determine the number of
repeats that are performed for each setting to be statistically sound in the ob-
tained results. In consequence, this means that the best design points so far
are also run again to obtain a comparable number of repeats. These reevalua-

14

tions may worsen the estimated performance and explains increasing Y values
in Fig. 3.

Sequential approaches can be more efficient than approaches that evaluate
the information in one step only (Wald, 1947). This presumes an experienced
operator who is able to draw the right conclusions out of the first results. In case
the operator is new to spot the sequential steps can be started automatically.
Compared to interactive procedures, performance in the automatic tuning pro-
cess may decrease. However, results from different algorithm runs, e.g., ES and
SANN, will be comparable in an objective manner if data for the comparison
is based on the same tuning procedure.

Extensions to the spot approach were proposed by other authors, e.g., Lasar-
czyk (2007) integrated an optimal computational budget allocation procedure,
which is based on ideas by Chen et al. (2003). Due to spot’s plugin structure,
see Sect. 5, further extensions can easily be integrated.

3.3.2 Running SPOT

In Sect. 2.6.2, spot was run as an automatic tuner. Steps from the automatic
mode can be used in an interactive manner. spot can be started with the
command

spot (<configurationfile>, <task>)

where configurationfile is the name of the spot configuration file and task

can be one of the tasks init, seq, run, rep or auto. spot can also be run in a
meta mode to perform tuning over a set of problem instances.

Files Used During the Tuning Process Each configuration file belongs to
one spot project, if the same basename is used for corresponding files. spot
uses simple text files as interfaces from the algorithm to the statistical tools.

1. The user has to provide the following files:

(i) Region of interest (ROI) files specify the region over which the al-
gorithm parameters are tuned. Categorical variables such as the
recombination operator in ES, can be encoded as factors, e.g., “in-
termediate recombination” and “discrete recombination.”

(ii) Algorithm design (APD) files are used to specify parameters used by
the algorithm, e.g., problem dimension, objective function, starting
point, or initial seed.

(iii) Configuration files (CONF) specify spot specific parameters, such
as the prediction model or the initial design size.

2. spot will generate the following files:

(i) Design files (DES) specify algorithm designs. They are generated
automatically by spot and will be read by the optimization algo-
rithms.

15

SPOTSPOT

Optimization
Algorithm

Optimization
Algorithm

APDAPD

EDAEDACONF
ROI

CONF
ROI

L3. Algorithm layer

L4. SPOT layer

(c)

(d)

(e)

(f)

(a) (g)

(b)

DESDESRESRES

Figure 7: SPOT interfaces. The spot loop can be described as follows: Config-
uration (CONF) and region-of-interest (ROI) files are read by spot (a). spot
generates a design (DES) file (b). The algorithm reads the design file and (c) ex-
tra information, e.g., about the problem dimension from the algorithm-problem
design (APD) file (d). Output from the optimization algorithm are written to
the result (RES) file (e). The result file is used by spot to build the predic-
tion model (f). Data can be used by exploratory data analysis (EDA) tools to
generate reports, statistics, visualizations, etc. (g)

(ii) After the algorithm has been started with a parametrization from
the algorithm design, the algorithm writes its results to the result
file (RES). Result files provide the basis for many statistical evalu-
ations/visualizations. They are read by spot to generate prediction
models. Additional prediction models can easily be integrated into
spot.

Figure 7 illustrates spot interfaces and the data flow. The acronym EDA (ex-
ploratory data analysis) summarizes additional information that can be used
to add further statistical tools. For example, spot writes a best file (BST),
which summarizes information about the best configuration during the tuning
process. Note, that the problem design can be modified, too. This can be done
to analyze the robustness (effectivity) of algorithms.

SPOT Tasks spot provides tools to perform the following tasks (see also
Fig. 8):

1. Initialize. An initial design is generated. This is usually the first step

16

during experimentation. The employed parameter region (ROI) and the
constant algorithm parameters (APD) have to be provided by the user.
spot’s parameters are specified in the CONF file. Although it is rec-
ommended to use the same basename for CONF, ROI, and APD files
in order to define a project, this is not mandatory. spot allows a flexi-
ble combination of different filenames, e.g., one APD file can be used for
different projects.

2. Run. This is usually the second step. The optimization algorithm is
started with configurations of the generated design. Additionally infor-
mation about the algorithms problem design are used in this step. The
algorithm writes its results to the result file.

3. Sequential step. A new design, based on information from the result file,
is generated. A prediction model is used in this step. Several generic pre-
diction models are available in spot by default. To perform an efficient
analysis, especially in situations when only few algorithms runs are possi-
ble, user-specified prediction models can easily be integrated into spot.

4. Report. An analysis, based on information from the result file, is generated.
Since all data flow is stored in files, new report facilities can be added very
easily. spot contains some scripts to perform a basic regression analysis
and plots such as histograms, scatter plots, plots of the residuals, etc.

5. Automatic mode. In the automatic mode, the steps run and sequential
are performed after an initialization for a predetermined number of times.

6. Meta mode. In the meta mode, the tuning process is repeated for several
configurations. For example, tuning can be performed for different starting
points ~x0, several dimensions, or randomly chosen problem instances.

As stated in Sect. 3.2, spot has been applied to several optimization tasks
which might give further hints how spot can be used. Bartz-Beielstein Bartz-
Beielstein and Preuss (2010); Bartz-Beielstein et al. (2010) present case studies
that may serve as good starting points for spot applications.

4 Details

We will discuss functions which are used during the four spot steps initialize,
run, sequential, and report.

4.1 Initialize

During this step, the initial design is generated and written to the design file.
spotCreateDesignLhs, which is based on R’s lhs package, is recommended as
a simple space filling design.

17

Preexperimental planning
determine region of interest
select predictors/models,

quality measures, etc.

Observations
perform simulator runs

spot run

Construct/Improve model(s)
generate new design points

spot seq

Visualization/EDA
comprehend effects

select model parameters
validate models

adapt ROI
spot rep

no

yes

User
interaction

?

Preexperimental setup
use maximum allowable ROI
use default predictors/models

User
interaction

?

Termination
?

Design
generate experimental design

spot init

yes

yes

no

no

Meta run
?

no

yes Report result
spot rep

Figure 8: The spot process. White font color indicates steps used in the inter-
active process only. A typewriter font indicates the corresponding spot com-
mands. To start the automatic mode, simply use the task auto. Note that the
interaction points are optional, so spot can be run without any user interaction.
meta runs perform tuning processes for several configurations

18

Alternatively, factorial designs can be used. spotCreateDesignFrF2, which
is based on Groemping’s FrF2 package, generates a fractional factorial design
with center point.

Furthermore, the number of initial design points, the type of the experimen-
tal design etc. have to be specified before the first spot run is performed. These
information are stored in the configuration file(CONF), see Listing 1.

Listing 1: demo7RandomForestSann.conf

1 a lg . func = ”spotAlgStartSann ”
auto . loop . neva l s = 100

3 i n i t . des ign . func = ”spotCreateDesignLhs ”
i n i t . des ign . s ize = 10

5 i n i t . des ign . r epea t s = 2
seq . pred ict ionMode l . func = ”spotPredictRandomForest ”

The configuration file plays a central role in spot’s tuning process. It stores
information about the optimization algorithm (alg.func) and the meta model
(seq.predictionModel.func). spot uses a classification scheme for its vari-
ables: init refers to variables which were used during the initialization step,
seq are variables used during the sequential step, and so forth.

The experimental region is specified in the region of interest (ROI) file,
see Listing 2. In the demo7RandomForestSann project, two numerical variables
with values from the interval [1; 50] are used. spot employs a mechanism which
adapts the region of interest automatically. Information about the actual region
of interest are stored in the aroi file, which is handled by spot internally.

Listing 2: demo7RandomForestSann.roi

name low high type
2 TEMP 1 50 FLOAT

TMAX 1 50 FLOAT

Now all the source files are available. In order to generate the initial design,
simply call spot as follows.

spot("demo7RandomForestSann.conf","init")

The “init” call generates a design file (DES), which is shown in Listing 3.

Listing 3: Design file demo7RandomForestSann.des generated by spot

1 TEMP TMAX CONFIG REPEATS STEP SEED
35.6081542731496 20.5193298289552 1 2 0 1235

3 3.03074611076154 30.9299647800624 2 2 0 1235
35.0430960887112 11.6981793923769 3 2 0 1235

5 18.7132237656275 49.8082008753903 4 2 0 1235
13.9964890434407 35.3148515065433 5 2 0 1235

7 26.2654501354089 25.7817166472087 6 2 0 1235
24.1049260527361 3.67511987574399 7 2 0 1235

9 7.34134425916709 25.289775890857 8 2 0 1235
49.035177000449 42.5625789203448 9 2 0 1235

11 42.5434358732775 7.34647449669428 10 2 0 1235

19

Since we have chosen the SPOT plugin spotCreateDesignLhs, a Latin hy-
percube design is generated. Each configuration is labeled with a configura-
tion number. The column REPEATS contains information from the variable
init.design.repeats. Since no meta model has been created yet, STEP is set
to 0 for each configuration. Finally, the SEED, which is used by the algorithm,
is shown in the last column.

4.2 Run

Parameters from the design file are read and the algorithm is executed. Each
run results in one fitness value (single-objective optimization) or several values
(multi-objective optimization). Fitness values with corresponding parameter
settings are written to the result file. The user has to set up her own interface
for her algorithm A. Examples are provided, see Sect. 5.2. The command

spot("demo7RandomForestSann.conf","run")

executes the run task. Results from this run are written to the result file(RES),
which is shown in Listing 4.

Listing 4: demo7RandomForestSann.res

1 Y TEMP TMAX FUNCTION DIM SEED CONFIG STEP
3.30597157332377 35.6081542731496 21 Branin0 . 0 2 1235 1 0

3 5.0386282545543 35.6081542731496 21 Branin0 . 0 2 1236 1 0
0.400306954041771 3.03074611076154 31 Branin0 . 0 2 1235 2 0

5 0.398257998573415 3.03074611076154 31 Branin0 . 0 2 1236 2 0
0.445520325383134 35.0430960887112 12 Branin0 . 0 2 1235 3 0

7 2.226649807247 35.0430960887112 12 Branin0 . 0 2 1236 3 0
0.497684708317145 18.7132237656275 50 Branin0 . 0 2 1235 4 0

9 1.83495383747858 18.7132237656275 50 Branin0 . 0 2 1236 4 0
0.399119231011623 13.9964890434407 35 Branin0 . 0 2 1235 5 0

11 0.542312919825205 13.9964890434407 35 Branin0 . 0 2 1236 5 0
2.72322377892531 26.2654501354089 26 Branin0 . 0 2 1235 6 0

13 0.417190547410852 26.2654501354089 26 Branin0 . 0 2 1236 6 0
4.7533857289203 24.1049260527361 4 Branin0 . 0 2 1235 7 0

15 1.61981739130332 24.1049260527361 4 Branin0 . 0 2 1236 7 0
0.403447629608046 7.34134425916709 25 Branin0 . 0 2 1235 8 0

17 0.411160853072728 7.34134425916709 25 Branin0 . 0 2 1236 8 0
2.98491602241286 49.035177000449 43 Branin0 . 0 2 1235 9 0

19 5.24485760127901 49.035177000449 43 Branin0 . 0 2 1236 9 0
6.91947230812718 42.5434358732775 7 Branin0 . 0 2 1235 10 0

21 0.521764744656569 42.5434358732775 7 Branin0 . 0 2 1236 10 0

4.3 Sequential

Now that results have been written to the result file, the meta model can be
build.

spot("demo7RandomForestSann.conf","seq")

The sequential call generates a new design file (DES), which is shown in List-
ing 5.

20

Listing 5: Design file demo7RandomForestSann.des generated by spot

1 TEMP TMAX CONFIG REPEATS repeat sLas tCon f i g STEP SEED
3.03074611076154 31 2 1 2 1 1237

3 6.13796767716994 31.5014664068934 11 3 3 1 1235
1.50800024462165 28.6290849421476 12 3 3 1 1235

In order to improve confidence, the best solution found so far is evaluated again.
To enable fair comparisons, new configurations are evaluated as many times as
the best configuration found so far. Note, other update schemes are possible.

If spot’s budget is not exhausted, the new configurations are evaluated, i.e.,
run is called again, which updates the result file. In the following step, seq is
called again etc.

To support exploratory data analysis, spot also generates a best file, which
is shown in Listing 6.

Listing 6: Best file demo7RandomForestSann.bst generated by spot

Y TEMP TMAX COUNT CONFIG
2 0.398592091098704 3.03074611076154 31 2 2

0.39950017406572 1.8086370804091 31 3 11
4 0.399448475332373 1.8086370804091 31 4 11

0.399732585200016 1.8086370804091 31 5 11
6 0.399443742300062 1.8086370804091 31 6 11

0.400057920171103 3.03074611076154 31 3 2
8 0.400239513036257 1.8086370804091 31 7 11

0.400845187050665 1.8086370804091 31 9 11
10 0.400892337114249 3.82960996863898 30 4 13

0.401138794573396 1.8086370804091 31 10 11
12 0.399842856102580 1.20055107064079 31 10 29

0.399842856102580 1.20055107064079 31 10 29
14 0.399842856102580 1.20055107064079 31 10 29

The best file is updated after each spot iteration and be be used for an on-line
visualization tool, e.g., to illustrate search progress or stagnation, see Fig. 3.
The variable COUNT reports the number of REPEATS used for this specific
configuration.

4.4 Report

If spot’s termination criterion is fulfilled, a report is generated. By default,
spot provides as simple report function which reads data from the res file and
produces the following output:

Best solution found with 223 evaluations:

Y TEMP TMAX COUNT CONFIG

0.3998429 1.200551 31 10 29

4.5 Automatic

spot’s auto task performs steps init, run, seq, run, seq, etc. until the ter-
mination criterion is fulfilled, see Fig. 8. It can be invoked from R’s command
line via

21

spot("demo7RandomForestSann.conf","auto")

5 Plugins

spot comes with a basic set of R functions for generating inital designs, starting
optimization algorithms, building meta models, and generating reports. This
set can easily be extended with user defined R functions, so called plugins.
Further plugins will be added in forthcoming spot versions. Here, we describe
the interfaces that are necessary for integrating user-defined plugins into spot.

5.1 Initialization Plugins

The default plugin for generating an initial design is init.design.func =

"spotCreateDesignLhs". It uses information about the size of the initial design
init.design.size. The number n of design variables xi (i = 1, . . . , n), their
names pNames, and their ranges ai ≤ xi ≤ bi can be determined with spot’s
internal alg.roi variable, which is passed to the initialization plugin.

> pNames <- row.names(alg.roi);

> a <- alg.roi[,"low"];

> b <- alg.roi[,"high"];

Note, pNames, a, and b are vectors of size n. Based on this information, a data
frame with inital design points is generated. For example, the data frame from
the demo7RandomForestSann project reads:

TEMP TMAX

1 35.608154 20.519330

2 3.030746 30.929965

3 35.043096 11.698179

4 18.713224 49.808201

5 13.996489 35.314852

6 26.265450 25.781717

7 24.104926 3.675120

8 7.341344 25.289776

9 49.035177 42.562579

10 42.543436 7.346474

These values are written to the initial design file, see Listing 3. The reader is
referred to the spotCreateDesingLhs function for further details.

The plugin spotCreateDesignFrF2 generates a central composite design
and can be used as a template for fractional factorial design plugins. Currently,
spot implements the following init plugins:

• spotCreateBasicDoe3R: creates a fractional-factorial design (resolution
III)

22

• spotCreateFrF2: creates a resolution III design with center point and
star points

• spotCreateLhs: creates a Latin hypercube design

Note, these plugins should be used as templates and can be easily adopted to
specific situations.

5.2 Run Plugins

The run plugin spotAlgStartSann, which is used as an interface to R’s SANN
algorithm, is shown in the Appendix, see Listing 8. Basically, the user has to
specify variable names to be read from the design file, see Sect. 5.2.1, and written
to the result file, see Sect. 5.2.3, and the call of the algorithm, see Sect. 5.2.2.

5.2.1 Reading Values From the Design File

To add a new variable, say COLOR, the user simply adds the following line of
code to the run file:

if (is.element("COLOR", pNames)){color <- des$COLOR[k]}

5.2.2 Executing the Algorithms

Next, the call of the algorithm has to be specified. In our example,

y <- optim(x0, spotFunctionBranin, method="SANN",

control=list(maxit=maxit, temp=temp, tmax=tmax, parscale=parscale,

color=color))

5.2.3 Writing Results to the Result File

And finally, in order to write the variable to the result file, it has to be added
to the following list:

res <- list(Y = y, TEMP = temp, TMAX = tmax,

COLOR = color, SEED = seed, CONFIG = conf)

5.2.4 Interfacing With Algorithms Written in Other Programming
Languages

We will demonstrate how JAVA programs can be called from spot. The pro-
cedure consists of two steps: First, a call string is build. Then, R’s system

function is used for executing the callString.

callString <- paste("java -jar simpleOnePlusOneES.jar",

seed, steps, target, f, n, xp0, sigma0, a, g, px, py, sep = " ")

y <-system(callString, intern= TRUE)

23

This procedure can be applied to any optimization algorithm. Templates for
state-of-the-art optimization algorithms will be added to forthcoming spot ver-
sion. Users are encouraged to submit interfaces to their algorithms to the spot
development team.

Currently, spot implements the following run plugins:

• spotAlgStartSann: Interface to R’s simulated annealing SANN

• spotAlgStartES: Interface to an ES based on Beyer and Schwefel (2002)

• spotFuncStartBranin: Interface to the Branin function. spot is used as
an optimizer, not as a tuner, see also Sect. 6.4

Additional run packages are available, e.g.,

> demo(spotDemo11Java)

demonstrates how a (1+1)-ES, which is implemented in Java, can be tuned with
spot.

5.3 Sequential Plugins

During spot’s sequential step one or several meta models are generated. These
models use information from the result file. New, promising design points are
generated. Therefore, a large number of randomly generated design points are
evaluated on the meta model. Configurations with the best estimated objective
function values are written to the design file and will be evaluated during the
run step, see line 11 in Algorithm 1.

spot provides two types of data assembled from the result file: Raw data
comprehend parameter values ~x (configurations) and related objective function
values y, whereas merged data map same ~xi configurations to one configuration
~xj . The corresponding yi values are merged according to the merge function
(default: mean), e.g., yj =

∑n
1 yi/n. In our example, the random forest is

generated with raw data. R’s generic predict function is used to evaluate new
data on the meta model (random forest). Finally, the best design points are
determined.

The random forest meta model is implemented as shown in Listing 7.

Listing 7: spotPredictRandomForest.R

spotPredictRandomForest <− function (rawB , mergedB , largeDes ign ,
spotConf ig) {

2 spotInstAndLoadPackages (”randomForest ”)
xNames <− s e t d i f f (names (rawB) ,”y ”)

4 x <− rawB [, xNames] ; y <− rawB$y
f i t <− randomForest (x , y)

6 r e s <− p r ed i c t (f i t , l a rgeDes ign)
la rgeDes ign <− l a rgeDes ign [order (res , d e c r ea s ing=FALSE) ,]

8 newDesign <− l a rgeDes ign [1 : spotConf ig$seq . des ign . new . size ,] }

Currrently (June 2010), spot provides interfaces to the following meta modeling
approaches:

24

• Regression models (lm; rsm):

1. spotPredictLm

2. spotPredictLmOptim

• Tree based models (tree; randomForest)

1. spotPredictTree

2. spotPredictRandomForest

• Gaussian process models (mlegp; tgp)

1. spotPredictTgp

2. spotPredictMlegp

The Appendix presents an example (Listing 9) how several meta models can be
combined. Interfaces to further meta models will be provided in future releases
of the spot package.

5.4 Report Plugins

spot comes with a simple report plugin spotReportDefault.R. It reports the
best configuration from the tuning procedure, illustrates the tuning process
(evolution of the best solution as shown in Figs. 4 and 13), and generates a
simple regression tree as shown in Fig. 9.

User defined report functions can easily be added. Wolfgang Konen has
written a report plugin which uses randomForest to visualize factor effects,
see Fig. 10. Figure 11 demonstrates how EDA tools can be applied to analyse
effects and interactions. Note, results from the result file can be used for detailed
reports. At this stage, EDA tools are the method of choice.

6 Refinement

6.1 Combining Meta Models And Adaptation of the Re-
gion of Interest

During the sequential step, spot can use different meta models. The follow-
ing example demonstrates how results from tree based regression and response
surface modeling can be combined.

6.1.1 Designs

A central composite design (CCD) was chosen as the starting point of the tuning
process. spot’s spotCreateDesignFrF2 plugin can be used to generate design
points. After the first run is finished, we can use spot’s report facility to analyze
results. Since we have chosen a classical factorial design, we will use response-
surface methodology (RSM). Lenth (2009) describes an implementation of RSM

25

TEMP <> 13.670513660355

0.4528
62 obs

1 TMAX >< 19.5

1.8467
12 obs

2 TEMP <> 31.4690639535547

2.6678
12 obs

3

5.1795
8 obs

4

Figure 9: Tuning SANN with spot. An rsm and tree based approach are
combined. Similar to the random forest based meta modeling, TEMP has the
largest effect

26

−1.0 −0.5 0.0 0.5 1.0

1
2

3
4

5
6

7

normalized ROI

Y

●●●●

TEMP
TMAX

Figure 10: Results from the SANN tuning procedure. Function values Y plotted
versus parameter values. randomForest was used to predict values for one
variable, say temp, while the other variable (tmax) was set its optimal value.
Values for both variables were normalized. This plot was generated with the
spotReportSens plugin

27

log(Y)

DAMPS

N
U

2

4

6

8

10

0.4 0.6 0.8 1.0

1.0

1.5
2.0
2.53.0

np

1.5

2.0

2.5

3.0
np

0.4 0.6 0.8 1.0

2.5

3.0

np

2.5

3.0

np

3.0

np

2

4

6

8

10

3.0

np
2

4

6

8

10

3.
0

3.0

np

0.4 0.6 0.8 1.0

3.0

np
2.5 2.5

3.0

np

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 11: This figure shows an EDA example taken from Bartz-Beielstein et al.
(2010). Contour plots based on 82 function evaluations of the CMA evolution
strategy (CMA-ES) optimizing the Ackley function are shown (Hansen, 2006).
Smaller values are better. Better configurations are placed in the lower area of
the panels. The CMA-ES has four algorithm parameters (CS, NU, DAMPS,
and NPARENTS). The parameter CS is held constant. NU is plotted versus
DAMPS, while values of the parameter NPARENTS (np), are varied with the
slider on top of each panel

28

in R. This R package rsm has many useful tools for an analysis of the results from
the spot runs. After evaluating the algorithm in these design points, a seccond
order regression model with interactions is fitted to the data. Functions from
the rsm package were used by the spot plugin spotPredictLmOptim. Before
meta models are build, data are standardized. Data in the original units are
mapped to coded data, i.e., data with values in the interval [−1, 1].

6.1.2 Response Surface Models

Based on the number of design points, spot automatically determines whether
a first-order, two-way interaction, pure quadratic, or second order model can be
fitted to the data. The CCD generated by spotCreateDesignFrF2 allows the
fit of an second-order model which can be summarized as follows.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.93070 0.46212 2.014 0.1375

x1 2.29074 0.36382 6.296 0.0081 **

x2 -1.98286 0.36307 -5.461 0.0121 *

x1:x2 -2.29498 0.40674 -5.642 0.0110 *

x1^2 1.86950 0.87244 2.143 0.1215

x2^2 -0.05832 0.87337 -0.067 0.9510

Residual standard error: 0.8135 on 3 degrees of freedom

Multiple R-squared: 0.9734, Adjusted R-squared: 0.9291

F-statistic: 21.97 on 5 and 3 DF, p-value: 0.01437

6.1.3 Using Gradient Information

The response surface analysis determines the following stationary point on re-
sponse surface: (−0.8447783,−0.3781626), or, in the original units temp =
4.802932 and tmax = 16.235016. The eigenanalysis shows that the eigenval-
ues (λ1 = 2.4042085; λ2 = −0.5930265) have different signs, so this is a saddle
point, as can also be seen in Fig. 12. spot automatically determines the path
of the steepest descent and selects five points, using the old center point as a
starting point, in its direction: (23.7605, 27.215), (22.315, 29.224), (21.4085,
31.6005), (21.139, 34.271), and (21.4085, 37.0395), i.e., decreasing temp and in-
creasing tmax values are chosen. Rather than at the origin, spot can start the
search at the saddle point. Set seq.useCanonicalPath = TRUE to enable this
feature. In this case, spot determines the most steeply rising ridge in both
directions, see also Lenth (2009) for details:

dist x1 x2 | TEMP TMAX

1 -0.2 -0.760 -0.197 | 6.8800 20.6735

2 -0.1 -0.803 -0.288 | 5.8265 18.4440

3 0.0 -0.845 -0.378 | 4.7975 16.2390

4 0.1 -0.887 -0.469 | 3.7685 14.0095

5 0.2 -0.929 -0.559 | 2.7395 11.8045

29

x1 = (TEMP − 25.5)/24.5

x2
 =

 (
T

M
A

X
 −

 2
5.

5)
/2

4.
5

 −1 0
 1

 2
 3

 4

 5

 6

 7
 8

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 12: Response surface model based on the initial design. rsm was used to
generate this plot

30

In addition to the points from the steepest descent, the best point from the first
design (1,50) is evaluated again. Now, these points are evaluated and a new rsm

model is build.

6.1.4 Automatic Adaptation of the Region of Interest

spot modifies the region of interest, if seq.useAdaptiveRoi = TRUE. This pro-
cedure consists of two phases, which are repeated in an alternating manner.

During the orientation phase, the direction of the largest improvement is
determined as described in Sect. 6.1.3. Based on an existing design and related
function values, the path of the steepest descent is determined. A small number
of points is chosen from this path. Optimization runs are performed on these
design points. In some situations, where no gradient information is available,
the best point from a large number of design points, which were evaluated on
the regression model, is chosen as the set of improvement points.

The recalibration phase determines the best point ~xb. It can be selected
from the complete set of evaluated design points or from the points along the
steepest descent only. The best point ~xb defines the new center point of a central
composite design. The minimal distance of ~xb to the borders of the actual region
of interest defines the radius of this design. If ~xb is located at (or very close
to) the borders of the region of interest, a Latin hypercube design which covers
the whole region of interest is determined. This can be interpreted as a restart.
To prevent premature convergence of this procedure, one additional new design
point is generated by a tree based model.

Next, the orientation phase is repeated. The tuning process with adaptive
ROI is visualized in Fig. 13. The final output from this tuning process, which
is based on regression models and tree based regression reads:

Best solution found with 94 evaluations:

Y TEMP TMAX COUNT CONFIG

0.4006016 1 1 6 2

As in Sect. 2.6, ten repeats of the best solution from this tuning process are
generated. Results are shown in Fig. 14. Note, this result was found with only
half of the number of SANN runs compared to the random forest modeling
approach from Sect. 2.6. The example demonstrates how the usage of gradient
information can accelerate the tuning procedure.

6.2 Numerical and Categorical Values

spot provides mechanisms for handling type information. Categorical values
such as “red”, “green”, and “blue” have to be coded as integer values, e.g., “1”,
“2”, and “3” in the ROI file. By default, they are treated as numerical values
(FLOAT). They can be treated as factors, if the corresponding type information
(FACTOR) is provided in the type column of the ROI file. Alternatively, the type
INT can be specified in the ROI file. These parameters are treated as numerical
values, but the spotCreateDesign plugins generate integer values which are

31

1 2 3 4 5

0
.3

9
8

5
0

.4
0

0
0

Eval: 94 , Y: 0.400601606392209

step

Y

1 2 3 4 5

0
.6

0
.8

1
.0

1
.2

1
.4

step

T
E

M
P

1 2 3 4 5

0
1

0
3

0
5

0

step

T
M

A
X

Figure 13: Tuning SANN with spot. An rsm and tree based approach are
combined

32

●

●

spotRf spotLm

0.
39

8
0.

40
0

0.
40

2
0.

40
4

0.
40

6
0.

40
8

Figure 14: Comparison of SANN’s random forest tuned parameter values with
parameter settings obtained with rsm (spotLm)

written to the design files. Bartz-Beielstein et al. (2010) presents an example
which illustrates the usage of type information in spot.

6.3 Meta Projects

spot allows the definition of meta projects. Meta project perform tuning over
a set of problem instances. One interesting task is to analyze interactions be-
tween the search-space dimension, say d, and the best algorithm design ~p∗. For
example, the experimenter can search for dependencies between population size
in ES and d. For a detailed documentation the reader is referred to the package
help manuals.

6.4 spot as an Optimization Algorithm

spot itself can be used as an optimization algorithm. The package includes
some demos to illustrate this feature. For example, spotDemoLm3Branin uses a
linear (meta) model to optimize Branin’s function.

7 Summary and Outlook

This article present basic features of the spot package which is implemented
in R. spot provides tools for automatic and interactive tuning of algorithms.
Categorical and numerical parameters can be used as input variables, which are
specified in the ROI file. A configuration file (CONF) collects data related to
the spot run (which is considered as a project) such as the prediction model.

33

The reader is referred to the SpotGetOptions help page, which lists spot’s
configuration parameters.

Parameters related to the algorithm or the optimization problem are stored
in the APD file. spot generates simple text files which are used as interfaces
to the algorithm.

The sequential approach comprehends the following steps:

• init: generate an initial design

• run: evaluate the algorithm

• seq: generate new design points (meta model)

• rep: statistical analysis and visualization, EDA

Plugins for these steps are subject of on-going research. Plugin development
concentrates on combining predictions from several regression models, integrat-
ing tools for multi objective optimization, and performing meta spot runs.

The spot packages contains several demos, which can be used as starting
points for setting up your own spot project.

8 Acknowledgements

This work was supported by the Bundesministerium für Bildung und Forschung
(BMBF) under the grant FIWA (AiF FKZ 17N2309, ”Ingenieurnachwuchs”) and
by the Cologne University of Applied Sciences under the research focus grant
COSA. Many thanks go to members of the FIWA and SOMA research group.

9 Appendix

9.1 R Source Code for Starting SANN

Listing 8: spotAlgStartSann.R

spotAlgStartSann <− function (i o . apdFileName , i o . desFileName , i o .
resFileName) {

2 wr i t eL ine s (paste (”Loading des ign f i l e data from : : ” , i o .
desFileName) , con=s td e r r ()) ;

source (i o . apdFileName , l o c a l=TRUE)
4 des <− read . t ab l e (i o . desFileName , sep=” ” , header = TRUE) ;

pNames <− names (des) ;
6 con f i g<−nrow (des) ;

for (k in 1 : c on f i g) {
8 for (i in 1 :des$REPEATS [k]) {

i f (i s . e lement (”TEMP” , pNames)) {
10 temp <− des$TEMP[k]

}
12 i f (i s . e lement (”TMAX” , pNames)) {

tmax <− round(des$TMAX[k])
14 }

34

conf <− k
16 i f (i s . e lement (”CONFIG” , pNames)) {

conf <− des$CONFIG [k]
18 }

spotStep<−NA
20 i f (i s . e lement (”STEP” , pNames)) {

spotStep <− des$STEP [k]
22 }

seed <− des$SEED [k]+ i−1
24 set . seed (seed)

y <− optim (x0 , spotFuncStartBraninSann , method=”SANN” ,
26 con t r o l=l i s t (maxit=maxit , temp=temp , tmax=tmax , pa r s c a l e=

pa r s c a l e))
r e s <− NULL

28 r e s <− l i s t (Y=y$value , TEMP=temp , TMAX=tmax , FUNCTION=f , DIM=
n , SEED=seed , CONFIG=conf)

i f (i s . e lement (”STEP” , pNames)) {
30 r e s=c (res ,STEP=spotStep)

}
32 r e s <−data . frame (r e s)

colNames = TRUE
34 i f (f i l e . e x i s t s (i o . resFileName)) {

colNames = FALSE
36 }

wr i t e . t ab l e (res , f i l e = i o . resFileName , row . names = FALSE,
38 co l . names = colNames , sep = ” ” , append = ! colNames ,

quote = FALSE) ;
colNames = FALSE

40 }
}

42 }

9.2 R Source Code for Combining Meta Models

Listing 9: spotPredictRandomForestMlegp.R

1 spotInstAndLoadPackages (”mlegp ”)
xNames <− s e t d i f f (names (rawB) , ”y ”)

3 x <− rawB [, xNames]
y <− rawB$y

5 r f . f i t <− randomForest (x , y)
r f . r e s <− p r ed i c t (r f . f i t , l a rgeDes ign)

7 r f . l a rgeDes ign <− l a rgeDes ign [order (r f . res , d e c r ea s ing=FALSE) ,]
r f . s <− round(spotConf ig$seq . des ign . new . s ize /2)

9 mlegp . s <− spotConf ig$seq . des ign . new . s ize − r f . s
r f . l a rgeDes ign <− r f . l a rgeDes ign [1 : r f . s ,]

11 i f (mlegp . s> 0) {
mlegp . f i t <− mlegp (x , y)

13 mlegp . r e s <− p r ed i c t (mlegp . f i t , l a rgeDes ign)
mlegp . l a rgeDes ign <− l a rgeDes ign [order (r f . res , d e c r ea s ing=FALSE)

,]
15 mlegp . l a rgeDes ign <− l a rgeDes ign [1 : mlegp . s ,]

return (rbind (r f . la rgeDes ign , mlegp . l a rgeDes ign))
17 }

else { return (r f . l a rgeDes ign) }

35

19 wr i t eL ine s (”spotPredictRandomForestMlegp f i n i s h e d ”) ;
return (l a rgeDes ign)

21 }

9.3 R Source Code for the Comparison From Sect. 2.7

First, we will set the seed to obtain reproducible results.

> set.seed(1)

Next, we will define the objective function.

> spotFunctionBranin <- function(x) {

+ x1 <- x[1]

+ x2 <- x[2]

+ (x2 - 5.1/(4 * pi^2) * (x1^2) + 5/pi * x1 - 6)^2 + 10 * (1 -

+ 1/(8 * pi)) * cos(x1) + 10

+ }

Then, the starting point for the optimization x0 and the number of function
evaluations maxit are defined:

> x0 <- c(10, 10)

> maxit <- 250

The parameters specified so far belong to the problem design. Now we have to
consider parameters from the algorithm design, i.e., parameters that control the
behavior of the SANN algorithm, namely tmax and temp:

> tmax <- 10

> temp <- 10

Finally, we can start the optimization algorithm (SANN):

> y1 <- NULL

> for (i in 1:10) {

+ set.seed(i)

+ y1 <- c(y1, optim(x0, spotFunctionBranin, method = "SANN",

+ control = list(maxit = maxit, temp = temp,

+ tmax = tmax))$value)

+ }

> summary(y1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3995 0.4037 0.4174 0.9716 0.6577 4.0670

> temp <- 1.283295

> tmax <- 41

> y2 <- NULL

36

> for (i in 1:10) {

+ set.seed(i)

+ y2 <- c(y2, optim(x0, spotFunctionBranin, method = "SANN",

+ control = list(maxit = maxit, temp = temp,

+ tmax = tmax))$value)

+ }

> summary(y2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3981 0.3999 0.4007 0.4018 0.4035 0.4085

> temp <- 0.1

> tmax <- 1

> y3 <- NULL

> for (i in 1:10) {

+ set.seed(i)

+ y3 <- c(y3, optim(x0, spotFunctionBranin, method = "SANN",

+ control = list(maxit = maxit, temp = temp,

+ tmax = tmax))$value)

+ }

> summary(y3)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3980 0.3982 0.3984 0.3995 0.3989 0.4047

References

Bartz-Beielstein, T. (2005). The new experimentalism—an approach to an-
alyze evolutionary algorithms. Institute of Applied Informatics and For-
mal Description Methods (AIFB), University of Karlsruhe (TH), Karlsruhe.
http://ls11-www.cs.uni-dortmund.de/people/tom. Cited 30 May 2005.

Bartz-Beielstein, T. (2006). Experimental Research in Evolutionary
Computation—The New Experimentalism. Natural Computing Series.
Springer, Berlin, Heidelberg, New York.

Bartz-Beielstein, T. (2008). How experimental algorithmics can benefit
from Mayo’s extensions to Neyman-Pearson theory of testing. Synthese,
163(3):385–396. DOI 10.1007/s11229-007-9297-z.

Bartz-Beielstein, T. (2010). Sequential parameter optimization—an annotated
bibliography. Technical Report 04/2010, Institute of Computer Science, Fac-
ulty of Computer Science and Engineering Science, Cologne University of
Applied Sciences, Germany.

Bartz-Beielstein, T., Lasarczyk, C., and Preuß, M. (2005). Sequential parameter
optimization. In McKay, B. et al., editors, Proceedings 2005 Congress on

37

Evolutionary Computation (CEC’05), Edinburgh, Scotland, volume 1, pages
773–780, Piscataway NJ. IEEE Press.

Bartz-Beielstein, T., Lasarczyk, C., and Preuss, M. (2010). The sequential
parameter optimization toolbox. In Bartz-Beielstein, T., Chiarandini, M.,
Paquete, L., and Preuss, M., editors, Experimental Methods for the Analysis
of Optimization Algorithms, pages 337–360. Springer, Berlin, Heidelberg, New
York.

Bartz-Beielstein, T., Naujoks, B., Wagner, T., and Wessing, S. (2009). In
Locarek-Junge, H. and Weihs, C., editors, Proceedings 11th IFCS Internat.
Conference 2009. Classification as a tool for research, Dresden.

Bartz-Beielstein, T., Parsopoulos, K. E., and Vrahatis, M. N. (2004). Design and
analysis of optimization algorithms using computational statistics. Applied
Numerical Analysis and Computational Mathematics (ANACM), 1(2):413–
433.

Bartz-Beielstein, T. and Preuß, M. (2004). Experimental research in evo-
lutionary computation (tutorial). Congress on Evolutionary Computa-
tion (CEC 2004), Portland OR. http://ls11-www.cs.uni-dortmund.de/

people/tom. Cited 30 June 2004.

Bartz-Beielstein, T. and Preuß, M. (2005a). Experimental research in evo-
lutionary computation (tutorial). Congress on Evolutionary Computa-
tion (CEC 2005), Edinburgh UK. http://ls11-www.cs.uni-dortmund.de/
people/tom. Cited 10 October 2004.

Bartz-Beielstein, T. and Preuß, M. (2005b). Experimental research in evo-
lutionary computation (tutorial). Genetic and Evolutionary Computation
Conf. (GECCO 2005), Washington DC.

Bartz-Beielstein, T. and Preuss, M. (2010). The future of experimental resaerch.
In Bartz-Beielstein, T., Chiarandini, M., Paquete, L., and Preuss, M., editors,
Experimental Methods for the Analysis of Optimization Algorithms, pages 17–
46. Berlin, Heidelberg, New York.

Beielstein, T. (2002). Threshold selection, hypothesis tests, and DOE methods
and their applicability to elevator group control problems (seminar). Centrum
voor Wiskunde en Informatica, Amsterdam.

Belisle, C. J. P. (1992). Convergence theorems for a class of simulated annealing
algorithms. Journal Applied Probability, 29:885–895.

Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies—A comprehensive
introduction. Natural Computing, 1:3–52.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5 –32.

38

Chen, J., Chen, C., and Kelton, D. (2003). Optimal computing budget allocation
of indifference-zone-selection procedures. Working paper, taken from http:

//www.cba.uc.edu/faculty/keltonwd. Cited 6 January 2005.

Flasch, O., Bartz-Beielstein, T., Davtyan, A., Koch, P., Konen, W., Oyetoyan,
T. D., and Tamutan, M. (2010). Comparing ci methods for prediction models
in environmental engineering. Technical Report 02/2010, Institute of Com-
puter Science, Faculty of Computer Science and Engineering Science, Cologne
University of Applied Sciences, Germany.

Fober, T. (2006). Experimentelle Analyse Evolutionärer Algorithmen auf dem
CEC 2005 Testfunktionensatz. Master’s thesis, Universität Dortmund, Ger-
many.

Fober, T., Mernberger, M., Klebe, G., and Hüllermeier, E. (2009). Evolution-
ary construction of multiple graph alignments for the structural analysis of
biomolecules. Bioinformatics, 25(16):2110–2117.

Fu, M. C. (2002). Optimization for simulation. INFORMS Journal on Comput-
ing, 14(3):192–215.

Hansen, N. (2006). The CMA evolution strategy: a comparing review. In
Lozano, J., Larranaga, P., Inza, I., and Bengoetxea, E., editors, Towards a
new evolutionary computation. Advances on estimation of distribution algo-
rithms, pages 75–102. Springer.

Henrich, F., Bouvy, C., Kausch, C., Lucas, K., Preuß, M., Rudolph, G., and
Roosen, P. (2008). Economic optimization of non-sharp separation sequences
by means of evolutionary algorithms. Computers and Chemical Engineering,
32(7):1411–1432.

Hutter, F., Bartz-Beielstein, T., Hoos, H., Leyton-Brown, K., and Murphy, K. P.
(2010a). Sequential model-based parameter optimisation: an experimental
investigation of automated and interactive approaches empirical methods for
the analysis of optimization algorithms. In Bartz-Beielstein, T., Chiarandini,
M., Paquete, L., and Preuss, M., editors, Experimental Methods for the Anal-
ysis of Optimization Algorithms, pages 361–414. Springer, Berlin, Heidelberg,
New York.

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Murphy, K. P. (2010b). Time-
bounded sequential parameter optimization. In Proc. of LION-10. To appear.

Kleijnen, J. P. C. (1987). Statistical Tools for Simulation Practitioners. Marcel
Dekker, New York NY.

Kleijnen, J. P. C. (2008). Design and analysis of simulation experiments.
Springer, New York NY.

39

Klein, G. (2002). The fiction of optimization. In Gigerenzer, G. and Selten,
R., editors, Bounded Rationality: The Adaptive Toolbox, pages 103–121. MIT
Press, Cambridge MA.

Konen, W., Zimmer, T., and Bartz-Beielstein, T. (2009). Optimierte Mod-
ellierung von Füllständen in Regenüberlaufbecken mittels CI-basierter Pa-
rameterselektion Optimized Modelling of Fill Levels in Stormwater Tanks
Using CI-based Parameter Selection Schemes. at-Automatisierungstechnik,
57(3):155–166.

Kramer, O., Gloger, B., and Goebels, A. (2007). An experimental analysis
of evolution strategies and particle swarm optimisers using design of experi-
ments. In Proceedings of the 9th annual conference on Genetic and evolution-
ary computation, GECCO ’07, pages 674–681, New York, NY, USA. ACM.

Lasarczyk, C. W. G. (2007). Genetische Programmierung einer algorithmischen
Chemie. PhD thesis, Technische Universität Dortmund.

Lasarczyk, C. W. G. and Banzhaf, W. (2005). Total synthesis of algorithmic
chemistries. In GECCO ’05: Proceedings of the 2005 conference on Genetic
and evolutionary computation, pages 1635–1640, New York, NY, USA. ACM.

Law, A. M. (2007). Simulation Modeling and Analysis. McGraw-Hill, Boston
MA, 4 edition.

Lenth, R. V. (2009). Response-surface methods in r, using rsm. Journal of
Statistical Software, 32(7):1–17.

Mehnen, J., Michelitsch, T., Lasarczyk, C., and Bartz-Beielstein, T. (2007).
Multi-objective evolutionary design of mold temperature control using DACE
for parameter optimization. International Journal of Applied Electromagnet-
ics and Mechanics, 25(1–4):661–667.

Naujoks, B., Quagliarella, D., and Bartz-Beielstein, T. (2006). Sequential pa-
rameter optimisation of evolutionary algorithms for airfoil design. In Winter,
G. e. a., editor, Proc. Design and Optimization: Methods and Applications,
(ERCOFTAC’06), pages 231–235. University of Las Palmas de Gran Canaria.

Pothmann, N. H. (2007). Kreuzungsminimierung für k-seitige Buchzeichnungen
von Graphen mit Ameisenalgorithmen. Master’s thesis, Universität Dort-
mund, Germany.

Preuss, M., Rudolph, G., and Tumakaka, F. (2007). Solving multimodal prob-
lems via multiobjective techniques with Application to phase equilibrium de-
tection. In Proceedings of the International Congress on Evolutionary Com-
putation (CEC2007). Piscataway (NJ): IEEE Press. Im Druck.

R Development Core Team (2008). R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing, Vienna, Austria.

40

Rudolph, G., Preuss, M., and Quadflieg, J. (2009). Two-layered surrogate mod-
eling for tuning optimization metaheuristics. Algorithm Engineering Report
TR09-2-005, Faculty of Computer Science, Algorithm Engineering (Ls11),
Technische Universität Dortmund, Germany.

Smit, S. K. and Eiben, A. E. (2009). Comparing Parameter Tuning Methods for
Evolutionary Algorithms. In IEEE Congress on Evolutionary Computation
(CEC), pages 399–406.

Tosic, M. (2006). Evolutionäre Kreuzungsminimierung. Diploma thesis, Uni-
versity of Dortmund, Germany.

Trautmann, H. and Mehnen, J. (2009). Statistical methods for improving multi-
objective evolutionary optimisation. International Journal of Computational
Intelligence Research (IJCIR), 5(2):72–78.

Volkert, L. (2006). Investigating ea based training of hmm using a sequential
parameter optimization approach. In Yen, G. G. et al., editors, Proceedings
of the 2006 IEEE Congress on Evolutionary Computation, pages 2742–2749,
Vancouver, BC, Canada. IEEE Press.

Wald, A. (1947). Sequential Analysis. Wiley, New York NY.

Yi, Y. (2008). Fuzzy Operator Trees for Modeling Utility Functions. PhD thesis,
Philipps-Universität Marburg.

Ziegenhirt, J., Bartz-Beielstein, T., Flasch, O., Konen, W., and Zaefferer, M.
(2010). Optimization of biogas production with computational intelligence—a
comparative study. In Fogel, G. e. a., editor, Proc. 2010 Congress on Evo-
lutionary Computation (CEC’10) within IEEE World Congress on Computa-
tional Intelligence (WCCI’10), Barcelona, Spain, Piscataway NJ. IEEE Press.

41

