The SRPM Package

Roger D. Peng
Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health

May 30, 2007

1 Introduction

The SRPM package (“Shared Reproducibility Package Management”) provides tools for creating and
interacting with what we call “shared reproducibility packages”. These shared reproducibility pack-
ages (SRPs) are not true R packages but rather contain information related to a Sweave document
that can be distributed to a wide audience and used to reproduce the results. The format of an SRP
is meant to be simple so that it can be used on different systems.

Each package is simply a directory which contains the following subdirectories:

e article/: contains the original Sweave file and a “weaved” version of the file (e.g. in PDF
format)

e figures/: contains files corresponding to any figures in the document

e cacheDB/: contains a collection of stashR databases storing any cached computations from
code chunks

e code/: contains code files corresponding to the R code for each code chunk in the Sweave
document (these are produced with the Stangle function with the argument split = TRUE).

Each SRP also has a file called metadata.dcf which is a text file containing information about each
of the code chunks in the document. This file is written in the Debian Control File format.

In addition, a package may contain a file named REMOTE which contains the URL of the location of
any remote stashR databases containing cached computations. If the size of the cached computation
databases is large, an author may wish to post them on a webserver rather than distribute them
with the SRP itself. The REMOTE file indicates the location of the cached computation databases
and configures the other tools in the SRPM package to retrieve data from this location using the
functionality in the stashR package.

2 Author tools

A shared reproducibility package can be constructed with the makeSRP function from the SRPM
package which takes as arguments the name of the package to create and the name of the Sweave
file for the original document. The makeSRP function

1. creates the necessary directories for the SRP;



2. calls Stangle to create individual code files for each code chunk and copies the files into the
code/ subdirectory;

3. copies the stashR databases containing the cached computations into the cacheDB/ subdirec-
tory;

4. copies graphics files corresponding to figures into the figures/ subdirectory;
5. copies the article PDF file and Sweave file into the article/ subdirectory;

6. creates the metadata file by reading the map file produced by the cacheSweave package and
writes it to the metadata.dcf file.

Currently, the SRPM package requires that both the graphics files for the figures and the weaved
version of the article be in PDF format, however we hope to remove this limitation in the near
future.

Another function that is available to authors is the makeWebpage function which produces a
simple webpage corresponding to an SRP. The webpage lists all of the code chunks in a document
with links to the code itself. Also, there are links to cache databases as well as the PDF versions
of figures so that readers can browse an SRP using a web browser and without having to have R
installed.

3 Reader tools

Sweave is an example of a tool that is useful to authors of statistical or scientific documents in that
it assists in the development of documents by ensuring that the text and data analysis are closely
integrated into a single document. However, readers of reproducible documents also need tools to
assist them with interacting with the data analyses therein and reproducing key results.

In the SRPM package we provide some basic tools for readers of Sweave documents that allow
them to interact with the code and data provided by a shared reproducibility package created by
the author. The basic functions are

e code: When called with no arguments, a listing of all the code chunks in the article is printed
to the console. The code function can also take a numeric argument corresponding to the code
chunk sequence number of a character argument corresponding to the code chunk name. When
code is passed a numeric or character argument, it returns an object of class “codeObject” which
contains the code and pointers to any cached computation databases or figures associated with
the code chunk.

e article: This function takes no arguments; when called it launches the article PDF document
in the PDF viewer.

e figure: This function must be given a numeric argument corresponding to the figure number
in the original article. When called, it displays in the PDF viewer the figure corresponding to
the figure number.

e cache: This function takes a code chunk sequence number or a code chunk name (character)
as an argument and returns an object of class “localDB” or “remoteDB” depending on whether
the SRP is using local or remote cached computation databases. This object can be explored
with the methods defined in the stashR package (see also details in [Eckel and Peng} [2006)).



e loadcache: This function lazy-loads cached computation databases into the global environ-
ment. It takes a numeric vector of code chunk sequence numbers or a character vector of
code chunk names and loads the cached computation databases associated with those code
chunks in the order that they are specified. Once a database is lazy-loaded, the object names
appear in the environment into which the database was loaded, but they do not occupy any
extra memory until they are first accessed. If a specified code chunk does not have a database
associated with it, no action is taken.

e runcode: The runcode function takes as input a numeric vector of code chunk sequence
numbers or a character vector of code chunk names and executes the code in those code
chunks. Each code chunk is evaluated in the order in which it appears in the input vector. By
default, if a cached computation database is associated with a code chunk, then the database
is lazy-loaded via loadcache rather than executed. In order to force evaluation of code in a
code chunk with a cache database, one needs to set useCache = FALSE when calling runcode.
If an error occurs when executing the code in a code chunk, a message is printed to the console
indicating the error and the code chunk is skipped.

e edit: A method is provided for the edit generic function for objects of class “codeObject”
which can be used to edit the R code corresponding to a code chunk. The modified “codeObject”
object can be executed with the runcode function. The edit method returns the modified
copy of the object so that the original code is not modified. The editor used is that which is
launched by the file.edit function and will be system dependent.

These functions consist of the primary user interface for readers to interact with shared repro-
ducibility package. Certain SRPs may also require that other R packages be installed in order to
execute the code in the code chunks and these should be installed before attempting to execute the
code with runcode.

Other utility functions available to the user are currentPackage, which shows the currently
registered SRP, getRemoteURL, which returns the URL of the remote cached computation databases
(if any), and getLocalDir, which returns the path to the directory where local copies of the remote
cache databases will be stored.

4 Example

The SRPM package depends on the methods and stashR packages and additionally imports the utils,
filehash, and cacheSweave packages. Once those dependencies are installed, the SRPM package can
be loaded using library in the usual way.

The first thing a user must do is register a shared reproducibility package (SRP) using the
setPackage function. We will use as an example a simple SRP called srp_simple that comes with
the SRPM package. The package can be registered by passing the name of the directory to the
setPackage function.

> library (SRPM)
> pkgdir <- system.file("SRP-ex", "srp_simple", package = "SRPM")
> setPackage (pkgdir)

Upon registering a package one can call the article function (with no arguments) to open a PDF
copy of the full article in the PDF viewer (as identified by getOption("pdfviewer")). Another



useful function to begin with is the code function. Called with no arguments, code lists all of the
code chunks in the article.

> code()

1 LoadPackages

2 FitLinearModel [C]

3 CoefficientTable

4 LinearModelDiagnosticPlots [Figure 1]

The code chunk listing is annotated with three different types of tags. The first is the code
chunk sequence number which appears to the left of the code chunk name. This number can be
used to identify a code chunk in other operations. The second is a [C] which indicates caching has
been turned on and that the corresponding code chunk gives rise to a cached computation database.
Lastly, code chunks with the tag [Figure 7] produce figures or plots. For example, code chunk 4
produces Figure 1 in the original article.

Code in any of the code chunks can be executed with the runcode function by passing the code
chunk name or sequence number. Sequences of code chunks can be executed by passing a numeric
or character vector to runcode. For example, to execute the code in chunks 1 through 3 to create
the table of regression coefficients, we can execute

> runcode(1:3)
which prints the following messages

running code in code chunk 1
loading cache for code chunk 2
running code in code chunk 3

and prints a table to the console (here, using the xtable package). Code chunk 2 has a cached
computation database associated with it so the database is lazy-loaded into the workspace instead
of the code being executed. Code chunk 3 creates the table and it is executed successfully.

In order to explicitly lazy-load a cached computation database into the workspace one can use
the loadcache function. For example, to load the database for code chunk 2, one can call

> loadcache(2)
> 1s()

[1] "airquality" "fit" "pkgdir"

The “localDB” object representing the cached computation database can be explicitly retrieved
by calling the cache function and accessed using the methods defined in the stashR package. The
above code fragment is roughly equivalent to

> library(stashR)
> db <- cache(2)
> show(db)

'localDB' database 'FitLinearModel'
> dbList (db)
[1] "airquality" "fit"

> dbLazyLoad (db)



5 Package websites

If the author has created a webpage via the makeWebpage function, the reader may prefer to view
that first. The webpage created by makeWebpage corresponding to the srp_simple package can be
found at

http://www.biostat.jhsph.edu/ rpeng/RR/ea6883e28967ec48a0ee009585da0eb0/html/

Currently, the webpage created by makeWebpage resembles the output provided by the R functions
at the console. The cached computation databases can be browsed in a limited fashion—smaller
objects can be viewed in their entirety while for larger objects a summary is provided by showing
the output from str.

References

Eckel SP, Peng RD (2006). “Interacting with local and remote data repositories using the stashR
package for R.” Technical Report 127, Johns Hopkins University Department of Biostatistics.
http://www.bepress.com/jhubiostat /paperl27.



	Introduction
	Author tools
	Reader tools
	Example
	Package websites

