Functions to perform Approximate Bayesian Computation (ABC) using simulated data


[Package List] [Top]

Documentation for package ‘abc’ version 1.0

Help Pages

abc Parameter estimation via Approximate Bayesian Computation (ABC)
abc.return Parameter estimation via Approximate Bayesian Computation (ABC)
cv4abc Cross validation for Approximate Bayesian Computation (ABC)
getmode Summaries of posterior samples generated by ABC algortithms
hist.abc Posterior histograms
models A set of R objects used to illustrate model selection in an ABC framework
par.sim A set of objects used to estimate the population mean and variance in a Gaussian model with ABC.
plot.abc Diagnostic plots for ABC
plot.cv4abc Cross-validation plots for ABC
post.mu A set of objects used to estimate the population mean and variance in a Gaussian model with ABC.
post.sigma2 A set of objects used to estimate the population mean and variance in a Gaussian model with ABC.
postpr Estimating posterior model probabilities
stat.obs A set of objects used to estimate the population mean and variance in a Gaussian model with ABC.
stat.sim A set of objects used to estimate the population mean and variance in a Gaussian model with ABC.
summary.abc Summaries of posterior samples generated by ABC algortithms
summary.cv4abc Calculates the cross-validation prediction error
summary.postpr Posterior model probabilities and Bayes factors
tajima.obs A set of R objects used to illustrate model selection in an ABC framework
tajima.sim A set of R objects used to illustrate model selection in an ABC framework