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2 Contents

Scope and Purpose of this Document

This document is a user manual for the R package apcluster. It is only meant as a gentle in-
troduction into how to use the basic functions implemented in this package. Not all features of
the R package are described in full detail. Such details can be obtained from the documentation
enclosed in the R package. Further note the following: (1) this is neither an introduction to affin-
ity propagation nor to clustering in general; (2) this is not an introduction to R. If you lack the
background for understanding this manual, you first have to read introductory literature on these
subjects.
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1 Introduction

Affinity propagation (AP) is a relatively new clustering algorithm that has been introduced by
Brendan J. Frey and Delbert Dueck [1].1 The authors themselves describe affinity propagation as
follows:2

“An algorithm that identifies exemplars among data points and forms clusters of data
points around these exemplars. It operates by simultaneously considering all data
point as potential exemplars and exchanging messages between data points until a
good set of exemplars and clusters emerges.”

AP has been applied in various fields recently, among which bioinformatics is becoming in-
creasingly important. Frey and Dueck have made their algorithm available as Matlab code.1 Mat-
lab, however, is relatively uncommon in bioinformatics. Instead, the statistical computing platform
R has become a widely accepted standard in this field. In order to leverage affinity propagation
for bioinformatics applications, we have implemented affinity propagation as an R package. Note,
however, that the given package is in no way restricted to bioinformatics applications. It is as
generally applicable as Frey’s and Dueck’s original Matlab code.1

2 Installation

2.1 Installation via CRAN

The R package apcluster (current version: 1.0.2) is part of the Comprehensive R Archive Net-
work (CRAN)3. The simplest way to install the package, therefore, is to enter the following com-
mand into your R session:

> install.packages("apcluster")

2.2 Manual installation

If, for what reason ever, you prefer to install the package manually, download the package file
suitable for your computer system and copy it to your harddisk. Open the package’s page at
CRAN4 and the proceed as follows.

Manual installation under Windows

1. Download apcluster_1.0.2.zip and save it to your harddisk

2. Open the R GUI and select the menu entry

1http://www.psi.toronto.edu/affinitypropagation/
2quoted from http://www.psi.toronto.edu/affinitypropagation/faq.html#def
3http://cran.r-project.org/
4http://cran.r-project.org/web/packages/apcluster/index.html

http://www.psi.toronto.edu/affinitypropagation/
http://www.psi.toronto.edu/affinitypropagation/faq.html#def
http://cran.r-project.org/
http://cran.r-project.org/web/packages/apcluster/index.html
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Packages | Install package(s) from local zip files...

In the file dialog that opens, go to the folder where you placed apcluster_1.0.2.zip and
select this file. The package should be installed now.

Manual installation under Linux/UNIX/MacOS

1. Download apcluster_1.0.2.tar.gz and save it to your harddisk.

2. Open a shell window and change to the directory where you put apcluster_1.0.2.tar.gz.
Enter

R CMD INSTALL apcluster_1.0.2.tar.gz

to install the package.

2.3 Compatibility issues

Both the Windows and the Linux/UNIX/MacOS version of the package have been built under R
2.10.1, but have been tested with earlier R versions too. Apart from installation warnings that the
package has been built with a more recent version of R, it should work without severe problems
on R versions ≥2.6.1.

3 Getting Started

To load the package, enter the following in your R session:

> library(apcluster)

If this command terminates without any error message or warning, you can be sure that the package
has been installed successfully. If so, the package is ready for use now and you can start clustering
your data with affinity propagation.

The package includes both a user manual (this document) and a reference manual (help pages
for each function). To view the user manual, enter

> vignette("APCluster-Manual")

Help pages can be viewed using the help command. It is recommended to start with

> help(apcluster)

Affinity propagation does not require the data samples to be of any specific kind or structure.
AP only requires a similarity matrix, i.e., given l data samples, this is an l × l real-valued matrix
S, in which an entry Sij corresponds to a value measuring how similar sample i is to sample j.
AP does not require these values to be in a specific range. Values can be positive or negative. AP
does not even require the similarity matrix to be symmetric (although, in most applications, it will
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be symmetric anyway). A value of −∞ is interpreted as “absolute dissimilarity”. The higher a
value, the more similar two samples are considered.

To get a first impression, let us create a random data set in R2 as the union of two “Gaussian
clouds”:

> cl1 <- cbind(rnorm(30, 0.3, 0.05), rnorm(30, 0.7, 0.04))

> cl2 <- cbind(rnorm(30, 0.7, 0.04), rnorm(30, 0.4, 0.05))

> x <- rbind(cl1, cl2)

> plot(x, xlab = "", ylab = "", pch = 19, cex = 0.8)
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Now we have to create a similarity matrix. The package apcluster offers several different ways
for doing that (see Section 5 below). Let us start with the default similarity measure used in the
papers of Frey and Dueck — negative squared distances:

> s <- negDistMat(x, r = 2)

We are now ready to run affinity propagation:

> apres <- apcluster(s)

The function apcluster creates an object belonging to the S4 class APResult that is defined by
the present package. To get detailed information on which data are stored in such objects, enter

> help(APResult)

The simplest thing we can do with the output is to enter the name of the object (which implicitly
calls show) to get a summary of the clustering result:
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> apres

APResult object

Number of samples = 60

Number of iterations = 132

Input preference = -0.1555249

Sum of similarities = -0.2556224

Sum of preferences = -0.3110499

Net similarity = -0.5666723

Number of exemplars = 2

Exemplars:

28 32

Clusters:

Cluster 1, exemplar 28:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30

Cluster 2, exemplar 32:

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60

For two-dimensional data sets, apcluster allows for plotting the original data set along with a
clustering result:

> plot(apres, x)
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In this plot, each color corresponds to one cluster. The exemplar of each cluster is marked by a
box and all cluster members are connected to their exemplars with lines.

Suppose we want to have better insight into what the algorithm did in each iteration. For this
purpose, we can supply the option details=TRUE to apcluster:

> apres <- apcluster(s, details = TRUE)

This option tells the algorithm to keep a detailed log about its progress. For example, this allows
us to plot the three performance measures that AP uses internally for each iteration:

> plot(apres)
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Fitness (overall net similarity)
Sum of exemplar preferences
Sum of similarities to exemplars

These performance measures are:

1. Sum of exemplar preferences

2. Sum of similarities of exemplars to their cluster members

3. Net fitness: sum of the two former

For details, the user is referred to the original affinity propagation paper [1] and the supplementary
material published on the affinity propagation Web page.1 We see from the above plot that the
algorithm has not made any change for the last 100 (of 132!) iterations. AP, through its parameter
convits, allows to control for how long AP waits for a change until it terminates (the default is
convits=100). If the user has the feeling that AP will probably converge quicker on his/her data
set, a lower value can be used:

> apres <- apcluster(s, convits = 15, details = TRUE)

> apres

APResult object

Number of samples = 60

Number of iterations = 47
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Input preference = -0.1555249

Sum of similarities = -0.2556224

Sum of preferences = -0.3110499

Net similarity = -0.5666723

Number of exemplars = 2

Exemplars:

28 32

Clusters:

Cluster 1, exemplar 28:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30

Cluster 2, exemplar 32:

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60

4 Adjusting Input Preferences

Apart from the similarity itself, the most important input parameter of AP is the so-called input
preference which can be interpreted as the tendency of a data sample to become an exemplar
(see [1] and supplementary material on the AP homepage1 for a more detailed explanation). This
input preference can either be chosen individually for each data sample or it can be a single value
shared among all data samples. Input preferences largely determine the number of clusters, in
other words, how fine- or coarse-grained the clustering result will be.

The input preferences one can specify for AP are roughly in the same range as the similarity
values, but they do not have a straightforward interpretation. Frey and Dueck have introduced the
following rule of thumb: “The shared value could be the median of the input similarities (resulting
in a moderate number of clusters) or their minimum (resulting in a small number of clusters).” [1]

Our AP implementation uses the median rule by default if the user does not supply a custom
value for the input preferences. In order to provide the user with a knob that is — at least to some
extent — interpretable, the function apcluster has a new argument q that allows to set the input
preference to a certain quantile of the input similarities: resulting in the median for q=0.5 and in
the minimum for q=0. As an example, let us add two more “clouds” to the data set from above:

> cl3 <- cbind(rnorm(20, 0.5, 0.03), rnorm(20, 0.72, 0.03))

> cl4 <- cbind(rnorm(25, 0.5, 0.03), rnorm(25, 0.42, 0.04))

> x <- rbind(x, cl3, cl4)

> s <- negDistMat(x, r = 2)

> plot(x, xlab = "", ylab = "", pch = 19, cex = 0.8)



4 Adjusting Input Preferences 9

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●●

●

●

0.3 0.4 0.5 0.6 0.7 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

For the default setting, we obtain the following result:

> apres <- apcluster(s)

> plot(apres, x)
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For the minimum of input similarities, we obtain the following result:

> apres <- apcluster(s, q = 0)

> plot(apres, x)
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So we see that AP is quite robust against a reduction of input preferences in this example which
may be caused by the clear separation of the four clusters. If we increase input preferences,
however, we can force AP to split the four clusters into smaller sub-clusters:

> apres <- apcluster(s, q = 0.8)

> plot(apres, x)
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Note that the input preference used by AP can be recovered from the output object (no matter
which method to adjust input preferences has been used). On the one hand, the value is printed if
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the object is displayed (by show or by entering the output object’s name). On the other hand, the
value can be accessed directly via the slot p:

> apres@p

[1] -0.008168459

The above example with q=0 demonstrates that setting input preferences to the minimum of
input similarities does not necessarily result in a very small number of clusters (like one or two).
This is due to the fact that input preferences need not necessarily be exactly in the range of the
similarities. To determine a meaningful range, an auxiliary function is available which, in line
with Frey’s and Dueck’s Matlab code,1 allows to compute a minimum value (for which one or at
most two clusters would be obtained) and a maximum value (for which as many clusters as data
samples would be obtained):

> preferenceRange(s)

[1] -6.964980e+00 -2.532793e-06

The function returns a two-element vector with the minimum value as first and the maximum value
as second entry. The computations are done approximately by default. If one is interested in exact
bounds, supply exact=TRUE (resulting in longer computation times).

Many clustering algorithms need to know a pre-defined number of clusters. This is often a
major nuisance, since the exact number of clusters is hard to know for non-trivial (in particular,
high-dimensional) data sets. AP avoids this problem. If, however, one still wants to require a
fixed number of clusters, this has to be accomplished by a search algorithm that adjusts input
preferences in order to produce the desired number of clusters in the end. For convenience, this
search algorithm is available as a function apclusterK (analogous to Frey’s and Dueck’s Matlab
implementation1). We can use this function to force AP to produce only two clusters (merging the
two pairs of adjacent clouds into one cluster each):

> apres <- apclusterK(s, 2)

Trying p = -0.00696751

Number of clusters: 18

Trying p = -0.0696523

Number of clusters: 5

Trying p = -0.6965002

Number of clusters: 4

> plot(apres, x)
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5 Similarity Matrices

Apart from the obvious monotonicity “the higher the value, the more similar two samples”, affin-
ity propagation does not make any specific assumption about the similarity measure. Negative
squared distances must be used if one wants to minimize squared errors [1]. Apart from that, the
choice and implementation of the similarity measure is left to the user.

Our package offers a few more methods to obtain similarity matrices. The choice of the right
one (and, consequently, the objective function the algorithm optimizes), still has to be made by the
user.

All functions described in this section assume the input data matrix to be organized such that
each row corresponds to one sample and each column corresponds to one feature (in line with the
standard function dist). If a vector is supplied instead of a matrix, each single entry is interpreted
as a (one-dimensional) sample.

5.1 The function negDistMat

The function negDistMat, in line with Frey and Dueck, allows to compute negative distances for
a given set of real-valued data samples. Above we have used the following:

> s <- negDistMat(x, r = 2)

This computes a matrix of negative squared distances from the data matrix x. The function
negDistMat is a simple wrapper around the standard function dist, hence, it allows for a lot
more different similarity measures. The user can make use of all variants implemented in dist

by using the options method (selects a distance measure) and p (specifies the exponent for the
Minkowski distance, otherwise it is void) that are passed on to dist. Presently, dist provides the
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following variants of computing the distance d(x,y) of two data samples x = (x1, . . . , xd) and
y = (y1, . . . , yd):

Euclidean:

d(x,y) =

√√√√ d∑
i=1

(xi − yi)2

use method="euclidean" or do not specify argument method (since this is the default);

Maximum:
d(x,y) =

d
max
i=1
|xi − yi|

use method="maximum";

Sum of absolute distances / Manhattan:

d(x,y) =
d∑

i=1

|xi − yi|

use method="manhattan";

Canberra:

d(x,y) =
d∑

i=1

|xi − yi|
|xi + yi|

summands with zero denominators are not taken into account; use method="canberra";

Minkowski:

d(x,y) =

(
d∑

i=1

(xi − yi)p

) 1
p

use method="minkowski" and specify p using the additional argument p (default is p=2,
resulting in the standard Euclidean distance);

We do not consider method="binary" here, since it is irrelevant for real-valued data.

The function negDistMat takes the distances computed with one of the variants listed above
and returns −1 times the r-th power of it, i.e.,

s(x,y) = −d(x,y)r. (1)

The exponent r can be adjusted with the argument r. The default is r=1, hence, one has to supply
r=2 as in the above example to obtain squared distances.

Here are some examples. We use the corners of the two-dimensional unit square and its middle
point (1

2 , 1
2) as sample data:

> ex <- matrix(c(0, 0, 1, 0, 0.5, 0.5, 0, 1, 1, 1), 5, 2, byrow = TRUE)

> ex
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[,1] [,2]

[1,] 0.0 0.0

[2,] 1.0 0.0

[3,] 0.5 0.5

[4,] 0.0 1.0

[5,] 1.0 1.0

Standard Euclidean distance:

> negDistMat(ex)

1 2 3 4 5

1 0.0000000 -1.0000000 -0.7071068 -1.0000000 -1.4142136

2 -1.0000000 0.0000000 -0.7071068 -1.4142136 -1.0000000

3 -0.7071068 -0.7071068 0.0000000 -0.7071068 -0.7071068

4 -1.0000000 -1.4142136 -0.7071068 0.0000000 -1.0000000

5 -1.4142136 -1.0000000 -0.7071068 -1.0000000 0.0000000

Squared Euclidean distance:

> negDistMat(ex, r = 2)

1 2 3 4 5

1 0.0 -1.0 -0.5 -1.0 -2.0

2 -1.0 0.0 -0.5 -2.0 -1.0

3 -0.5 -0.5 0.0 -0.5 -0.5

4 -1.0 -2.0 -0.5 0.0 -1.0

5 -2.0 -1.0 -0.5 -1.0 0.0

Maximum norm-based distance:

> negDistMat(ex, method = "maximum")

1 2 3 4 5

1 0.0 -1.0 -0.5 -1.0 -1.0

2 -1.0 0.0 -0.5 -1.0 -1.0

3 -0.5 -0.5 0.0 -0.5 -0.5

4 -1.0 -1.0 -0.5 0.0 -1.0

5 -1.0 -1.0 -0.5 -1.0 0.0

Sum of absolute distances (aka Manhattan distance):

> negDistMat(ex, method = "manhattan")
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1 2 3 4 5

1 0 -1 -1 -1 -2

2 -1 0 -1 -2 -1

3 -1 -1 0 -1 -1

4 -1 -2 -1 0 -1

5 -2 -1 -1 -1 0

Canberra distance:

> negDistMat(ex, method = "canberra")

1 2 3 4 5

1 0 -2.000000 -2.0000000 -2.000000 -2.0000000

2 -2 0.000000 -1.3333333 -2.000000 -1.0000000

3 -2 -1.333333 0.0000000 -1.333333 -0.6666667

4 -2 -2.000000 -1.3333333 0.000000 -1.0000000

5 -2 -1.000000 -0.6666667 -1.000000 0.0000000

Minkowski distance for p = 3 (3-norm):

> negDistMat(ex, method = "minkowski", p = 3)

1 2 3 4 5

1 0.0000000 -1.0000000 -0.6299605 -1.0000000 -1.2599210

2 -1.0000000 0.0000000 -0.6299605 -1.2599210 -1.0000000

3 -0.6299605 -0.6299605 0.0000000 -0.6299605 -0.6299605

4 -1.0000000 -1.2599210 -0.6299605 0.0000000 -1.0000000

5 -1.2599210 -1.0000000 -0.6299605 -1.0000000 0.0000000

5.2 Other similarity measures

The package apcluster offers three more functions for creating similarity matrices for real-
valued data:

Exponential transformation of distances: the function expSimMat is another wrapper around
the standard function dist. The difference is that, instead of the transformation (1), it uses
the following transformation:

s(x,y) = exp
(
−
(

d(x,y)
w

)r)
Here the default is r=2. It is clear that r=2 in conjunction with method="euclidean"

results in the well-known Gaussian kernel / RBF kernel [2, 3, 4], whereas r=1 in conjunc-
tion with method="euclidean" results in the similarity measure that is sometimes called
Laplace kernel [2, 3]. Both variants (for non-Euclidean distances as well) can also be inter-
preted as fuzzy equality/similarity relations [5].
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Linear scaling of distances with truncation: the function linSimMat uses the transformation

s(x,y) = max
(

1− d(x,y)
w

, 0
)

which is also often interpreted as a fuzzy equality/similarity relation [5].

Linear kernel: scalar products can also be interpreted as similarity measures, a view that is often
adopted by kernel methods in machine learning. In order to provide the user with this option
as well, the function linKernel is available. For two data samples x = (x1, . . . , xd) and
y = (y1, . . . , yd), it computes the similarity as

s(x,y) =
d∑

i=1

xi · yi.

The function has one additional argument, normalize (by default FALSE). If normalize=TRUE,
values are normalized to the range [−1, +1] in the following way:

s(x,y) =
∑d

i=1 xi · yi√(∑d
i=1 x2

i

)
·
(∑d

i=1 y2
i

)
Entries for which at least one of the two factors in the denominator is zero are set to zero
(however, the user should be aware that this should be avoided anyway).

For the same example data as above, we obtain the following for the RBF kernel:

> expSimMat(ex)

1 2 3 4 5

1 1.0000000 0.3678794 0.6065307 0.3678794 0.1353353

2 0.3678794 1.0000000 0.6065307 0.1353353 0.3678794

3 0.6065307 0.6065307 1.0000000 0.6065307 0.6065307

4 0.3678794 0.1353353 0.6065307 1.0000000 0.3678794

5 0.1353353 0.3678794 0.6065307 0.3678794 1.0000000

Laplace kernel:

> expSimMat(ex, r = 1)

1 2 3 4 5

1 1.0000000 0.3678794 0.4930687 0.3678794 0.2431167

2 0.3678794 1.0000000 0.4930687 0.2431167 0.3678794

3 0.4930687 0.4930687 1.0000000 0.4930687 0.4930687

4 0.3678794 0.2431167 0.4930687 1.0000000 0.3678794

5 0.2431167 0.3678794 0.4930687 0.3678794 1.0000000

Linear scaling of distances with truncation:
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> linSimMat(ex, w = 1.2)

1 2 3 4 5

1 1.0000000 0.1666667 0.4107443 0.1666667 0.0000000

2 0.1666667 1.0000000 0.4107443 0.0000000 0.1666667

3 0.4107443 0.4107443 1.0000000 0.4107443 0.4107443

4 0.1666667 0.0000000 0.4107443 1.0000000 0.1666667

5 0.0000000 0.1666667 0.4107443 0.1666667 1.0000000

Linear kernel (we exclude (0, 0)):

> linKernel(ex[2:5, ])

[,1] [,2] [,3] [,4]

[1,] 1.0 0.5 0.0 1

[2,] 0.5 0.5 0.5 1

[3,] 0.0 0.5 1.0 1

[4,] 1.0 1.0 1.0 2

Normalized linear kernel (we exclude (0, 0)):

> linKernel(ex[2:5, ], normalize = TRUE)

[,1] [,2] [,3] [,4]

[1,] 1.0000000 0.7071068 0.0000000 0.7071068

[2,] 0.7071068 1.0000000 0.7071068 1.0000000

[3,] 0.0000000 0.7071068 1.0000000 0.7071068

[4,] 0.7071068 1.0000000 0.7071068 1.0000000

6 Miscellaneous

6.1 Clustering named objects

The function apcluster and all functions for computing distance matrices are implemented to
recognize names of data objects and to correctly pass them through computations. The mechanism
is best described with a simple example:

> x <- c(1, 2, 3, 7, 8, 9)

> names(x) <- c("a", "b", "c", "d", "e", "f")

> sim <- negDistMat(x, r = 2)

So we see that the names attribute must be used if a vector of named one-dimensional samples
is to be clustered. If the data are not one-dimensional (a matrix instead), object names must be
stored in the row names of the data matrix.

All functions for computing similarity matrices recognize the object names. The resulting
similarity matrix has the list of names both as row and column names.
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> sim

a b c d e f

a 0 -1 -4 -36 -49 -64

b -1 0 -1 -25 -36 -49

c -4 -1 0 -16 -25 -36

d -36 -25 -16 0 -1 -4

e -49 -36 -25 -1 0 -1

f -64 -49 -36 -4 -1 0

> colnames(sim)

[1] "a" "b" "c" "d" "e" "f"

The function apcluster and all related functions use column names of similarity matrices to
determine object names. If object names are available, clustering results are by default shown by
names.

> apres <- apcluster(sim)

> apres

APResult object

Number of samples = 6

Number of iterations = 124

Input preference = -25

Sum of similarities = -4

Sum of preferences = -50

Net similarity = -54

Number of exemplars = 2

Exemplars:

b e

Clusters:

Cluster 1, exemplar b:

a b c

Cluster 2, exemplar e:

d e f

> apres@exemplars

b e

2 5

> apres@clusters
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[[1]]

a b c

1 2 3

[[2]]

d e f

4 5 6

6.2 Computing a label vector from a clustering result

For later classification or comparisons with other clustering methods, it may be useful to compute
a label vector from a clustering result. Our package provides an instance of the generic function
labels for this task. As obvious from the following example, the argument type can be used to
determine how to compute the label vector.

> apres@exemplars

b e

2 5

> labels(apres, type = "names")

[1] "b" "b" "b" "e" "e" "e"

> labels(apres, type = "exemplars")

[1] 2 2 2 5 5 5

> labels(apres, type = "enum")

[1] 1 1 1 2 2 2

The first choice, "names" (default), uses names of exemplars as labels (if names are available,
otherwise an error message is displayed). The second choice, "exemplars", uses indices of
exemplars (enumerated as in the original data set). The third choice, "enum", uses indices of
clusters (consecutively numbered as stored in the slot clusters; analogous to the clusters field
of the list returned by the standard function kmeans).

6.3 Performance issues

Starting with version 1.0.2, the function apcluster uses pure matrix operations for computing
responsibilities and availabilities in the affinity propagation main loop. While this normally leads
to significant performance improvements, it also results in an increased consumption of memory
for storing intermediate results. For large data sets of several thousands of samples and more, this
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may lead to swapping.5 If this occurs, users are recommended to use the function apclusterLM

(“LM” = Less Memory) instead. This function works exactly as apcluster, but uses loops for
computing responsibilities and availabilities, only requiring O(l) intermediate storage. In most
cases, however, apcluster will be significantly faster.

Further notes:

Even though apcluster uses only vector operations, our R implementation is slower than
Frey’s and Dueck’s Matlab code.1

Do not use details=TRUE for larger data sets (l > 1000)!

7 Future Extensions

We currently have no implementation that exploits sparsity of similarity matrices. The implemen-
tation of sparse AP and leveraged AP which are available as Matlab code from the AP Web page1

is left for future extensions of the package. Presently, we only offer a function sparseToFull that
converts similarity matrices from sparse format into a full l × l matrix.

8 Change Log

Version 1.0.2:

replacement of computation of responsibilities and availabilities in function apcluster()
by pure matrix operations (see 6.3 above); traditional implementation à la Frey and
Dueck still available as function apclusterLM;
improved support for named objects (see 6.1)
new function for computing label vectors (see 6.2)
re-organization of package source files and help pages

Version 1.0.1: first official release, released March 2, 2010

9 How to Cite This Package

If you use this package for research that is published later, you are kindly asked to cite it as follows:

U. Bodenhofer and A. Kothmeier (2010). An R package for affinity propagation
clustering. R package version 1.0.2. Institute of Bioinformatics, Johannes Kepler
University, Linz, Austria.

Moreover, we insist that, any time you cite the package, you also cite the original paper in which
affinity propagation has been introduced [1].

To obtain BibTEX entries of the two references, you can enter the following into your R ses-
sion:

5depending on available main memory, operating system, and R version
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> toBibtex(citation("apcluster"))
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