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Abstract

Fisher’s exact test, named for Sir Ronald Aylmer Fisher, tests contingency tables for
homogeneity of proportion. This paper discusses a generalization of Fisher’s exact test for
the case where some of the table entries are constrained to be zero. The resulting test is
useful for assessing cases where the null hypothesis of conditional multinomial distribution
is suspected to be false. The test is implemented in the form of a new R package, aylmer.

This vignette is based on West and Hankin (2008).
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1. Introduction

Fisher’s exact test (Fisher 1954, page 96) tests 2× 2 contingency tables for equality of pro-
portion: under the null, the two rows are repeated Bernoulli trials with the same probability
of success and failure. It is straightforward to generalize the test to larger tables (Freeman
and Halton 1951).

Fisher’s test and all the tests considered in this paper share two characteristics. Firstly,
they are exact and not asymptotic: they are suitable for small cell counts (Bishop, Fienberg,
and Holland 1975). Secondly, they condition on the marginal totals; a cogent discussion for
the 2× 2 case is given by Howard (1998). These tests have been discussed from a Neyman-
Pearson perspective (Lehmann 1993), and criticized on the grounds that the marginal totals
are informative (Berkson 1978).

The generalized tests are attractive because they are exact, and assess an interesting and
plausible null hypothesis: each row comprises independent observations from the same multi-
nomial distribution. However, consider table 1. This dataset is taken from the discipline of
industrial quality control: Four machines, A-D, produce articles and the number of defectives
is tabulated under various operating conditions. The first line shows a situation in which all
four machines are on; the second line shows all machines on except D, and so on. We call
such a dataset, with obligatory zero entries—“structural zeros”—a board. It is suspected that
machine D is causing some sort of interference with machine A; note that machine A produces
very few defects except when D is operating.

The null hypothesis is that each row is a sample from a conditional multinomial distribution,
conditioned on the machines that are switched off having zero count defectives.
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machine
A B C D total
4 1 1 1 7
0 1 2 - 3
2 1 - 1 4
3 - 2 0 5
3 - - 2 5
0 4 - - 4
0 - 3 - 3
12 7 8 4 31

Table 1: Industrial quality control (dataset iqd in the package) for a factory with four parallel
machines A-D. Entries show number of defects attributable to each machine; dashes indicate
machines which were switched off for that row. Note that machine A produces no defects
when machine D is off

This article introduces software that tests such boards for homogeneity using a generalization
of Fisher’s test. The software is written in the C++ programming language and implemented
in the form of aylmer, an R (R Development Core Team 2008) package. The package provides
aylmer.test(), a drop-in replacement for fisher.test() that can test contingency tables
with structural zeros, such as the board shown in Table 1. We have not encountered the
statistical test in the literature, and believe that computational implementation of this test
is new.

2. Methodology and Algorithm

Recall that Fisher’s exact test enumerates all contingency tables of a given size with the
observed marginal totals; under the null, the probability of each of these is given by the
hypergeometric distribution. The p-value of a table is then defined, following Freeman and
Halton (1951), as the total probability of all tables more extreme than the observed table:
‘more extreme’ means that the probability does not exceed that of the observed table. This
definition is used in fisher.test().

Given a board, we define a permissible board as one with: the same marginal row- and
column- totals; structural zeros in the same places; and no negative entries. The aylmer
package generalizes Fisher’s exact test to allow for the possibility of structural zeros; the
enumeration operates over permissible boards.

The probability of the observed board occurring (event A), given that the board is permissible
(event B), is determined using the conditional probability rule P(A|B) = P(A ∩ B)/P(B).
The package determines P(B) using direct enumeration (permissible boards are enumerated
using the algorithm outlined in Figure 1) and the multiple hypergeometric probability mass
function (Agresti 2002, p97):
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Figure 1: A pictorial description of the algorithm used in function allboards() to enumerate
all permissible boards. Each table is assigned a letter from A to I. Table A shows the initial
configuration; marginal totals are shown and “fixed” entries are shown in grey; in the case of
table A these are specified by the user. The algorithm terminates when all entries are fixed
and the table becomes totally grayed out. The “pivot” position of a table is shown as a black
circle; this is chosen as the square with the lowest variability: the row or column with the
smallest marginal is chosen, then the pivot square is the one with the smallest cross-marginal.
This indicates position (3, 3) of table A as both marginals of this square are 1. The curved
arrows indicate the possible choices for the pivot square and are labelled according to the
origin of the table and pivot choice; thus arrow A0 connects A to B (and B[3,3]=0), and
arrow A1 connects A to G (and G[3,3]=1). Filling in the pivot element with 0 in table B
allows one to deduce that B[3,2]=1 and this element appears shaded because it has become
fixed; note that the second marginal column sum and third marginal row sum of table B
have been reduced by one: the marginal figures represent the marginal sum of the non-fixed
squares. The algorithm terminates when the entire table is gray or, equivalently, when the
residual marginal totals are all zero. Thus tables D,E,F,H,I enumerate the possible tables
having the specified marginal totals and specified zero entries
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P(B) =
∑

permissible
boards

∏r
i=1 ti! ·

∏c
j=1 si!

/
N !∏r

i=1

∏c
j=1 (nij)!

(1)

where si =
∑c

j=1 nij and tj =
∑r

i=1 nij are the row- and column- sums respectively, and N =∑
si =

∑
tj is the total board count. The numerator in equation 1 is constant for all

permissible boards so its evaluation is not necessary.

Thus the null hypothesis that a particular table with specified zero elements (a board) is in
fact drawn at random from all permissible boards is then tested just as in Fisher’s test: the
p-value is the sum of the probabilities of all permissible boards with a probability less than
or equal to that of the observed board.

2.1. Enumerating the distinct contingency tables with given marginal totals

Because of the enumerative techniques used in this paper, it is important to have at least a
rough idea of the number of boards that one must enumerate.

There are a number of ways of assessing M = M (s1, . . . , sr, t1, . . . , tc), the number of distinct
contingency tables with specified totals. Most results are asymptotic; no simple exact formula
for tables as small as r = s = 3 is known.

The appropriate generating function for contingency tables is

r∏
i=1

c∏
j=1

1
1− xiyj

[the number of boards is given by the coefficient of xs1
1 · · ·xsr

r y
t1
1 · · · ytc

c ]. Generalizing this to
a board is straightforward; the generating function is∏

16i6r
16j6c

(i,j)∈{1,...,r}×{1,...,c}\Z

1
1− xiyj

where Z is the set of structural zeros. Good (1976) presents arguments that suggest

r∏
i=1

(
si + r − 1

si

) c∏
j=1

(
tj + c− 1

tj

)
(
N + rc− 1

N

)
[function good() in the package] is asymptotic to M . If the number of permissible boards
is large, as in the frogs or icons examples discussed below in section 3.4, the Monte Carlo
techniques of Aoki and Takemura (2005) are used; our computational algorithm is outlined
in Figure 2. Random permissible boards are generated and the p-value reported is as above
except that instead of a complete enumeration, an ensemble of randomly generated boards is
used.
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Figure 2 shows how a table is used to generate, randomly, another table by adding a pertur-
bation called a ‘df1 loop’ by Aoki and Takemura (2005). The table so generated is called a
“candidate” and is either accepted or rejected according to the standard Metropolis-Hastings
algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953): the frequencies of
tables in the resulting Markov chain are (asymptotically) proportional to their probabilities
given by Equation 1.
Two examples, one per row, are shown; structural zeros are shown in gray. The algorithm
generates a random closed path of alternating horizontal and vertical lines, shown in light blue.
A table generates a candidate table by alternately incrementing and decrementing squares on
the corners of the path, thereby preserving the marginal totals.
A non-gray square (“start”) is chosen at random; this is marked with a black circle. The path
starts by choosing a random non-gray square in the same row as the start; from this square
the path continues vertically to another non-gray square. If the loop may be closed (that is, if
the square on the same column as start and the same row as the free end is non-gray) then
the path is closed and the algorithm terminates. If the path may not be closed (because the
relevant square is gray), then the path is extended in a similar fashion; excepting that columns
and rows with only a single remaining unshaded square are disallowed. The resulting path then
has the property that any row of the board has an even number of path corners: and no path
corner lies on a gray square. Thus taking a permissible board and alternately incrementing
and decrementing squares along such a path will result in a permissible board: structural
zeros (gray squares) remain zeros; and the marginal totals remain unaltered. Modifying a
board in this manner yields the candidate sample for the Metropolis-Hastings algorithm.
In the first row, the path proceeds from the start to the square immediately to the left; thence
to the square immediately above. The path may be closed because the square immediately
above start is non-gray. It is clear that if the board has no gray squares, a path of this
type (viz: a simple square) is always chosen and the method reduces to that of Raymond and
Rousset (1995).
The second row of Figure 2 shows a more involved example in which the path needs a second
leg to be closed; note how the path crosses itself (not forbidden). Observe that the algorithm
applied to boards with an ordered sample space—such as Table 5 or 6—would result in every
non-gray square being either incremented or decremented.

3. Package aylmer in use

This section illustrates the functionality of the package with examples taken from industrial
quality control, sociology of climate change, and behavioural neuropsychology. The special
case of pairwise comparisons is then discussed using examples from sports, aviation quality
control, and animal behaviour.

3.1. Industrial quality control

Table 1 (dataset iqd in the package) may be tested straightforwardly using the aylmer pack-
age:

Aylmer test for count data
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data: iqd
p-value = 0.1297
alternative hypothesis: two.sided

Thus the p-value would indicate failure to reject the null hypothesis at the 5% level.

Further investigation suggests instead that machine A produces more defects than expected
when all other machines are switched on (row 1). In this case, the appropriate diagnostic
would be that iqd[1,1] is larger than expected. Following Silvapulle and Sen (2005, page
326) one would define a test statistic f(x)=x[1,1] and sum the probabilities of all permissible
boards with f(x) > f(iqd). In package aylmer, the R idiom is to pass the test statistic, in the
form of a function whose domain is the set of permissible boards, to argument alternative
of aylmer.test():

> f <- function(x){x[1,1]}

> aylmer.test(iqd,alternative = f)

Aylmer functional test for count data

data: iqd
p-value = 0.04404
alternative hypothesis: test function exceeds observed

Thus there is sufficient evidence to reject this null at the 5% level.

The same technique may be applied to ordered categorical factors; the aylmer package includes
an illustration of this (type ?glass at the R prompt).

One might consider instead the effect of changing personnel. Suppose now that there are
three machines A, B, C and three supervisors S1, S2, S3. It is suspected that the supervisors
use slightly differing work practices and that these differences change the ratio of defects
produced by the three machines. However, on S1’s shift, defects produced by machine C
cannot be detected (perhaps C’s entire output for that day was discarded for some other,
unrelated, reason). The null hypothesis would be that the proportions of defects made by the
three machines are independent of supervisor—or, that the proportions of defects produced
during the shifts of the three supervisors are independent of the machine:

> shifts

machine
operator A B C

S1 9 1 NA
S2 2 3 8
S3 3 3 2

> aylmer.test(shifts)

Aylmer test for count data
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data: shifts
p-value = 0.04752
alternative hypothesis: two.sided

showing that one may reject the null hypothesis at the 5% level. Note that in this case the
Fisher test is appropriate but may only be used on complete cases:

> fisher.test(shifts[-1, ])$p.value

[1] 0.3065015

> fisher.test(shifts[, -3])$p.value

[1] 0.09842621

(the first test considering only supervisors S2 and S3; and the second only machines A and B).
Thus there is insufficient evidence in either complete case to reject the null hypothesis at
the 5% level; compare the aylmer test where all relevant information was retained and the
null rejected.

3.2. Public perception of climate change

Lay perception of climate change is a complex and interesting process (Lorenzoni and Pidgeon
2005); the issue of immediate practical import is the engagement of non-experts by the use
of “icons”1 that illustrate different impacts of climate change.

In one study (O’Neill 2008), subjects are presented with a set of icons of climate change and
asked to identify which of them they find most concerning. Six icons were used: PB [polar
bears, which face extinction through loss of ice floe hunting grounds], NB [the Norfolk Broads,
which flood due to intense rainfall events], L [London flooding, as a result of sea level rise],
THC [the thermo-haline circulation, which may slow or stop as a result of anthropogenic
modification of the water cycle], OA [oceanic acidification as a result of anthropogenic emis-
sions of CO2], and WAIS [the West Antarctic Ice Sheet, which is rapidly calving as a result
of climate change].

Methodological constraints dictated that each respondent could be presented with a maximum
of four icons. Table 2 (dataset icons in the package) shows the experimental results.

One natural null hypothesis H0 is that there exist p1, . . . , p6 with
∑
pi = 1 such that the prob-

ability of choosing icon i is proportional to pi. Alternative hypotheses are necessarily vague,
but it is interesting to note that H0 is “uncritically” adopted in the literature (O’Neill 2008).
However, the exact Aylmer test discussed above cannot be used here as the sample space is
too large; the number of possible boards consistent with the marginal totals is astronomical:

> data("icons")

> good(icons)

[1] 2.043647e+29

1This word is standard in this context. An icon is a “representative symbol”.
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Figure 2: A pictorial description of the algorithm used in function randomboards() to gen-
erate a random table with given marginal totals

icon
NB L PB THC OA WAIS total
5 3 - 4 - 3 15
3 - 5 8 - 2 18
- 4 9 2 - 1 16
1 3 - 3 4 - 11
4 - 5 6 3 - 18
- 4 3 1 3 - 11
5 1 - - 1 2 9
5 - 1 - 1 1 8
- 9 7 - 2 0 18

23 24 30 24 14 9 124

Table 2: Experimental results from O’Neill (2008) (dataset icons in the package): respon-
dents’ choice of ‘most concerning’ icon of those presented. Thus the first row shows results
from respondents presented with icons NB, L, THC, and WAIS; of the 15 respondents, 5
chose NB as the most concerning (see text for a key to the acronyms). Note the “0” in row 6,
column 9: this option was available to the 18 respondents of that row, but none of them
actually chose WAIS
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Husband’s sib
wife’s sib Marrim Makan Parpa Thao Kheyang total

Marrim - 5 17 - 6 28
Makan 5 - 0 16 2 23
Parpa - 2 - 10 11 23
Thao 10 - - - 9 19

Kheyang 6 20 8 0 1 35
total 21 27 25 26 29 128

Table 3: Data for 128 Purum marriages (dataset purum in the package). The Purums
are an isolated tribe of India, divided into five sibs. White (1963) argues that the Purum
sib is exogamous (that is, within-sib marriages are disallowed; the single Kheyang-Kheyang
marriage was a special case) and that males and females could marry only in selected sibs.
In the table, a dash denotes combinations forbidden by Purum tradition. Note the lack of
symmetry in the structural zeros, which implies a gender asymmetry: thus a male Parpa may
marry a female Marrim, but a male Marrim may not marry a female Parpa

Setting the simulate.p.value flag forces the package to use Monte-Carlo simulation tech-
niques:

> aylmer.test(icons, simulate.p.value=TRUE)

Aylmer test for count data with simulated p-value (based on 2000
replicates)

data: icons
p-value = 0.1579
alternative hypothesis: two.sided

Thus there is insufficient evidence to reject the null hypothesis2 and on the assumption that
a set of pi exists, Hankin (2008a) presents software that calculates their values numerically.
It is interesting to note that there exist permissible boards with a probability, according to
Equation 1, of over 20000 times that of the icons dataset.

The default value of the number of random samples to use in the Monte-Carlo case—argument B
of aylmer.test()—is 2000, following fisher.test(). Figure 3 shows an example that illus-
trates graphically whether a given value is sufficient.

3.3. Social anthropology

Table 3 shows an example taken from social anthropology, detailing 128 marriages. The stan-
dard null is rejected by the Aylmer test (see online documentation), in agreement with Bishop
et al. (1975): within the prescriptive framework, preference plays a part. We wish to make
inferences about gender asymmetry in the preferential component of the dataset.

2Such estimates are necessarily random variables; using a batch method, following Aoki and Takemura
(2005), we estimate the true p-value to be 0.164± 0.02.
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Given a pair of sibs, the marriage restrictions imply that at least one is a wife-giver, and at
least one is a wife-taker: For example, in the case of Parpa-Marrim marriages, the Marrim
are wife-givers and the Parpa are wife-takers.

There are five pairs of sibs that may act as both wife-givers and wife-takers. Amongst these
pairs, is there evidence to suggest that the preferences are gender asymmetric?

An appropriate test function would be the maximum absolute difference between the number
of M-F marriages and F-M marriages, amongst (ordered) pairs of sibs that allow both types
of marriages:

> g <- function(x) max(abs(x - t(x)), na.rm = TRUE)

One would expect g(.) to return small values if the sibs’ behaviour is indeed gender neutral.
This hypothesis may be tested straightforwardly by sampling from permissible boards and
reporting the fraction of boards with g(.) exceeding that of our observation:

> aylmer.test(purum, alternative=g, simulate.p.value=TRUE, B=2000)

Aylmer functional test for count data with simulated p-value (based on
2000 replicates)

data: purum
p-value = 0.0004998
alternative hypothesis: test function exceeds observed

Thus there is strong evidence that Purum marriage preferences are not gender neutral, even
after accounting for the incest prohibitions marked by structural zeros.

3.4. Pairwise comparison

Although each row of a board is in general a multinomial distribution, by far the most
commonly occurring case is when all but two possibilities in each row are disallowed: the
entries are then drawn from a binomial distribution, if the null hypothesis is correct. Davidson
and Farquhar (1976) give an extensive bibliography of this case.

Many examples exist of repeated pairwise comparisons between two of a larger number of
“players”. Examples abound in the sporting world (Jech 1983), although in sport the possi-
bility of a draw must sometimes be considered. Non-sporting examples would include forced-
choice discrimination (Bradley and Terry 1952): in the field of, say, olfactory research, a
subject is repeatedly presented with two odours and asked to report which is preferable (or
stronger, or whatever).

The canonical null hypothesis, introduced by Zermelo (1929), is that there exist numbers π1, . . . , πn

(“skills”) with
∑n

i=1 πi = 1; a match between player i and j is then a Bernoulli trial with prob-
ability πi/(πi+πj); Connor and Grant (2000) give an historical overview. Note that Zermelo’s
model readily generalizes to situations in which more than two players compete.

Consider the frogs dataset, provided with the package and shown in Table 4. This shows
the result of repeated forced-choice experiments taken with the intention of investigating
intransitive preferences.
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Figure 3: Probabilities of sequential boards in a Markov chain of boards permissible to the
Purum dataset shown in Table 3. To within a constant, the ordinate is the natural logarithm
of the probability of the Markov boards: the gray horizontal line marks the critical region for
an Aylmer test of size 5% (any board below this level is rejected). The observation, being the
first member of the Markov chain, is clearly in the critical region and the null may be rejected
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stimulus
Sc Sb Ob Oa Oc Sa Sd Od M
10 10 - - - - - - - 20
12 - 8 - - - - - - 20
13 - - 7 - - - - - 20
14 - - - 6 - - - - 20
13 - - - - 7 - - - 20
16 - - - - - 4 - - 20
15 - - - - - - 5 - 20
17 - - - - - - - 3 20
- 13 7 - - - - - - 20
- 8 - 12 - - - - - 20
- 12 - - 8 - - - - 20
- 16 - - - 4 - - - 20
- 19 - - - - 1 - - 20
- 15 - - - - - 5 - 20
- 16 - - - - - - 4 20
- - 12 8 - - - - - 20
- - 10 - 10 - - - - 20
- - 14 - - 6 - - - 20
- - 12 - - - 8 - - 20
- - 12 - - - - 8 - 20
- - 18 - - - - - 2 20
- - - 10 10 - - - - 20
- - - 10 - 10 - - - 20
- - - 16 - - 4 - - 20
- - - 16 - - - 4 - 20
- - - 11 - - - - 9 20
- - - - 5 15 - - - 20
- - - - 10 - 10 - - 20
- - - - 12 - - 8 - 20
- - - - 18 - - - 2 20
- - - - - 14 6 - - 20
- - - - - 9 - 11 - 20
- - - - - 11 - - 9 20
- - - - - - 15 5 - 20
- - - - - - 12 - 8 20
- - - - - - - 7 13 20

110 109 93 90 79 76 60 53 50 720

Table 4: Experimental results of Kirkpatrick et al. (2006), included as the frogs dataset
in the package. Each row corresponds to a series of forced-choice experiments in which a
female túngara frog was exposed to two stimuli (mating calls of male frogs). The entries
show the results; thus the first row shows that, when given a choice between stimulus Sc and
stimulus Sb, each was chosen 10 times. Full details are given by Kirkpatrick et al. (2006)
and Ryan and Rand (2003).
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In this context, intransitivity is defined as the existence of stimuli s1, . . . , sn with si → si+1

for 1 6 i 6 n− 1 and sn → s1, where “a→ b” means “a was preferred to b with a probability
exceeding 0.5 in a forced-choice between a and b”. Such intransitive preferences are of great
interest in the field of animal behaviour as they are readily observable and elucidate the neu-
ral algorithms underlying choice; explanation of non-transitive choice is a “challenging prob-
lem”(Colgan and Smith 1985) and is“the focus of considerable contemporary research”(Waite
2001). Note that Zermelo’s null precludes intransitivity.
However, the Aylmer test discussed above cannot be used here3 so the simulate.p.value
flag is again set:

> data("frogs")

> aylmer.test(frogs, simulate.p.value=TRUE)

Aylmer test for count data with simulated p-value (based on 2000
replicates)

data: frogs
p-value = 0.06847
alternative hypothesis: two.sided

thus the null hypothesis may be rejected, and some form of non-transitive mechanism is
required to explain the frogs’ choices. Aoki and Takemura’s batch method gives 0.016±0.004.
It is interesting to compare the approach adopted here with that of Kendall and Babington
Smith (1940), who considered pairwise comparison matrices of the form of frogs.matrix,
also provided with the package:

> frogs.matrix

Sc Sb Ob Oa Oc Sa Sd Od M
Sc NA 10 8 7 6 7 4 5 3
Sb 10 NA 7 12 8 4 1 5 4
Ob 12 13 NA 8 10 6 8 8 2
Oa 13 8 12 NA 10 10 4 4 9
Oc 14 12 10 10 NA 15 10 8 2
Sa 13 16 14 10 5 NA 6 11 9
Sd 16 19 12 16 10 14 NA 5 8
Od 15 15 12 16 12 9 15 NA 13
M 17 16 18 11 18 11 12 7 NA

This matrix contains the same data as the frogs dataset shown in Table 4 in a more compact
form (the first line of frogs appears as elements [1,2] and [2,1]). Kendall and Babing-
ton Smith (1940) considered the special case of such matrices where each entry was 0 or 1,

3Function good() is not useful in this case because of the large number of NA entries. The relevant
combinatorics are involved; an example is given in (Hankin 2008b). But it is interesting to consider just
the first column (Sc). The partitions package (Hankin 2007b) can be used to show that this column alone
has S(rep(20,7),110)=1912757 combinations; it accounts for only 7 of the 28 degrees of freedom available.
Also note the large magnitude of the numbers involved; the denominator of Equation 1 is ' 4.6 × 10501,
necessitating use of the Brobdingnag package (Hankin 2007c).
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thus corresponding to the case where the female frog was presented with each pairwise choice
exactly once. Their test counts the number of circular triads4 appearing in the table; the
asymptotic distribution of this statistic is known under the null which gives a critical re-
gion. Knezek, Wallace, and Dunn-Rankin (1998) noted that the test was “computationally
intense”—the complexity rising as O(2k!)—and presented an asymptotic approximation.

We suggest that our test is not directly comparable to that of Kendall and Babington Smith
(it is clear that our test fails to reject any board whose elements are all zero or one) but
further work would be required to explore any relationship.

3.5. One-tailed and two-tailed tests in pairwise comparison

The general problem of comparing n players p1, . . . , pn potentially has n(n−1)/2 pairwise com-
parisons. The system of players and possible comparisons may be represented as a graph (Bol-
lobás 1979); two nodes (players) are connected by an edge if and only if they compete against
one another.

If the only comparisons that may be made are between pi and pi+1 for 1 6 i 6 n − 1 (and
between p1 and pn), then the competition graph becomes cyclic. The sample space possesses
a natural ordering, because the board has only a single degree of freedom, and one-sided tests
become possible. A succinct overview of one-sided and two-tailed tests in the context of two
by two contingency tables is given by Ghent (1972).

When considering 2× 2 contingency tables (Agresti 2002), one often considers the odds ratio θ
defined as

θ =
π1/(1− π1)
π2/(1− π2)

where π1 and π2 are the binomial probabilities of the first and second rows respectively [the
odds of an event with probability π are defined to be π/(1 − π)] . The maximum likelihood
estimate for the odds ratio is given by θ̂ = ad

bc .

Tables 5, 6 and 7 immediately suggest a generalization of the odds ratio, which is the product
of the odds of each edge in the competition graph [odds.ratio() in the package]: if the
data is organized as in these boards, the generalized odds ratio is given by the product of
the elements on the leading diagonal, divided by the product of the off-diagonal elements. In
the case of Table 5, the maximum likelihood estimate for the generalized odds ratio would
be 22·23·10

13·12·8 ' 4.04, and in Table 7 it is ' 0.00638.

The generalized odds ratio thus furnishes a natural ordering of a sample space: simply order
the sample space from lowest generalized odds ratio to largest; Table 6 enumerates a small
sample space and illustrates how the ordering works.

The simplest nontrivial example of pairwise comparison would be to consider three players
A, B, and C who compete in pairs. This case was considered by Bradley (1954), although
the test presented was asymptotic, and not exact. Triads of players with Player A beating B,
player B beating C and player C beating A certainly exist (Table 5 shows a real example,
taken from the chess world). Such players form a circular triad in the sense of Knezek et al.
(1998) but here we allow repeated comparisons (matches).

Further examples are found in biology: male side-blotched lizards are territorial and possess
4Following Alway (1962), a circular triad is a triple of stimuli A, B, C with either A → B → C → A

or A→ C → B → A.
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Topalov Anand Karpov total
22 13 - 35
- 23 12 34
8 - 10 18
30 36 22 87

Table 5: Intransitive example of chess players (dataset chess in the package); entries show
number of games won up to 2001 (draws are discarded). Topalov beats Anand 22-13; Anand
beats Karpov 23-12; and Karpov beats Topalov 10-8. Games between these three players thus
resemble a noisy version of iterated “rock-paper-scissors”

three variants (yellow, orange, blue). Territory held by Y is lost to O, territory held by O
is lost to B, and territory held by B is lost to Y (Sinervo and Lively 1996). Competition
between these three morphs is thus a noisy version of “rock-paper-scissors” (Wikipedia 2007),
a system encountered in diverse scientific contexts including population ecology (Frean and
Abraham 2001), game theory (Szabó and Fáth 2007), and sociology (Semmann, Krambeck,
and Milinski 2003).

In these examples, non-transitivity often has a plausible mechanism, whose existence serves
as an alternative hypothesis and indicates a one-tailed test; this would be a generalization of
the one-tailed Fisher’s exact test for the 2× 2 case. In the case of the side-blotched lizard,
O beats Y through aggression, B beats O through concentrating on defending only a small
territory, and Y beats B through stealth.

In many branches of engineering, one encounters systems which comprise components ar-
ranged in a circular configuration. Each component may be compared only against the two
adjacent components (Hankin 2007a). Commonly occurring examples include turbine blades,
ball bearings, and gear teeth. The comparisons might involve objective measurements—such
as turbine blade lengths—or subjective quantities, such as amount of wear. It is desired to
determine whether the measurement system possesses a ‘handedness’, in that (for example),
the clockwise blade is judged to be longer more frequently than reasonable. Table 7 shows an
example taken from the field of aviation quality control; it is given in the aylmer package as
the gear dataset:

> data(gear)

> aylmer.test(gear)

Aylmer test for count data

data: gear
p-value = 0.05094
alternative hypothesis: two.sided

showing that a two sided test is not significant at the 5% level, although it is interesting to
observe that the one-sided test has a p-value of about 6.651 × 10−5. Note the natural one-
sidedness of any significance test of this type: the preference may be clockwise or anticlockwise,
corresponding to high or low values of the odds ratio.
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A B C D
0 3 - -
- 3 9 -
- - 1 4
4 - - 3

A B C D
1 2 - -
- 4 8 -
- - 2 3
3 - - 4

A B C D
2 1 - -
- 5 7 -
- - 3 2
2 - - 5

A B C D
3 0 - -
- 6 6 -
- - 4 1
1 - - 6

Table 6: An ordered sample space. Rows show the result of repeated pairwise comparisons of
four players, A-B, B-C, C-D, D-A. Marginal totals are held constant. From left to right, the
generalized odds ratios are 0, 2

9 ,
75
14 ,∞. Suppose the first board were the observation and the

null hypothesis is to be tested against the (one-sided) alternative hypothesis that the odds ratio
is smaller than that observed: in practice, this would be conceptualized as A → B → C →
D → A, where “X → Y ” means that the probability of X beating Y exceeds 0.5. Note that
all four scorelines are consistent with the alternative hypothesis. Then the one-sided p-value
would be

(
Σ · 3!34!29!

)−1 ' 0.0353 where Σ =
(
3!34!29!

)−1 +
(
2!23!4!28!

)−1 +
(
2!33!5!27!

)−1 +(
3!4!6!2

)−1. The two-sided p-value would be 1
Σ

[(
3!34!29!

)−1 +
(
3!4!6!2

)−1
]
' 0.065

tooth
t1 t2 t3 t4 t5 t6 t7 total
1 5 - - - - - 6
- 2 4 - - - - 6
- - 3 8 - - - 11
- - - 3 7 - - 10
- - - - 5 6 - 11
- - - - - 5 7 12
6 - - - - - 4 10
7 7 7 11 12 11 11 68

Table 7: Engineering quality control results (simplified) for a gear with seven teeth; dataset
gear in the package. Each tooth may be compared subjectively with the two adjacent teeth
and the numbers indicate the number of times each one is judged to be the more heavily worn.
With fixed row and column totals, the board possesses one degree of freedom, although in
this case a two-sided test is appropriate because there is no prior reason to favour a clockwise
bias over an anticlockwise bias
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4. Conclusions

Fisher’s test is attractive because it is exact, and tests an interesting and plausible null hypoth-
esis: each row comprises independent observations from the same multinomial distribution.
In this paper, we present a generalization of Fisher’s exact test, with the same null except
that the rows comprise independent conditional observations from the same multinomial dis-
tribution. The natural null hypothesis is an interesting and useful construction in a variety
of scientific, industrial, and sociological contexts.

Throughout this paper, the ensemble considered is that of permissible boards. By default, the
critical set includes all permissible boards with conditional probabilities not exceeding that
of the observation; the size of the test is the probability of observing a board in the critical
set. However, it is possible to generalize the above test by defining a test statistic t (·) defined
on permissible boards, and considering instead a critical set comprising permissible boards x
with t(x) not exceeding that of the observation: {x : t(x) > t (xobs)}. This approach leads
naturally to a number of interesting and useful tests on tables with structural zeros.

The special case of a cyclic competition graph occurs naturally in a variety of contexts; this
allows one-sided tests, and the form of the board immediately suggests a generalization of the
odds ratio, which has a straightforward maximum likelihood estimate.

We provide software for carrying out these statistical tests in the form of aylmer, an R package
that includes aylmer.test(), a drop-in replacement for the fisher.test() function that can
accommodate NA entries representing structural zeros.
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