
Caching and Distributing Statistical Analyses in R

Roger D. Peng
Johns Hopkins Bloomberg School of Public Health

Abstract

We present the cacher package for R, which provides tools for caching statistical analy-
ses and for distributing these analyses to others in an efficient manner. The cacher package
takes objects created by evaluating R expressions and stores them in key-value databases.
These databases of cached objects can subsequently be assembled into packages for distri-
bution over the web. The cacher package also provides tools to help readers examine the
data and code in a statistical analysis and reproduce, modify, or improve upon the results.
In addition, readers can easily conduct alternate analyses of the data. We describe the
design and implementation of the cacher package and provide two examples of how the
package can be used for reproducible research. This vignette was originally published
as Peng (2008).

Keywords: R, reproducible research, cached computation.

1. Introduction

Reproducible research is a phrase that is used to describe research where the published results
are accompanied by the software environment and data used to produce these results (Buck-
heit and Donoho 1995; Schwab, Karrenbach, and Claerbout 2000; Gentleman and Temple
Lang 2007). With the data and software, results can be recreated independently by run-
ning the original analysis programs on the original data. Reproduction is distinguished from
replication in that replication requires an independent investigator to obtain similar results
using new data and a comparable or identical analytic approach. A minimum requirement
for reproducible research is that the data and computer programs used to analyze the data
are made available and distributed to others (Peng, Dominici, and Zeger 2006).

The distribution of reproducible research is a problem for which the solution varies depending
on the complexity of the research. Small investigations involving moderately sized datasets
and standard computational techniques can be archived and distributed using existing ad hoc
methods. Readers can subsequently re-run the entire analysis from start to finish to see if
they can obtain the same results as the authors. Complex investigations involving large or
multiple linked datasets and sophisticated statistical computations will be more difficult for
readers to reproduce because of the resources and time required for running the analysis. In
such a situation a method is needed to give readers without equivalent resources the ability
to conduct an initial examination of the details of the investigation and to reproduce or verify
some of the results.

A framework in which reproducible research can be distributed using cached computations
is described in Peng and Eckel (2007). Cached computations are results that are stored in

2 Caching and Distributing Statistical Analyses in R

Dataset

Code

Code

File
Source

Code

Result

Dataset

Result Result

Dataset

Figure 1: Conceptual model for the cacher package.

a database as an analysis is being conducted. These stored results can be distributed via
websites or central repositories so that others may explore the datasets and computer code
for a given scientific investigation.

In this paper we describe in detail the design and implementation of the cacher package, avail-
able from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/
package=cacher. It provides tools for caching arbitrary statistical analyses and distributing
them over the web. We consider statistical analyses as source files to be evaluated in a sta-
tistical analysis environment such as R. Theses source files serve the purposes of reading in
datasets, incorporating code from other sources (e.g., loading other R packages, reading ex-
ternal source files), executing analysis code, and producing results. This conceptual model is
sketched in Figure 1. The cacher package caches the results produced along with any datasets
or external code that have been incorporated into the analysis. This way the reader can have
access to those objects when attempting to reproduce the analysis.

The idea of a “compendium” is described by Gentleman and Temple Lang (2007) as a way to
publish a reproducible analysis by including multiple levels of detail. Readers with a casual
interest in the paper may only read the finished product while more interested readers can dig
deeper into the specifics of the data and computation. The number of tools for conducting
reproducible research via compendiums in R and other languages is generally increasing. R

http://CRAN.R-project.org/package=cacher
http://CRAN.R-project.org/package=cacher

Roger D. Peng 3

users have tools such as Sweave (Leisch 2002) and ESS (Emacs Speaks Statistics, Rossini,
Heiberger, Sparapani, Mächler, and Hornik 2004) to assist them in the development of such
compendiums as well as the weaver package (Falcon 2007) and others (Peng 2007) for caching
computations. Packages such as SASWeave (Lenth and Højsgaard 2007) have emerged for
literate programming using SAS and LATEX; for non-LATEX users, the odfWeave package (Kuhn
and Weaston 2007) is available for R users wishing to write documents in the open document
format (ODF, e.g., via OpenOffice.org).

The goal of the cacher package is to provide a means by which an author can assemble the
code and data used in a statistical analysis into a single package that can be distributed easily
to others. On the receiving end the cacher package provides tools for readers to evaluate an
author’s code and check to see if their results match the original. In addition, for very large
analyses, the package provides a mechanism by which readers can selectively reproduce por-
tions of an analysis that may be of interest without having to go through the time-consuming
process of reproducing the analysis in its entirety.

The approach of the cacher package differs from previously proposed approaches in that
with the cacher package, code and data are not linked to a human-readable document. This
approach has both advantages and disadvantages. While the ability of literate programming
approaches such as Sweave to provide a human-readable document along with the code and
data improves the reproducibility of an analysis, the required knowledge of a markup language
such as LATEX, in addition to a programming language, can be a substantial barrier for some
analysts. In particular, while R is used in wide variety of fields to analyze data, LATEX is only
used for document preparation in a subset of those fields. One aim of the cacher package is
to provide tools that are neutral towards various document prepration methods, sacrificing
some of the valued added by the literate programming approaches. Our approach is closer in
spirit to Jon Claerbout’s model for reproducible research (Schwab et al. 2000) than Donald
Knuth’s “literate programming” model (Knuth 1984).

In Sections 2–5 we describe the basic features of the cacher package. Section 6 provides
examples of how the cacher package can be used to cache, distribute, and verify statistical
analyses.

2. Caching statistical analyses

The cacher package provides interfaces for two types of users. The first type consists of
authors of statistical analyses who wish to cache their analyses in a database and distribute
the cached analysis to others. The second type of user consists of readers who wish to obtain
cached analyses over the web and explore the data and code in those analyses.

The primary function in the cacher package for authors of statistical analyses is the cacher
function, which takes the name of an R source file as its first argument. This should be
a standard source file containing R code to be evaluated and cached. The remaining two
arguments to cacher specify the location of the cache directory (defaults to .cache) and the
log file (defaults to creating a log file in the cache directory).

The simplest invocation of cacher is

R> library("cacher")

R> cacher("myanalysis.R")

4 Caching and Distributing Statistical Analyses in R

where myanalysis.R is an R source file. To print log messages to the console, one can invoke

R> cacher("myanalysis.R", logfile = NA)

and obtain more information about what cacher is doing.

The basic procedure of cacher is to

1. parse the R source file;

2. create the necessary cache directories and subdirectories;

3. set various configuration variables and hook functions for plotting (see Section 2.1);

4. copy the source file to the cache directory;

5. cycle through each expression in the source file:

(a) if an expression has never been evaluated, evaluate it and store any resulting R
objects in the cache database,

(b) if a cached result exists, lazy-load the results from the cache database,

(c) if an expression does not create any R objects (there is nothing to cache), add the
expression to the list of expressions where evaluation needs to be forced,

(d) write out metadata for this expression to the metadata file.

The cacher function identifies each expression in a source file by taking the SHA-1 digest of
the expression, the expression history, and the name of the source file. The expression history
is simply the expression object containing every expression preceding the current expression.
For the first expression, the expression history is of length zero. Using the expression history
is a way to prevent expressions such as

R> y <- x^2

from being inappropriately loaded from the cache. Such an expression may appear multiple
times in a source file and we do not want to load the same value for y every time since the value
of x may be changing. Using the expression history can uniquely identify each occurrence of
a duplicate expression.

For each cached expression, a database file is created in the database directory of the cache
containing the serialized R objects associated with that expression (if any). If cacher en-
counters an expression that has already been evaluated and for which objects exist in the
database, those objects will be lazy-loaded into the user’s workspace (see e.g., Ripley 2004).
Hence, an expression that has not been altered since a previous evaluation does not need
to be reevaluated—often loading objects from the cache will be faster than reevaluating the
expression.

Metadata

As the cacher function is running, it writes out metadata for each expression to a metadata
file in the cache directory. This metadata file is not used directly by the cacher function,

Roger D. Peng 5

but it is used by the various other functions for exploring a cached analysis (these functions
are described in Section 4). Each source file processed by cacher possesses its own metadata
file and each entry of the metadata file corresponds to an expression in the source file. For
each expression, the metadata file contains a snippet of the expression itself, the expression’s
SHA-1 digest, the names of any R objects created by the expression, and whether evaluation
of the expression needs to be forced.

Multiple source files

As mentioned above, each expression in a source file is identified by the digest of the expression
itself, the expression history, and the name of the source file. The reason for including the
name of the source file is that a given cache directory can be used to process multiple source
files. Since the same expression may occur in different source files, it is important that we not
load the value for an expression associated with one file while processing another source file.
In Section 4 we describe how the user can switch between exploring analyses from different
source files using the sourcefile function.
The cacher function identifies an analysis by the content of the code file, not simply by the
file name. Therefore, two files with the same name that contain different analyses will be
treated differently. If cacher is used to process a file which has the same name as an already
processed analysis, then the new file will be renamed in the cache so that it does not conflict
with the existing file. Thus, if some changes are made to a file that cacher has already seen,
then it will treat the changed file as a new analysis.

2.1. Expressions with side effects

Simple expressions, such as assignments, will typically result in a single object being created
in the global environment. For example, the expression

R> x <- 1:100

results in an object named x being created in the global environment whose value is an integer
sequence from 1 to 100.
However, there are other types of expressions which can result in either multiple objects being
created in the user’s workspace or no objects being created. For example, the source function
is often used to load objects from an R code file. Unless the local argument is set to TRUE,
these objects will by default be created in the global environment. When the cacher function
evaluates an expression that contains a call to source, there will be objects created outside of
the temporary environment in which the expression is evaluated (again, unless the argument
local = TRUE is specified in the call to source). The set.seed function behaves in a similar
way by modifying (or creating) the .Random.seed object in the global environment.
In order to handle the effects of functions like source the function evalAndCache, which eval-
utes an expression and saves the results to the cache database, first obtains a character vector
of the names of all the objects in the global environment. After evaluating the expression
in a temporary environment, a check is made to see if any new objects have been created or
modified in the global environment. If so, those objects are saved to the database as well as
any objects that were created in the temporary environment. Note that we currently make
a special case of the global environment. If the code being evaluated creates objects in some
other environment, then cacher will not be able to cache those objects.

6 Caching and Distributing Statistical Analyses in R

Another example of a function with side effects is the plot function (and related functions)
from the graphics package. Since plot does not create any objects in the global environment,
but rather creates a plot on a graphics device, there is nothing for cacher to cache. Currently,
the approach of cacher is to detect when a plot has been created by setting a hook function
for the plot.new function. Each time plot.new is called, an internal flag is set so that cacher
knows that evaluation of this expression needs to be forced rather than cached. We similarly
set a hook function for grid.new to detect the creation of lattice plots.

The attach function has a side effect which alters the elements on the search list by adding
a list, data frame, or saved workspace file in the position specified. The cacher function will
notice that no objects were created in the global environment or the temporary environment
and any call to attach will be flagged as non-cacheable requiring evaluation. If cacher
is called multiple times in the same session on a file containing an attach call, then the
corresponding object will be attached (again) to the search list. This may not be what the
user intended. Unfortunately, because it is not possible for cacher to know if the external
object being attached (e.g., a saved workspace file) has changed, calls to attach must be
evaluated every time.

There are many other types of expressions that have side effects and do not result in the
creation of objects in the global environment. Expressions such as calls to system or functions
which write out files (e.g., save, save.image, write.table, dput, etc.) all result in objects
being created outside of R. In general, these expressions cannot yet take advantage of the
caching mechanism in cacher and must be executed every time cacher is run.

3. Distributing a cached analysis over the web

Users who wish to distribute a cached statistical analysis over the web and also have access to
a local webserver, can post the cache directory on the webserver so that others can download
the materials using the clonecache function. All that is required is for the user to copy the
directory to a location on the webserver that is visible to outside users.

The primary function for downloading a cached analysis is the clonecache function. The user
can pass to clonecache the URL of the directory containing a cached analysis. Given a URL,
clonecache creates a cache directory on the user’s local machine and downloads the source
files and metadata from the remote machine. By default, clonecache does not download
any of the database files since these could be very large and the user may not be interested
in every R object in the analysis. In order to force the downloading of all database objects
when cloning, the user needs to set all.files = TRUE when calling clonecache. Once an
analysis is cloned the functions described in Section 4 can be used to explore the code and
data objects in the analysis.

4. Exploring a cached analysis

The cacher package provides some basic tools to allow users to interact with the code and data
provided in a cached analysis. The following functions make up the primary user interface
for readers of a cached analysis.

• showfiles: Show what source files are available in the cache to be examined by the

Roger D. Peng 7

user. If the author of the package cached analyses from multiple source files, then this
function can be used to determine which analysis should be examined. One can switch
between different source files by calling the sourcefile function.

• sourcefile: Get or set the current source file for analysis.

• code: Show the expressions for a given source file. By default, code shows all expressions
in a file in a one-line abbreviated form along with their expression sequence numbers.
To see each expression in its entirety, the argument full = TRUE must be set. If any
expressions have been marked to be skipped by skipcode, those expressions will be
annotated with an asterisk.

• showcode: Show the original source file in the pager, which can be useful if one is
interested in seeing any comments.

• loadcache: Lazy-load cached computation databases into an environment. This func-
tion takes a numeric vector of expression sequence numbers and loads objects associated
with those expressions in the order that the expressions are specified. Once a cache
database is lazy-loaded, the object names appear in the environment into which the
database was loaded, but they do not occupy any memory until they are first accessed.
If loadcache is used to load objects from a remote cache (see Section 3), then the
corresponding database files will be downloaded on the object’s first access.

• runcode: This function takes as input a numeric vector of expression sequence numbers
executes the code in those expressions. Each expression is evaluated in the order in
which it appears in the input vector. By default, if a cached computation database is
associated with an expression, then the database is lazy-loaded via loadcache rather
than executed. In order to force evaluation of code in an expression, one needs to set
forceAll = TRUE when calling runcode. If an error occurs when executing the code in
an expression, a message is printed to the console indicating the error and the expression
is skipped. While the runcode function can be used to evaluate individual expressions,
the results of such evaluation may not be correct if the dependent expressions have not
previously been evaluated. In general, reproducible results for a specific expression in
an analysis can only be obtained by evaluating all of the expressions in order up to that
expression.

• skipcode: Force certain expressions to be skipped from evaluation when using the
runcode function (for example, if certain external resources are not available). There
is a globally maintained list of expressions that will be skipped for a given source file.
If num is NULL, then the list of skipped expressions is cleared.

• showobjects: Given an expression sequence number, showobjects shows what objects
were created (and hence cached) by that expression. These objects can subsequently be
loaded into the workspace with loadcache. If num is a sequence, then a single character
vector is returned containing the union of the names of the objects cached.

5. Verifying an analysis

8 Caching and Distributing Statistical Analyses in R

The cacher package provides the checkcode function for verifying the objects in a cached
analysis. A user who has downloaded a cached analysis via clonecache or in some other
manner can verify a given R expression by evaluating the code on his/her own machine and
checking to see if the resulting object is equivalent to the object stored in the database cor-
responding to that expression. The checkcode function takes a numeric vector of expression
sequence numbers and evaluates the corresponding expressions while verifying that the result-
ing objects match the cached objects. The comparison of objects is done with the all.equal
function to allow for some minor differences, for example, with floating point calculations.
Called with no arguments, checkcode will check every expression in the source file. If a given
expression does not have any R objects associated with it, then there is nothing to check and
checkcode moves to the next expression.

When checkcode encounters an expression that cannot be evaluated or where the computed
object does not match the cached object, a message is printed to the console indicating
the problem. In addition, checkcode will lazy-load the cached object into the evaluation
environment and continue checking subsequent expressions in the source file. Therefore, any
expressions which depend on the object corresponding to the non-verified expression will use
the cached object rather than the computed one.

For example, an analysis will typically contain an expression which reads in a dataset using
a function such as load or read.table. These functions read data from external connec-
tions (usually files) and load them into the user’s workspace. If the user does not also have
possession of these external files, then there is no way for the user to verify the evaluation
of that expression. However, the data from the file is nevertheless cached in the database
so it is possible to evaluate subsequent expressions based on the cached version of the data.
Section 6.1.4 gives an example of how checkcode handles this particular situation.

5.1. Verifying the integrity of objects

In addition to comparing the output of evaluating code with cached objects, one can check
the integerity of the cached objects to make sure that there has not be any corruption to the
files (particularly, when being transferred over the network). Each object stored in the cache
has with it the SHA-1 digest of the object itself. The checkobjects function can be used
to compare this SHA-1 digest with the digest of the object. Any corruption of the data will
result in a mismatch between the stored digest and computed digest.

6. Examples

6.1. Basic usage

To illustrate some of the features of the cacher package we will use the following simple
statistical analysis of the airquality dataset from the datasets package which comes with R.
The code for the entire analysis is printed below.

library("datasets")
library("stats")

data("airquality")

Roger D. Peng 9

fit <- lm(Ozone ~ Wind + Temp + Solar.R, data = airquality)
summary(fit)

Plot some diagnostics
par(mfrow = c(2, 2))
plot(fit)

Interesting non-linear relationship
temp <- airquality$Temp
ozone <- airquality$Ozone

par(mfrow = c(1, 1))
plot(temp, ozone)

The code is contained in a file called “sample.R” which comes with the cacher package. The
above analysis is fairly simple and not very time-consuming so it is easily reproduced by anyone
who can run R, without any need for caching. Nevertheless, it is useful for demonstrating
how the cacher package works.

The first step is to install the cacher package from the CRAN and load it into R.

R> library("cacher")

R> options(width = 60)

R> setConfig("verbose", TRUE)

For now, we also set the global verbose option to be TRUE, making cacher be somewhat more
“chatty” (the default is FALSE).

The cacher function accepts a file name as its first argument. This file should contain the
code for the analysis that you want to cache. Other arguments include the name of the cache
directory (defaults to .cache) and the name of the log file (defaults to NULL). If logfile =
NULL then messages will be printed to a file in the cache directory. Setting logfile = NA will
send messages to the console.

The “sample.R” file containing the above analysis comes with the cacher package and can be
copied into your working directory. Given a file containing the code of an analysis, you can
call the cacher function as

R> cacher("sample.R")

creating cache directory '.cache'

Call:
lm(formula = Ozone ~ Wind + Temp + Solar.R, data = airquality)

Residuals:
Min 1Q Median 3Q Max

-40.485 -14.219 -3.551 10.097 95.619

10 Caching and Distributing Statistical Analyses in R

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -64.34208 23.05472 -2.791 0.00623
Wind -3.33359 0.65441 -5.094 1.52e-06
Temp 1.65209 0.25353 6.516 2.42e-09
Solar.R 0.05982 0.02319 2.580 0.01124

Residual standard error: 21.18 on 107 degrees of freedom
(42 observations deleted due to missingness)

Multiple R-squared: 0.6059, Adjusted R-squared: 0.5948
F-statistic: 54.83 on 3 and 107 DF, p-value: < 2.2e-16

The cacher function evaluates each expression in the file and prints any resulting output to
the console. For example, the summary of the fitted linear model is printed to the console
while the two plots are sent to the appropriate graphics device. The log messages are written
to a file in .cache/log/sample.R.log which contains information about each expression
evaluated by cacher. We will discuss the contents of the log file in Section 6.1.2.

When cacher evaluates each code expression, the results of the evaluation are cached to the
database and lazy-loaded back into the workspace. After running the “sample.R” analysis,
we can see that there are the following objects now in the workspace:

R> ls()

[1] "airquality" "fit" "ozone" "temp"

Since the objects are lazy-loaded, they do not occupy any memory until they are accessed.
The lazy-loading is not as important on the first evaluation but can reduce the amount of
evaluation time required on subsequent analysis

For example, take the following very simple set of expressions.

x <- rnorm(1000000)
s <- summary(x)
print(s)

The first expression creates a vector of 1 million standard Normal random variates and the
second computes a summary (a five-number summary plus the mean). The amount of time
to evaluate these expressions the first time is

R> systime <- system.time(cacher("bigvector.R"))

Min. 1st Qu. Median Mean 3rd Qu.
-5.12300000 -0.67230000 0.00003428 0.00049710 0.67530000

Max.
4.66300000

R> print(systime)

Roger D. Peng 11

user system elapsed
1.756 0.400 2.164

In this case, the evaluation time is about 1.8 seconds. After running cacher, the objects x
and s reside in the workspace and have been cached to the database. Subsequent evaluations
of the same code should take much less time since we can simply load x and s from the cache.

R> rm(x, s)

R> systime <- system.time(cacher("bigvector.R"))

Min. 1st Qu. Median Mean 3rd Qu.
-5.12300000 -0.67230000 0.00003428 0.00049710 0.67530000

Max.
4.66300000

R> print(systime)

user system elapsed
0.028 0.000 0.027

Now the evaluation only takes about 0.028 seconds. In fact, the analysis here is particularly
quick because we do not need the x vector at all. We can simply print the summary object s.

Even if we did need to access the vector x, loading from the cache is often faster than regen-
erating all of the random Normals using rnorm. For example, if we wanted to calculate the
95th percentile of the data, then we could simply do

R> systime <- system.time(q95 <- quantile(x, 0.95))

R> print(q95)

95%
1.644256

R> print(systime)

user system elapsed
0.492 0.028 0.520

Exploring a cached analysis

Once an analysis has been cached using cacher, it can be explored using the utilities provided
in the cacher package. Since you can cache analyses from multiple files (as we have done
above), we can show which analyses have already been cached using the showfiles function.

R> showfiles()

[1] "sample.R" "bigvector.R"

12 Caching and Distributing Statistical Analyses in R

Here we see the file names corresponding to the two files that we analyzed in the previous
section. If you want to examine a particular analysis, you can use the sourcefile function
to choose that analysis and showcode will simply display the raw source file.

R> sourcefile("bigvector.R")

R> showcode()

x <- rnorm(1000000)
s <- summary(x)
print(s)

You can also use the code function to display the code in a summary form

R> sourcefile("sample.R")

R> code()

source file: sample.R
1 library("datasets")
2 library("stats")
3 data("airquality")
4 fit <- lm(Ozone ~ Wind + Temp +
5 summary(fit)
6 par(mfrow = c(2, 2))
7 plot(fit)
8 temp <- airquality$Temp
9 ozone <- airquality$Ozone
10 par(mfrow = c(1, 1))
11 plot(temp, ozone)

The code function truncates expressions to a single line and also shows the sequence number
assigned to each expression in the order that the expression is encountered in the source file.
In order to see the full code for each expression, you can set the full = TRUE option to code.

The first thing you might do when exploring a cached analysis is to explore the elements of
the cache database itself. You can list the objects available using the showobjects function,
which returns a character vector of the names of each object in the database. Passing an
expression sequence number to showobjects via the num argument shows the objects created
by that expression.

R> showobjects()

[1] "airquality" "fit" "temp" "ozone"

R> showobjects(8)

[1] "temp"

R> showobjects(1)

Roger D. Peng 13

character(0)

These objects can be lazy-loaded into the workspace using the loadcache function.

R> loadcache()

R> ls()

[1] "airquality" "fit" "ozone" "temp"

Now, we can print the linear model fit (without actually fitting the model) by calling

R> print(fit)

Call:
lm(formula = Ozone ~ Wind + Temp + Solar.R, data = airquality)

Coefficients:
(Intercept) Wind Temp Solar.R
-64.34208 -3.33359 1.65209 0.05982

The loadcache function takes a num argument which can be a vector of indices indicating code
expression sequence numbers. For example, if you want to load only the objects associated
with expression 4 (i.e., the fit object), then you can call loadcache(4).

In addition to exploring the objects in the cache database, you may wish to run the analysis
on your own computer for the purposes of reproducing the original results. You can run
individual expressions or a sequence of expressions with the runcode function. The runcode
function accepts a number or a sequence of numbers indicating expressions in an analysis.
For example, in order to run the first four expressions in the “sample.R” analysis, we could
call

R> rm(list = ls())

R> code(1:4)

source file: sample.R
1 library("datasets")
2 library("stats")
3 data("airquality")
4 fit <- lm(Ozone ~ Wind + Temp +

R> runcode(1:4)

evaluating expression 1
evaluating expression 2
loading cache for expression 3
loading cache for expression 4

R> ls()

14 Caching and Distributing Statistical Analyses in R

[1] "airquality" "fit"

In this case, expressions 1 and 2 are evaluated but expressions 3 and 4 are loaded from the
cache. By default, runcode does not evaluate expressions for which it can load the results
from the cache. In order to force evaluation of all expressions, you need to set the option
forceAll = TRUE.

Understanding the log file

As each expression is being evaluated, cacher keeps track of which expressions result in the
creation of new objects (including modification of existing objects) and which expressions
have side effects. Expressions with side effects cannot be cached and therefore must always
be evaluated. The primary operation falling into this category is plotting, which launches
a graphics device and makes changes to that device. One exception is lattice plots which
can be stored as objects and therefore cached. The log file contains information about each
expression and whether it needs to force evaluation. Here we print the first few lines of the
log file for this analysis.

1: library("datasets")
eval expr and cache
expression has side effect: f92adaa84e2ae7800e91ee5fead3a3db06d18f9a

2: library("stats")
eval expr and cache
expression has side effect: 223a036ba6a2561e5c23716840e9090670824ff4

3: data("airquality")
eval expr and cache

4: fit <- lm(Ozone ~ Wind + Temp +
eval expr and cache

5: summary(fit)
eval expr and cache

Understanding the log file output is not critical to using cacher but it is occasionally useful
to know what the function is doing for a given expression. Each expression is assigned a
number based on when it is encountered in the source file and a snippet of the expression is
printed immediately after the number. Below, cacher will indicate if the expression needs to
be evaluated and cached and will try to determine if the expression resulted in a side effect.
The check for side effects is rudimentary and will not catch all cases. Once the expression has
been cached, cacher will reload the results from the cache into the global environment (i.e.,
workspace) and move to the next expression.

Running the analysis a second time with cacher results in the following log file being gener-
ated.

1: library("datasets")
-- loading expr from cache

2: library("stats")
force expression evaluation

3: data("airquality")

Roger D. Peng 15

-- loading expr from cache
4: fit <- lm(Ozone ~ Wind + Temp +
-- loading expr from cache

Here we see that expressions 1 and 2 were forced to be evaluated because the library function
results in a side effect (i.e., altering the search list). Expressions 3 and 4 create objects in the
workspace so they can be lazy-loaded from the cache. Note here that although the airquality
dataset is loaded from the cache, it is not needed if you are primarily interested in examining
the fit object from the lm call. This is where lazy-loading is very useful. However, if you
want to fit a different model, say, with some interactions, then of course the original data will
be loaded into the workspace the first time it is accessed.

Posting a cache directory

If you have access to a webserver you can post your cache directory directly on the web-
server for others to access. Once made available on a webserver, others can access your cache
directory by using the clonecache function in the cacher package and the URL of the di-
rectory on your webserver. For example, we can download the analysis corresponding to the
“bigvector.R” file by calling

R> clonecache("http://penguin.biostat.jhsph.edu/bigvector.cache")

created cache directory '.cache'
downloading source file list
downloading metadata
downloading source files
downloading cache database file list

This call to clonecache downloads all of the relevant cache files related to the analysis
except for the cache database files. In order to download the cache database files, the option
all.files = TRUE must be set.

Once a cache package has been downloaded using clonecache you can use all of the tools
described in the previous sections to explore the cache and the run some of the analyses.

R> showfiles()

[1] "bigvector.R"

R> sourcefile("bigvector.R")

R> code()

source file: bigvector.R
1 x <- rnorm(1000000)
2 s <- summary(x)
3 print(s)

R> showobjects()

16 Caching and Distributing Statistical Analyses in R

[1] "x" "s"

R> loadcache()

R> print(s)

/ transferring cache db file d7952a4732ffa55c045958205340...
Min. 1st Qu. Median Mean 3rd Qu.

-4.6570000 -0.6737000 0.0006063 0.0012460 0.6755000
Max.

5.1400000

By default, clonecache does not download the cache database files until they are needed
in order to minimize the amount of data that is transferred. Cache database files are only
transferred from the remote host when the objects associated with them are first accessed.

In the above example, the database file corresponding to the object s is only transferred when
we call print(s). When a database object has to be downloaded from the remote site, a
message will be printed to the screen indicating the transfer.

Verifying a cached analysis

Once you have cloned an analysis conducted by someone else, you may wish to verify that
the computation that you run on your computer leads to the same results that the original
author obtained on his/her computer. This can be done with the checkcode function. The
checkcode function essentially evaluates each expression locally (if it can) and compares the
output with the corresponding value stored in the cache database.

If the locally created object and the cached object are the same, then that expression is
considered verified. If an expression does not create any objects, then there is nothing to
compare. If the locally created object and the cached object are different, the the verification
fails and checkcode will indicate which objects it could not verify.

For example, we can run the checkcode function on the analysis of the airquality dataset
from before. Here we will only check the first four code expressions.

R> unlink(".cache", recursive = TRUE)

R> clonecache("http://penguin.biostat.jhsph.edu/combined.cache")

created cache directory '.cache'
downloading source file list
downloading metadata
downloading source files
downloading cache database file list
downloading metadata
downloading source files
downloading cache database file list

R> sourcefile("sample.R")

R> showobjects(1:4)

Roger D. Peng 17

[1] "airquality" "fit"

R> checkcode(1:4)

evaluating expression 1
evaluating expression 2
checking expression 3
/ transferring cache db file 142d241ba5b4fbb5646a189fce5c...
+ object 'airquality' OK
checking expression 4
/ transferring cache db file ad5720cbda29135e8412d130a6de...
+ object 'fit' OK

In the first four expressions, there are two objects created: the dataset airquality and the
linear model object fit. The checkcode function compares each of those objects with the
version stored in the cache database (which we previously cloned from the web). In this
case, the objects match and the computations are verified. Notice that in expression 3, the
database file for the airquality object had to be downloaded so that it could be checked
against the locally created version.

We can check the code in the “bigvector.R” analysis also. In this analysis there are two
objects that need to be verified: x, the vector of standard normals and s the “summary”
object.

R> sourcefile("bigvector.R")

R> checkcode()

checking expression 1
/ transferring cache db file fb877f8375799370cef47fce86a9...
- object 'x' not verified, FAILED
- Mean relative difference: 1.414418
checking expression 2
/ transferring cache db file d7952a4732ffa55c045958205340...
- object 's' not verified, FAILED
- Mean relative difference: 0.02266224
evaluating expression 3

Min. 1st Qu. Median Mean 3rd Qu.
-5.1260000 -0.6762000 0.0020960 0.0002266 0.6750000

Max.
4.6490000

Notice that expressions 1 and 2 failed for a common reason (expression 3 had no objects to
verify). Since the analysis did not set the random number generator seed in the beginning,
the generation of the Normal random variates on the local machine is not the same as that
for the original analysis. Therefore, the object x is not reproducible (nor is s).

Of course, there are limitations to verifying statistical analyses. Analyses may take a long
time to run and therefore it may take a long time to verify a given computation. If one

18 Caching and Distributing Statistical Analyses in R

does not have the necessary external resources (i.e., hardware, software) then it may not be
possible to verify an analysis at all. Currently, verification of analyses is limited to R objects
only. We cannot verify the output of summary or print functions nor can we verify plots
(although lattice plots can be verified if they are stored as R objects).

Certain analyses may load external datasets or inputs which will generally not be available
to the other users. A typical analysis might be of the form

data <- read.csv("faithful.csv")
with(data, plot(waiting, eruptions))

library("splines")
fit <- lm(eruptions ~ ns(waiting, 4), data = data)

xpts <- with(data, seq(min(waiting), max(waiting), len = 100))
lines(xpts, predict(fit, data.frame(waiting = xpts)))

This analysis reads in the the“Old Faithful”dataset which contains eruption times and waiting
periods for the Old Faithful geyser in Yellowstone National Park. Although this dataset is
available from the R installation, we have exported it here to a comma-separated-value file
for demonstration.

The original author of this analysis can run the cacher function on this analysis file and
distributed it to others.

R> cacher("faithful.R")

However, another user (presumably on a different computer) will not be able to verify all of
the code in this analysis

R> sourcefile("faithful.R")

R> checkcode()

checking expression 1
- problem evaluating expression, FAILED
- simpleWarning: cannot open file 'faithful.csv': No
- such file or directory
- loading objects from cache
/ transferring cache db file 255fb954f855b0e53bafa43091fc...
evaluating expression 2
evaluating expression 3
checking expression 4
/ transferring cache db file a15033591616f8a9b693ca1e4faf...
+ object 'fit' OK
checking expression 5
/ transferring cache db file bed8272d401434750a5c0c4c47ce...
+ object 'xpts' OK
evaluating expression 6

Roger D. Peng 19

Here, the first expression, which reads the dataset in via read.csv cannot be verified because
the “faithful.csv” file is not available. However, the other expressions can be run on the
local machine and are verifiable since they can use the cached copy of the dataset.

6.2. Conducting an alternate analysis

In this section we will illustrate the use of the cacher package to reproduce some results from a
large epidemiological study of the health effects of fine particulate matter air pollution. This
study was a multi-site time series study examining the short-term relationship between par-
ticulate matter ≤ 2.5µm in aerodynamic diameter (PM2.5) and daily hospital admission rates
for various cardiovascular and respiratory diseases (Dominici, Peng, Bell, Pham, McDermott,
Zeger, and Samet 2006).

This study produced a county-specific estimate of the log relative risk relating increases in
daily PM2.5 with daily hospital admission rates. These risks can be found at the study’s
website at http://www.biostat.jhsph.edu/MCAPS/. Below, we present a sensitivity analysis
of these log relative risks and demonstrate how they can be pooled together to obtain a
“national average” risk estimate using a two-level Normal hierarchical model (more details in
Dominici, Samet, and Zeger 2000).

First, we can clone the cached analysis by calling clonecache.

R> library("cacher")

R> options(width = 60)

R> clonecache("http://penguin.biostat.jhsph.edu/mcaps.cache")

created cache directory '.cache'
downloading source file list
downloading metadata
downloading source files
downloading cache database file list

Here we see that there is only one source file available, the mcaps.R file.

R> showfiles()

[1] "mcaps.R"

R> sourcefile("mcaps.R")

We can list the code expressions with the code function.

R> code(1:7)

source file: mcaps.R
1 Sys.setlocale(locale = "C")
2 estimates <- read.csv("http://www.biostat.jhsph.edu/MC...
3 estimates <- transform(estimates,

20 Caching and Distributing Statistical Analyses in R

4 library("tlnise")
5 HF <- subset(estimates, outcome ==
6 initTLNise()
7 pooled <- with(HF, tlnise(beta,

The first six code expressions read the data from the website and pool the risk estimaets for
heart failure across the 202 counties in the study. For the pooling, we use Phil Everson’s
TLNise software (Everson and Morris 2000), an R version of which is available on CRAN
(Everson and Peng 2008). The first thing we can do is the verify that we are capable of
producing the same results that the original authors did. The checkcode function can be
used to check the first six expressions.

R> checkcode(1:7)

evaluating expression 1
checking expression 2
/ transferring cache db file d33bf70c06481a745ebfd57a0f0e...
+ object 'estimates' OK
checking expression 3
/ transferring cache db file 0d389a6f8121c60b66c13389cf3a...
+ object 'estimates' OK
evaluating expression 4
Two-level normal independent sampling estimation
(version 0.2-7)
checking expression 5
/ transferring cache db file 48dc3abbde978864d5ea447038de...
+ object 'HF' OK
evaluating expression 6
checking expression 7
/ transferring cache db file 51999c8bd7db146ebe049d4fb4de...
+ object 'pooled' OK

Here we see that the six expressions were evaluated properly and the objects created matched
those created by the original authors. Database objects were downloaded from the archive as
needed.

The original pooled national average log relative risk for hospitalization for heart failure can
be found by loading the cached objects for expression 7.

R> loadcache(7)

R> pooled$gamma

est se est/se
0 0.001291823 0.0002505152 5.156663

This risk estimate shown in the est column can be interpreted as a 1.29% increase in admis-
sions of heart failure associated with a 10 µg/m3 increase in ambient PM2.5.

Roger D. Peng 21

One important issue in this analysis is the sensitivity of the Bayesian hierarchical model to
the specification of the prior distribution. In particular, the TLNise software places a uniform
prior on the second-level covariance matrix, sometimes referred to as the heterogeneity matrix,
which describes the natural variation of the relative risks across counties. Since the original
authors used the default settings, it is of interest to see if the national average estimates vary
when this prior specification is altered.

The tlnise function has an option called prior which can be used to change the nature of
the prior distribution on the second-level covariance matrix. Here we try two alternate priors.
First, we need to call loadcache first in order to obtain the data frame HF.

R> loadcache(1:7)

R> library("tlnise")

R> p0 <- with(HF, tlnise(beta, var, prnt = FALSE,

+ prior = 0))

R> p2 <- with(HF, tlnise(beta, var, prnt = FALSE,

+ prior = 2))

We can now compare the estimates obtained using the two alternative prior specifications
with the original estimates

R> rbind(p0$gamma, p2$gamma, pooled$gamma)

est se est/se
0 0.001293042 0.0002507844 5.155989
0 0.001293785 0.0002517023 5.140142
0 0.001291823 0.0002505152 5.156663

Here we see that there is some variation between the estimates but the estimates are qualita-
tively similar.

7. Discussion and future work

Currently, authors can use the cacher package to cache an analysis and distribute the analysis
over the web. The package provides readers tools for downloading these cached analyses and
exploring the code and data within them. The cacher package is limited in that it cannot
take advantage of the extra information provided in the literate programming context. For
example, the cacheSweave and weaver packages organize code by the “chunks” defined in the
combined R/LATEX document. The code chunks can provide extra information about the
context of a set of code expressions. For example, it is possible to find out whether a figure
is being produced. Without the existence of code chunks, the cacher package must evaluate
evaluate each code expression individually.

Plotting in general is currently a weak spot in the cacher package. While hooks are used
to detect when plotting occurs in an expression so that those expressions can be flagged as
non-cacheable, better approaches are needed. For example, it may be of use to cache the
graphics files (if any are produced) or to save the output of screen device to a file. Recent
developments in R may allow this to be done in a more convenient manner.

22 Caching and Distributing Statistical Analyses in R

The handling of side effects is another area in need of further development. While cacher tries
to handle some basic cases and works reasonably well in standard usages, it will not create
an accurate cache in more complex situations, particularly if things like external pointers or
environments are used extensively. Experience will help to gauge the demand for handling
such objects and new cases will need to be handled as the need arises.
One possible direction for future work is to provide the ability to annotate the code in a source
file. Such annotations could provide hints to cacher regarding what the code is doing. For
example, if a set of expressions gives rise to a figure (e.g., a PDF file), then we can associate
that set of expressions with the figure and give the reader more information about the analysis
via the reader tools. Similar annotations could be provided for tables and other results that
the author deems interesting. This way, a reader interested in particular table/figure of results
could quickly identify the segment of code that produced the results.
Another area for further development includes providing tools to help readers edit cached
analyses and to integrate their modifications into the original computations. Currently, the
reader tools are “read-only”, allowing readers to examine and explore an analysis, but not
allowing them to edit the original source file. For example, in order to test the sensitivity of
an analysis to a set of assumptions (as in Section 6.2), a reader might want to alter a specific
group of R expressions and re-run the entire analysis with the altered expressions.
Currently, only R users can interact with the data and code in cache directories that have been
posted to the web (i.e., via the cacher package’s clonecache function). It might be desirable
to provide a more useful web-based interface to provide more information about each of the
cache packages to casual readers. Also, while storing data in R’s native serialization format
is simple and efficient, selectively using more generic data formats might allow other analysis
systems with which people are familar to interact with the data.

Acknowledgments

This research was supported in part by a Faculty Innovation Fund Award from the Johns
Hopkins Bloomberg School of Public Health, grant ES012054-03 from the National Institute
of Environmental Health Sciences.

References

Buckheit J, Donoho DL (1995). “Wavelab and Reproducible Research.” In A Antoniadis (ed.),
“Wavelets and Statistics,” Springer-Verlag, New York.

Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM (2006). “Fine
Particulate Air Pollution and Hospital Admission for Cardiovascular and Respiratory Dis-
eases.” Journal of the American Medical Association, 295(10), 1127–1134.

Dominici F, Samet JM, Zeger SL (2000). “Combining Evidence on Air Pollution and Daily
Mortality from the Twenty Largest US Cities: A Hierarchical Modeling Strategy.” Journal
of the Royal Statistical Society A, 163, 263–302.

Everson PJ, Morris CN (2000). “Inference for Multivariate Normal Hierarchical Models.”
Journal of the Royal Statistical Society B, 62, 399–412.

Roger D. Peng 23

Everson PJ, Peng RD (2008). tlnise: Two-Level Normal Independent Sampling Estimation.
R package version 0.2-7, URL http://CRAN.R-project.org/package=tlnise.

Falcon S (2007). weaver: Tools and Extensions for Processing Sweave Documents. R package
version 1.2.0.

Gentleman R, Temple Lang D (2007). “Statistical Analyses and Reproducible Research.”
Journal of Computational and Graphical Statistics, 16(1), 1–23.

Knuth DE (1984). “Literate Programming.” Computer Journal, 27(2), 97–111.

Kuhn M, Weaston S (2007). odfWeave: Sweave Processing of Open Document Format
(ODF) Files. R package version 0.6.0, URL http://CRAN.R-project.org/package=
odfWeave.

Leisch F (2002). “Dynamic Generation of Statistical Reports Using Literate Data Analysis.” In
W Härdle, B Rönz (eds.), “COMPSTAT 2002 – Proceedings in Computational Statistics,”
pp. 575–580. Physica Verlag, Heidelberg.

Lenth RV, Højsgaard S (2007). “SASWeave: Literate Programming Using SAS.” Journal of
Statistical Software, 19(8), 1–20. URL http://www.jstatsoft.org/v19/i08/.

Peng RD (2007). “A Reproducible Research Toolkit for R.” Technical Report 142, Johns Hop-
kins University Department of Biostatistics. URL http://www.bepress.com/jhubiostat/
paper142.

Peng RD (2008). “Caching and Distributing Statistical Analyses in R.” Journal of Statistical
Software, 26(7). URL http://www.jstatsoft.org/v26/i07/.

Peng RD, Dominici F, Zeger SL (2006). “Reproducible Epidemiologic Research.” American
Journal of Epidemiology, 163(9), 783–789. doi:10.1093/aje/kwj093.

Peng RD, Eckel SP (2007). “Distributed Reproducible Research Using Cached Computations.”
Technical Report 147, Johns Hopkins University Department of Biostatistics. URL http:
//www.bepress.com/jhubiostat/paper147/.

Ripley BD (2004). “Lazy Loading and Packages in R 2.0.0.” R News, 4(2), 2–4. URL
http://CRAN.R-project.org/doc/Rnews/.

Rossini AJ, Heiberger RM, Sparapani RA, Mächler M, Hornik K (2004). “Emacs Speaks
Statistics: A Multiplatform, Multipackage Development Environment for Statistical Anal-
ysis.” Journal of Computational and Graphical Statistics, 13(1), 247–261.

Schwab M, Karrenbach N, Claerbout J (2000). “Making Scientific Computations Repro-
ducible.” Computing in Science & Engineering, 2(6), 61–67. URL http://sepwww.
stanford.edu/research/redoc/.

Affiliation:

Roger D. Peng
Department of Biostatistics

http://CRAN.R-project.org/package=tlnise
http://CRAN.R-project.org/package=odfWeave
http://CRAN.R-project.org/package=odfWeave
http://www.jstatsoft.org/v19/i08/
http://www.bepress.com/jhubiostat/paper142
http://www.bepress.com/jhubiostat/paper142
http://www.jstatsoft.org/v26/i07/
http://dx.doi.org/10.1093/aje/kwj093
http://www.bepress.com/jhubiostat/paper147/
http://www.bepress.com/jhubiostat/paper147/
http://CRAN.R-project.org/doc/Rnews/
http://sepwww.stanford.edu/research/redoc/
http://sepwww.stanford.edu/research/redoc/

24 Caching and Distributing Statistical Analyses in R

Johns Hopkins Bloomberg School of Public Health
615 North Wolfe Street
Baltimore MD 21205, United States of America
E-mail: rpeng@jhsph.edu
URL: http://www.biostat.jhsph.edu/~rpeng/

mailto:rpeng@jhsph.edu
http://www.biostat.jhsph.edu/~rpeng/

	Introduction
	Caching statistical analyses
	Metadata
	Multiple source files

	Expressions with side effects

	Distributing a cached analysis over the web
	Exploring a cached analysis
	Verifying an analysis
	Verifying the integrity of objects

	Examples
	Basic usage
	Exploring a cached analysis
	Understanding the log file
	Posting a cache directory
	Verifying a cached analysis

	Conducting an alternate analysis

	Discussion and future work

