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1 General Chop-Lump Test

Suppose n0 and n1 subjects are randomized to control and vaccine respectively. Here we allow n0 6= n1,
which causes some notational complexity, although the chopping function simply removes zeros from both
groups in approximately the same proportion within each group such that one group has no zeros.

Let m0 and m1 denote the number of positive responses in the control and vaccine group repectively.
Let ki = ni −mi, N = n0 + n1, M = m0 +m1, and K = k0 + k1. Let the responses be represented by the
vector, W = [W1,W2, . . . ,WN ], where W are the responses of all N subjects and K of those responses are
0. Let the treatment randomization assignment be denoted by the vector, Z = {Z1, . . . , ZN}, where Zi = 0
for subjects randomized to control and Zi = 1 for subjects randomized to vaccine. We order the indices by
Wi first then by Zi within tied Wi values, so that Z1, . . . , Zk0

are zeros and Zk0+1, . . . , ZK are ones. Let Wa

and Za be the last a values of W and Z, respectively. Let 0a and 1a be vectors of zero or one of length a,
where a = 0 denotes no vector (e.g., [03,10] is a 3× 1 vector of 0’s). Let C(W,Z) be the chopping function
which creates the “chopped” data set, specifically,

C(W,Z) = (WM+a+b, [0a,1b,ZM ]) ,

where

if m0

n0
≥ m1

n1
then a = 0 and b = k1 − bn1k0

n0
c

and

if m0

n0
< m1

n1
then a = k0 − bn0k1

n1
c and b = 0

and bxc is the largest integer less than or equal to x.
In the usual permutation test, we define a test statistic T which is a function of W and Z. Let T0 be

the test statistic evaluated at the original data, and Tj be the test statistic evaluated at the jth permutation
of the values of Z. If lower values of the test statistic are more extreme, then a one-sided p-value is

p− value =

∑N !
j=1 I {Tj ≤ T0}

N !
(1)

where I(a) = 1 if a is true and 0 otherwise. A chop-lump test is simply a permutation test where the test
statistic is of the form, TCL(W,Z) = T {C (W,Z)}.

2 Computational Issues: Exact Tests

In this section, we describe exact computation for any two-sample permutation test. There are compu-
tationally better ways to calculate the p-value than equation 1. First, we we need not enumerate all N !

permutations of Z, since there are only

(
N
n1

)
unique permutations of Z, and each has exactly n0!n1!

permutations which correspond to the same permuted Z. We can obtain similar computational savings by

partitioning the

(
N
n1

)
unique permutations into sets with equal numbers of zero responses in the vaccine
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group. One can think of this partition as being derived from the hypergeometric distribution where we are
sampling zeros in the vaccine group. The partition can be written as(

N
n1

)
=

min(n1,K)∑
h=max(0,n1−M)

(
K
h

)(
M

n1 − h

)
(2)

On the right-hand-side of equation 2 the first term in the sum represents the number of ways to permute the
indices of the zero responses, while the second term represents the number of ways to permute the nonzero
responses. Let Qh be the proportion of the permutation test statistics less than or equal to the observed test
statistic among permutations with h zeros in the vaccine group. Specifically,

Qh =

∑
j∈Ωh

I [Tj ≤ T0](
M

n1 − h

) (3)

where Ωh is the set of unique permutations of ZM that induce h zeros in the vaccine group. In other words,
Ωh does not include two different permutations of Z if they only differ within the first K = N −M elements,
since those elements are all equal to zero.

The standard calculation groups the N ! permutations into

(
N
n1

)
sets of unique permutations of Z,

and each set has the same number of members. In the case of equation 2, each group with h zeros in the
vaccine group does not have the same number of members. The one-sided p-value is a weighted average of
the Qh values:

p− value =

min(n1,K)∑
h=max(0,n1−M)

Pr[ a permutation has h zeros in the vaccine group]Qh

=

min(n1,K)∑
h=max(0,n1−M)


(
K
h

)(
M

n1 − h

)
(

N
n1

)
Qh

=

min(n1,K)∑
h=max(0,n1−M)

f(h;K,M,n1)Qh (4)

where f(h;K,M,n1) is the implicitly defined probability mass function of the hypergeometric distribution.

3 Computational Issues: Approximations for Qh

3.1 Difference in Means Statistics on Scores

The key to the approximation is state Qh in a form such that we can use the permutational central limit
theorem (PCLT), which we give informally (see Sen [1985] for formal statement).

PCLT: Consider a permutation where the test statistic is of the form T`(S,R) =
∑
SiRi, and where both

of the N × 1 vectors of constants, S and R, meet some regularity conditions as N gets large. Under
the assumption that each permutation of R is equally likely,

(N − 1)−1/2T`(S,R)−NS̄R̄
σ̂S σ̂R

∼̇N(0, 1) (5)
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where R̄, S̄, σ̂R and σ̂S are sample means and standard deviations and ∼̇ denotes approximately dis-
tributed for large N .

Before we consider chop-lump tests, we first consider a simple test statistic, representing the stan-
dardized difference in means of a set of scores S1, . . . , SN ,

TDiM (S,Z) =

(∑
SiZi − n1S̄

)
√
V

where all unmarked summations go from i = 1 to N , and V = (N − 1)σ̂2
S σ̂

2
Z , and as above σ̂2

S and σ̂2
Z =

(N − 1)−1
∑

(Zi − Z̄)2 = n0n1

N(N−1) are sample variances of the values of S and Z. The permutation t-

test results when Si = Wi and the Wilcoxon rank sum test results when Si = rank(Wi) (i.e., in the
earlier notation, the permutation t-test has T (W,Z) = TDiM (W,Z), while the Wilcoxon rank sum test has
T (W,Z) = TDiM (rank(W),Z)). Since within the permutations of Qh (see equation 3) we only permute
within the last M values of Z, we want to write TDiM (S,Z) = ah + bhT`(SM ,ZM ), where ah and bh are
constant throughout the permutations in Ωh. If we let Si = S0 for i ≤ K (i.e., scores when Wi = 0) then we
get

ah =
hS0 − n1S̄√

V
and

bh =
1√
V

Thus, within the permutations in Ωh,

TDiM (S,Z) ≤ t

⇒ T`(SM ,ZM ) ≤ t− ah
bh

= t
√
V − hS0 + n1S̄

⇒ T`(SM ,ZM )−MS̄M Z̄M√
VM

≤ t
√
V − hS0 + n1S̄ −MS̄M Z̄M√

VM

where VM = (M − 1)σ̂2
SM
σ̂2
ZM

. Then substituting Z̄M = n1−h
M and using the PCLT we approximate Qh for

TDiM with

Q̂
(DiM)
h = Φ

{
T0

√
V

VM
+ C(h)

}
, (6)

where Φ() is the standard normal cumulative distribution, and

C(h) =
−hS0 + n1S̄ − (n1 − h)S̄M√

VM

3.2 Chop-Lump Statistics

Now consider the chop-lump versions of TDiM , i.e., TCL(S,Z) = TDiM {C(S,Z)}. There is one slight
complication with the Wilcoxon rank sum chop-lump test; the rankings are calculated after the chop, so that
the scores will change for different permutations. To minimize this problem, we rank only the non-zero values
of W, (i.e., X), then we define S0, the score that goes with Wi = 0, according to how many total zeros in

the chopped data. Specifically, if there are k total zeros in the chopped data set, then let S
(k)
0 = −(k− 1)/2.

The resulting scores give equivalent tests to the usual ranks, since they are just shifted ranks, Si = Ri − k.
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Suppose that when there are h zeros in the vaccine group in a permutation, this induces h∗ zeros in
the vaccine group of the chopped data set, where

h∗ =

{
h− bn1(K−h)

n0
c if M−n1+h

n0
≥ n1−h

n1

0 if M−n1+h
n0

< n1−h
n1

Then we proceed similar to as above. Write TCL(S,Z) = ah∗ + bh∗T`(SM ,ZM ), where ah∗ and bh∗ are
constant throughout the permutations in Ωh. Let a superscript asterisk denote the sample sizes in the
chopped data set (e.g., K∗ is the total number of zeros in the chopped data, so that K∗ = h∗ if h∗ > 0 and

K∗ = K if h∗ = 0). Further let
∑∗

=
∑N

i=N−N∗+1.

T
(h∗)
DiM (SN∗ ,ZN∗) =

∑∗
SiZi − n∗1S̄N∗
√
VN∗

.

Now rewrite T
(h∗)
DiM (SN∗ ,ZN∗) as ah∗ + bh∗T`(SM ,ZM ), where

ah∗ =
h∗S

(K∗)
0 − n∗1S̄N∗
√
VN∗

and

bh∗ =
1√
VN∗

Again using the PCLT we approximate Qh for TDiM with

Q̂
(CL)
h = Φ

(
T0

√
VN∗ − h∗S(K∗)

0 + n∗1S̄N∗ − (n∗1 − h∗)S̄M√
VM

)
.
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