
Dynamic Deterministic Effects Propagation

Networks (DDEPN) - exemplary workflow

Christian Bender ∗

October 5, 2010

Abstract

Network modelling in systems biology has become an important
tool to study molecular interactions, especially in the medical field like
cancer research. The understanding of the interplay of proteins in cel-
lular signalling is the basis for the development of novel drugs and
therapies. Here, we set up a new method for the reconstruction of
signalling networks from time course protein data after external per-
turbation. We show how to use protein expression and phosphorylation
data measured on Reverse Phase Protein Arrays to infer a signalling
network among proteins of the ERBB signalling cascade in a human
breast cancer cell line.

Our method models the signalling dynamics by a boolean signal
propagation mechanism that defines a sequence of state transitions for
a given network structure. A likelihood score is proposed that describes
the probability of our measurements given a particular state transition
matrix. We identify the optimal sequence of state transitions via a
Hidden Markov Model. Network structure search is performed by a
genetic algorithm that optimises the overall likelihood of a population
of candidate networks. We test our method on simulated networks and
data and show its increased performance in comparison to another Dy-
namical Bayesian Network approach. The reconstruction of a network
in our real data results in several known signalling chains from the
ERBB network, showing the validity and usefulness of our approach.

∗German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Ger-
many. eMail: c.bender@dkfz-heidelberg.de

1

1 QuickStart: using DDEPN for network infer-
ence on simulated data sets

This section shows an exemplary workflow to reconstruct a signalling net-
work from simulated data. An analysis on real data can be performed anal-
ogously. Details on formatting the input data matrix as well as arguments
for the function calls can be found in subsequent sections.

1.1 Simulating data

In this section we show how to generate artificial networks and data. A
reference signalling network is simulated and used to sample measurements
that incorporate the network structure.

First, simulate a network with 6 nodes and 2 distinct input stimuli.

> set.seed(12345)

> n <- 6

> signet <- signalnetwork(n = n, nstim = 2, cstim = 0, prop.inh = 0.2)

> net <- signet$phi

> stimuli <- signet$stimuli

> weights <- signet$weights

Second get intensities for each protein that are based on the network struc-
ture generated above.

> dataset <- makedata(net, stimuli, mu.bg = 1200, sd.bg = 400,

+ mu.signal.a = 2000, sd.signal.a = 1000)

> data <- dataset$datx

1.2 Running the Genetic Algorithm (GA)

Now run the genetic algorithm to reconstruct the network from the data
generated above and compare it to the originally sampled network net.

> ret <- ddepn(data, phiorig = net, inference = "netga", maxiterations = 15,

+ p = 30, q = 0.3, m = 0.8, usebics = TRUE)

After the reconstruction, the generated network can be viewed as follows:

> plotrepresult(ret)

2

Original Graph

X1

X2

X3

X4

X5

X6

Inferred Graph

X1

X2

X3

X4

X5 X6

1

0.633

1

1

0.6

sn sp

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 1: Result plot of the genetic algorithm. Left: the given graph; Mid-
dle: the inferred graph; Right: sensitivity/specificity plot for comparing the
original and inferred graphs

1.3 Running Markov Chain Monte Carlo Sampling (MCMC)

An example run for MCMC sampling follows. Here, the package multicore
is needed, since two parallel and independent MCMC runs are performed.
If multicore is not available on the machine, just set multicores=FALSE to
perform sampling for a single chain.

> B <- matrix(0.5, nrow = n, ncol = n, dimnames = dimnames(net))

> mi <- 5000

> burnin <- 1000

> library(multicore)

> ret <- ddepn(data, phiorig = net, inference = "mcmc", maxiterations = mi,

+ burnin = burnin, usebics = FALSE, lambda = 5, B = B, multicores = TRUE,

+ cores = 2)

After the sampling one can examine the sampling run:

> plotrepresult(ret$samplings[[1]])

The returned list ret contains two elements, another list with name sam-
plings (ret$samplings), which holds the different runs for the MCMC. In
case of multicores=FALSE, only one run is performed and ret$samplings
holds only one element. Otherwise cores runs are performed independently
in parallel, and ret$samplings holds cores elements. The second element in
ret with name ltraces is a matrix and holds the score traces of all runs, where
each column corresponds to one trace. Output diagnostics can be produced
using the R-package coda. See figure 3 for some example plots.

> library(coda)

> mcmc1 <- mcmc(data = ret$ltraces[-c(1:burnin, mi), 1])

3

Original Graph

X1

X2

X3

X4

X5

X6

Inferred Graph

X1

X2

X3

X4

X5 X6

sn sp

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 2: Result plot of MCMC sampling, analogous to figure 1.

> mcmc2 <- mcmc(data = ret$ltraces[-c(1:burnin, mi), 2])

> mcmcl <- mcmc.list(mcmc1, mcmc2)

> plot(mcmcl)

> gelman.plot(mcmcl)

2 Notes on formatting constraints for the argu-
ments of ddepn

There is only one neccessary argument to the function call of ddepn: The
data matrix dat. Optionally, a reference network phiorig and seed networks
phi can be passed to ddepn. Each of these arguments is described briefly
below.

Input data matrix dat

The data matrix contains all measurements for the nodes in the rows (e.g.
proteins or genes), and the experiments and time points in the columns.
There are some special needs on how to name the columns. We allow several
treatments to be included in the data matrix. Examples for these treatments
are stimulation by growth factors or inhibition by application of a drug. We
refer generally to each of these as ’treatment’.

Each of the treatments will be included in the final network as a node, e.g.
stimulation by the growth hormone EGF is added to the data matrix as row
with name EGF (and thus appears as node EGF in the final network). The
expression values for the stimuli nodes are set to 0 in each column of the
data matrix, but are never used in the algorithm and regarded as dummy
values. Effects originating in these nodes are estimated in the reconstruction
process.

4

0 1000 2000 3000 4000

−
9
2
0
0

−
9
0

0
0

−
8
8
0
0

−
8
6
0
0

−
8
4
0
0

−
8
2
0
0

−9200 −9000 −8800 −8600 −8400 −8200

0
.0

0
0
0

0
.0

0
0
5

0
.0

0
1
0

0
.0

0
1
5

0
.0

0
2
0

0 1000 2000 3000 4000

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

2
.2

last iteration in chain

s
h
ri

n
k
 f
a
ct

o
r

A B

C

Figure 3: Using package coda for some MCMC output analysis. A: Traces
for 2 MCMC runs; B: Distributionplot of the sampling; C: gelman.plot of
two MCMC samplings

To distinguish the different experimental conditions in the matrix, the columns
of the data matrix have to be named in the format treatment time, where
treatment also can be a combination of several treatments, e.g. stimulation
by EGF and simultaneous inhibition by a drug X. In this case, each stimu-
lus has to be separated by an ampersand (&). The time point is separated
from the stimuli via an underscore character (), and can be on whatever
scale (minutes, hours etc.). An example data matrix is shown below. In this
table, the dummy rows for the treatments are already included (rows EGF
and X). However, they are not mandatory as input to ddepn and, if missing,
will be generated automatically, only requiring the correct labeling of the
columns.

EGF 1 EGF 1 EGF 2 EGF 2 EGF&X 1 EGF&X 1 EGF&X 2 EGF&X 2
EGF 0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0
AKT 1.45 1.8 0.99 1.6 1.78 1.8 1.56 1.58
ERK 1.33 1.7 1.57 1.3 0.68 0.34 0.62 0.47
MEK 0.45 0.8 0.99 0.6 0.78 0.8 0.56 0.58

5

EGF X

AKT MEK

ERK

Φ EGF X AKT MEK ERK

EGF 0 0 1 1 1

X 0 0 0 2 0

AKT 0 0 0 0 0

MEK 0 0 0 0 1

ERK 0 0 0 0 0

Figure 4: Example network. Left: graph representation, Right: adjacency
matrix

Reference network phiorig

If desired, a reference network phiorig can be given, used to compare the
edges of the inferred network to it. The user must ensure that all treat-
ments are included as nodes, since the inference will estimate effects from
these.
The format of the network must be an adjacency matrix, where each entry
corresponds to an edge from the node specified by the rowname to the node
specified by the column name. Two types of edges are allowed: 1 for ac-
tivation, 2 for inhibition. 0 means no edge between the pair of nodes. An
example network and corresponding adjacency matrix are shown in figure 4.

Seed networks phi

Both the GA and MCMC sampler require single or multiple seed networks.
If not given, an unconnected network is used as seed for each individual in
the GA population or the start networks for each MCMC run, respectively.
However, the user can provide own seed networks using the argument phi.
This can either be an adjacency matrix or a list of adjacency matrices.
Again, the treatments must be included as nodes. If given a single adjacency
matrix, it is used as seed network for each of the individuals in the population
of networks during the genetic algorithm, or as independent seeds for parallel
MCMC samplings. If given as list, its length must equal the number of
individuals in the population in the GA (specified by the function argument
p), or the number of independent runs in the MCMC sampler (specified by
the argument cores). The format of the adjacency matrices is the same as
for phiorig.

6

3 Prior knowledge inclusion

Currently, two methods for using biological prior knowledge are implemented.
We refer to the first as Laplace prior ([1, 4]), and to the second as ScaleFree
prior ([2]).

Laplace prior

The laplace prior penalises deviations of edges in the inferred network from
prior edge probabilities, aquired from network databases (e.g. KEGG [3]).
The package includes a snapshot of the KEGG database, downloaded in
August 2009.

> data(kegggraphs)

> length(kegggraphs)

The list kegggraphs includes 195 elements, each of which has 3 members, a
string name specifying the name of the pathway, a graphNEL object g and
an igraph object ig, which for the time being is not used:

> kegggraphs[[1]]

$name

[1] "Glycolysis / Gluconeogenesis"

$g

A graphNEL graph with directed edges

Number of Nodes = 64

Number of Edges = 256

$ig

NULL

Similar to the set of reference networks from KEGG, one can download other
reference networks from different sources (e.g. Reactome, Transpath) and
compile the prior distribution from them. Each graphNEL object can be
converted to a detailed adjacency list (including inhibitions as entries with
value 2):

> kegggraph.to.detailed.adjacency(gR = kegggraphs[[1]]$g)

7

To obtain prior probabilites for each edge between all pairs of nodes present
in kegggraphs, we follow the approach suggested by [4]. We count the total
number of node pairs M occurring in all reference networks as well as the
number of node pairs m that are connected via an edge in all reference
networks. The prior probability matrix B is defined as:

B =
m

M

We compute a normalising factor Z as described in [4] for a given hyperpa-
rameter λ. The prior probability density for each edge between node i and
j is calculated as laplace type distribution:

P (Φij |λ) =
1

2λ
exp(

−|Φij − Bij |
λ

)

In the function call to ddepn, just pass arguments B and lambda and set
usebics=FALSE to use the laplace prior for inference.

> ddepn(data, lambda = 2, B = B, usebics = FALSE)

ScaleFree prior

According to [2] we set up a prior distribution that penalises high node de-
grees in the inferred network. The assumption is that for biological networks
the degree of a node follows a power law distribution, i.e. the probability of
seeing k nodes follows

P (k) ∝ k−γ .

We set up the prior distribution as described in [2]. To use the ScaleFree
prior, just pass the arguments gam (the exponent γ), it (the number of
permutations) and factor K to the function call of ddepn, and again set
argument usebics=FALSE.

> ddepn(data, gam = 2.2, it = 500, K = 0.8, usebics = FALSE)

4 Use cases for GA and MCMC inference

This section shows the various types of calls to ddepn with all of the different
settings (inference type, prior type).

8

Data generation:

> library(ddepn)

> set.seed(12345)

> n <- 6

> signet <- signalnetwork(n = n, nstim = 2, cstim = 0, prop.inh = 0.2)

> net <- signet$phi

> stimuli <- signet$stimuli

> weights <- signet$weights

> dataset <- makedata(net, stimuli, mu.bg = 1200, sd.bg = 400,

+ mu.signal.a = 2000, sd.signal.a = 1000)

> data <- dataset$datx

GA, use BICs optimisation and no prior

> mi = 15

> p = 30

> q = 0.3

> m = 0.8

> ret <- ddepn(data, phiorig = net, inference = "netga", maxiterations = mi,

+ p = p, q = q, m = m, usebics = TRUE)

GA, use laplace prior

> mi = 15

> p = 30

> q = 0.3

> m = 0.8

> B <- matrix(0.5, nrow = n, ncol = n, dimnames = dimnames(net))

> lambda <- 5

> ret <- ddepn(data, phiorig = net, inference = "netga", maxiterations = mi,

+ p = p, q = q, m = m, usebics = FALSE, lambda = lambda, B = B)

GA, use scalefree prior

> mi = 15

> p = 30

> q = 0.3

> m = 0.8

> B <- matrix(0.5, nrow = n, ncol = n, dimnames = dimnames(net))

> gam <- 2.2

9

> it <- 500

> K <- 0.8

> ret <- ddepn(data, phiorig = net, inference = "netga", maxiterations = mi,

+ p = p, q = q, m = m, usebics = FALSE, gam = gam, it = it,

+ K = K)

MCMC, use laplace prior

> mi <- 1000

> burnin <- 100

> B <- matrix(0.5, nrow = n, ncol = n, dimnames = dimnames(net))

> lambda <- 5

> ret <- ddepn(data, phiorig = net, inference = "mcmc", maxiterations = mi,

+ burnin = burnin, usebics = FALSE, lambda = lambda, B = B)

MCMC, use scalefree prior

> B <- matrix(0.5, nrow = n, ncol = n, dimnames = dimnames(net))

> gam <- 2.2

> it <- 500

> K <- 0.8

> ret <- ddepn(data, phiorig = net, inference = "mcmc", maxiterations = mi,

+ burnin = burnin, usebics = FALSE, gam = gam, it = it, K = K)

Session Information

The version number of R and packages loaded for generating the vignette
were:

� R version 2.10.1 (2009-12-14), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.utf8, LC_NUMERIC=C,
LC_TIME=en_US.utf8, LC_COLLATE=en_US.utf8, LC_MONETARY=C,
LC_MESSAGES=en_US.utf8, LC_PAPER=en_US.utf8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.utf8,
LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats,
tools, utils

10

References

[1] Holger Fröhlich, Mark Fellmann, Holger Sültmann, Annemarie Poustka,
and Tim Beißbarth. Large scale statistical inference of signaling path-
ways from rnai and microarray data. BMC Bioinformatics, 8(11):386,
2007.

[2] Takeshi Kamimura and Hidetoshi Shimodaira. A scale-free prior over
graph structures for bayesian inference of gene networks. Online.

[3] M.˜Kanehisa, M.˜Araki, S.˜Goto, M.˜Hattori, M.˜Hirakawa,
M.˜Itoh, T.˜Katayama, S.˜Kawashima, S.˜Okuda, T.˜Tokimatsu,
and Y.˜Yamanishi. KEGG for linking genomes to life and the
environment. Nucleic Acids Res., 36:D480 – D484, 2008.

[4] Adriano˜V. Werhli and Dirk Husmeier. Reconstructing gene regulatory
networks with bayesian networks by combining expression data with mul-
tiple sources of prior knowledge. Stat Appl Genet Mol Biol, 6:Article15,
2007.

11

