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1 Upgrades

Since the initial release of the dlmap package (version 1.0) we have made
improvements in a number of areas. We have generalized the types of mod-
els and populations that can be analyzed, as well as streamlining the data
input and result visualization processes. Hence we have changed the original
vignette to reflect the new and improved package. This vignette supple-
ments the help documentation in providing lengthier examples of how to use
functions in the package.

Specific improvements to the package include:

� streamlined construction of input dlcross object

� ability to analyze backcrosses, doubled haploids, RILs, F2 intercrosses

� ability to analyze association mapping populations

� simple plot and summary functions to visualize output

2 Introduction

The dlmap package represents the implementation of the DLMapping algo-
rithm as described in [3]. DLMapping is a novel method of QTL mapping
in a mixed model framework with separate detection and localization stages.
The following vignette documents its usage through examples based on the
datasets included in the package.

The mixed model framework of the algorithm requires supplementary
packages for model fitting. Two such packages are supported through differ-
ent versions of the package functions. The asreml functions are faster and
more capable of handling complex models, but require a license for ASReml.
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The other functions make use of the freely available R library nlme. Some fa-
miliarity with one of the packages is recommended in order to use the dlmap

package. We demonstrate below the usage of both asreml and lme functions
to perform DLMapping.

In the following sections, we present the steps required to perform a sam-
ple QTL analysis. We first sketch the DLMapping algorithm for those who
are unfamiliar with its structure. Second, we describe the format of input files
for dlmap. We then step through two examples using the datasets included in
the package. In the first example, there is a single phenotypic observation for
each genotype, and we compare the performance of three functions: compos-
ite interval mapping (CIM), and DLMapping using each of the mixed model
packages (ASReml and nlme). Performing the analysis, interpreting the log
files and output, and plotting results are all demonstrated in this section.
In the second example, there is more than one phenotypic observation per
genotype, and in this case only DLMapping using ASReml is applicable.

The examples presented here do not cover every possible usage of the
library functions, but clarify their basic implementation. Further detail can
be found in the online help files for the package.

3 Methods

We begin by providing readers with an overview of our QTL mapping strat-
egy. A more detailed exposition is given in [3]. Our algorithm consists of two
parts: a detection stage and a localization stage. Both stages are iterative
and formulated within a mixed linear model framework.

Detection Stage

� Step D1: Specify mixed linear models. A full model and a reduced
(or nested) model for each chromosome under investigation are con-
structed. These models contain fixed and random marker effects to
simultaneously account for the extraneous effects of detected and un-
detected QTL, respectively.

� Step D2: Identify chromosomes containing undetected QTL. A likeli-
hood based test statistic is calculated for each chromosome under in-
vestigation. This test statistic measures the strength of evidence for
the presence of undetected QTL on a chromosome. The genome wide
significance of the test statistic is determined via permutation.

� Step D3: Identify markers to treat as fixed effects. For each chromo-
some found to contain significant evidence for undetected QTL in the
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previous step, the following procedure is performed. First, we construct
a linear mixed model for each marker on the chromosome. The marker
is treated as a fixed effect. Secondly, we calculate a Wald statistic for
the fixed marker effect. Thirdly, we identify the marker with the largest
Wald statistic on a chromosome. This marker is most strongly asso-
ciated with the QTL and is incorporated into subsequent models as a
fixed marker effect.

These three steps are repeated until chromosomes no longer contain de-
tectable QTL. Upon completion of the detection stage, rj QTL have been
detected on chromosome j. We then perform rj interval mapping scans on
chromosome j to localize these QTL.

Localization Stage
Perform interval mapping scan on a chromosome containing unmapped QTL.
Firstly, we compute the expected genotype of a QTL conditional on its hy-
pothesized position and the genotypes of the flanking markers. Secondly, we
construct a linear mixed model for each hypothesized position. This model,
analogous to the models used in the detection stage, contains fixed and ran-
dom effects to account for the confounding effects on localization of mapped
and unmapped QTL, respectively. We also include a fixed effect for the QTL
size in the model, formed from the expected QTL genotypes. Thirdly, we cal-
culate the Wald statistic of the QTL effect. The hypothesized QTL position
yielding the mixed model with the highest Wald statistic is the estimated
location of the QTL.

The QTL size for this position is included as a fixed effect in subsequent
scans. These steps are repeated for each detected QTL on a chromosome.
Once the detected QTL have been iteratively positioned, we construct a final
multiple regression model to accurately estimate the sizes of the QTL.

4 dlcross object

The dlmap fitting procedure requires as input an object of class dlcross

which contains the data frame to be used in model fitting. This object is
created from genotype, phenotype and map data by using the constructor
function dlcross. There are multiple input options, including compatibility
with R/qtl cross objects, and all of the formats supported by the func-
tion read.cross. Two new formats for data with phenotypic replicates or
association mapping populations are described in the following subsections.

Functions exist to easily print, summarize and plot the dlcross object:
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> library(dlmap)

> data(BSdat)

> dl.in1 <- dlcross(format = "rqtl", genobj = BSdat, idname = "ID")

> summary(dl.in1)

This is an object of class dlcross.

Summary of genetic and phenotypic data:

This is a bc population.

No. individuals: 250

No. phenotypic traits: 2

Percent phenotyped: 100 100

No. chromosomes: 9

Total markers: 99

No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

There are 250 unique genotypes and 250 unique phenotyped individuals.

4.1 format=”dlmap”

In order to accommodate datasets with extensive phenotypic data, we have
created a novel ”dlmap” format for input. This requires three files, represent-
ing genotypic, phenotypic, and marker map data. The files can be simple
text; or, if the data has already been read into R, objects can be input in
place of the files. The need for this format arises because dlmap, in contrast
to many other packages, can handle complex environmental and genetic re-
lationships simultaneously. Hence data may be observed which has multiple
phenotypic observations for each genotype.

Suppose there are n.gen genotyped individuals, n.ind phenotyped individ-
uals, n.obs phenotypic observations (per trait), and M markers in the data.
In general, n.gen ≤ n.ind ≤ n.obs since there may be multiple observations
per individual, and more individuals may be phenotyped than genotyped.
For example, control individuals whose genotypes are not of interest may be
included in the field design in a plant study. Individuals which are genotyped
but not phenotyped will not be considered in the analysis. A description of
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> plot(dl.in1)
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Figure 1: Plot summary of dlcross object, including genetic map and first
few phenotypes
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each file follows, along with the first few rows and columns of example files.
The format for each file is also outlined in the online help files.

Genotype File
The columns in the genotype data file represent a unique identifier for each
genotype and the genotype at each marker. The first row must be a header
which contains the name of the unique identifier, followed by the marker
names. The next n.gen rows contain the values for each genotyped individual.
Entries can be space or tab delimited. Missing values should be coded as NA.
Genotypes should take values from AA, AB, and BB or 0, 1, 2.

ID D1M1 D1M2 D1M3 D1M4
S1 0 0 0 0
S2 0 0 0 0
S3 1 1 0 0
S4 0 0 0 0
S5 0 0 0 0

Phenotype File
The columns in the phenotype data file represent a unique identifier for each
individual and any non-genotypic variables. The first row must be a header
which contains the name of the unique identifier, followed by the variable
names. The identifier name must match the name given in the genotype
file. The next n.obs rows contain the values for each phenotypic observation.
Entries can be space or tab delimited; missing values should be coded as NA.

ID phenotype
S1 2.084419
S2 2.076666
S3 2.740571
S4 2.373890
S5 2.382941

Map File
The map data file contains either two or three columns. There must be a
header row, but the column names are up to the user. The first column
must contain the marker names in map order. This should be the same as
the marker columns in the genotype file. The second column indicates on
which chromosome each marker can be found. The third (optional) column
indicates the position of the marker on the chromosome (in cM). If this
column is omitted, the marker positions will be estimated from the data.
Entries can be space or tab delimited. There should not be any missing
data.
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MrkID Chr Pos
D1M1 1 0
D1M2 1 10
D1M3 1 20
D1M4 1 30
D1M5 1 40

4.2 format=”other”

In this version of dlmap, we introduce the ability to analyze data from an
association mapping population. The data for this format should be input as
for the ”dlmap” format. However, this format does not require a full genetic
map for the analysis. Thus the map file need only contain two columns - one
for the marker names, and one for their chromosome assignments. Marker
positions can be omitted. Use of this format will also set options for input
to the mapping procedure, e.g., positioning QTL at markers rather than
performing interval mapping scans.

4.3 Additional Comments

1. Data can be entered as a simple text file. Variables containing character
values will be read in as factors, while numeric values will be read in
as numeric. Hence, the safest way to ensure that factor variables are
not treated improperly is to code all factor values as alphanumerics.
An example of this might be a variable representing the plot index of a
field trial. While a natural coding is to use the numbers 1, 2, etc., this
would be read in as a numeric variable. Instead the variable should be
coded as P1, P2, etc. If this is not done, the user must make sure to
use proper asreml syntax when fitting the model to treat variables as
factors. (e.g. dev() command)

2. The name of the unique identifier variable used in both the genotypic
and phenotypic data files must be the same. This variable is used to
merge the data together.

5 Example 1: Single phenotype per genotype

The dlmap package contains multiple datasets with marker and phenotype
data. We will examine these in a simple QTL mapping analysis.

BSdat is marker data from a simulated backcross. The data has class
cross and a summary is displayed by typing the object’s name. Thus we
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can see that it contains nine chromosomes, each with 11 markers genotyped
on 250 progeny. There are two phenotypes in the object - an identifier for
each genotype and a single trait.

> data(BSdat)

> BSdat

This is an object of class "cross".

It is too complex to print, so we provide just this summary.

Backcross

No. individuals: 250

No. phenotypes: 2

Percent phenotyped: 100 100

No. chromosomes: 9

Autosomes: 1 2 3 4 5 6 7 8 9

Total markers: 99

No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

Genotypes (%): AA:48.6 AB:51.4

The data was generated using the map included in the object, which
has markers evenly spaced at intervals of 10 cM on each chromosome. If
we estimate the map from the data, however, the markers will no longer be
evenly spaced, as displayed in Figure 2. Either the included or estimated
map can be used in the dlmap analysis by altering the value of the argument
estmap.

As described in the documentation for the dataset, the data were gener-
ated with seven true QTL, two in coupling on chromosome 1, two in repulsion
on chromosome 2, and one on each of chromosomes 3, 4, and 5. These QTL
are positioned at 30 and 70 cM for the first two chromosomes, and at 0, 20
and 40 cM for the other three respectively. All QTL have additive effects of
magnitude 0.76.

5.1 Standard analysis with Composite Interval Map-
ping

Composite Interval Mapping (CIM) is a popular QTL mapping method which
has been implemented in such programs as QTLCartographer [4] and the
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> BSmod <- replace.map(BSdat, est.map(BSdat))

> plot.map(BSmod)
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Figure 2: Linkage map estimated from BSdat data
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qtl package [2]. The dataset BSdat was generated according to a simulation
from [1] where the intent was to test the performance of CIM using different
numbers of cofactors. We run the analysis using R/qtl with five marker
cofactors.

> gp <- calc.genoprob(BSdat, step = 2)

> BScim <- cim(gp, n.marcov = 5)

> plot(BScim)

> abline(h = 3.56)
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Figure 3: LOD profile for CIM analysis of BSdat with 5 cofactors

This produces a LOD profile at steps of 2 cM along the genome, which
is plotted in Figure 3. The horizontal line indicates the threshold for signif-
icance of QTL. This genomewide threshold was derived in [1] from 50,000
simulations under the null hypothesis of no QTL. We can see from this plot
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that with five cofactors, CIM misses the two QTL on Chromosome 2 which
are in repulsion, but detects all the others. Even using seven cofactors, which
corresponds to the correct number of QTL, the maximum LOD score on this
chromosome (3.5) falls below the significance threshold of 3.77. Thus we
would like to use dlmap to (hopefully) identify all seven QTL.

5.2 DLMapping with lme

The dlmap.lme function is more restricted in its capabilities than dlmap.asreml.
For example, it can only handle up to 200 markers in a dataset, cannot incor-
porate additional random effects or covariance structure, and cannot handle
multiple phenotypic observations with genotypic data (i.e. replicates of geno-
types as are typical of plant studies). Assuming files have been created with
default names, then we run the analysis with

> system.time(BSlme <- dlmap.lme(object=dl.in1, phename="phenotype",

+ filestem="BS"))

user system elapsed

160.97 0.02 161.34

> names(BSlme)

[1] "input" "no.qtl" "final.model" "profile" "Summary"

> summary(BSlme)

Summary of input data:

This is an object of class dlcross.

Summary of genetic and phenotypic data:

This is a bc population.

No. individuals: 250

No. phenotypic traits: 2

Percent phenotyped: 100 100

No. chromosomes: 9

Total markers: 99
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No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

There are 250 unique genotypes and 250 unique phenotyped individuals.

Summary of final results:

Chr Pos Left Marker Right Marker Effect SD Z-value p-value

C1M5 1 41.73 D1M4 D1M6 -0.8445 0.1571 -5.38 0

C1M8 1 76.84 D1M7 D1M9 -0.7737 0.1551 -4.99 0

C2M4 2 32.04 D2M3 D2M5 -0.5824 0.1386 -4.2 0

C2M9 2 84.56 D2M8 D2M9 0.5205 0.1395 3.73 0.0002

C3M6 3 51.79 D3M5 D3M7 -0.9032 0.128 -7.06 0

C4M4 4 25.29 D4M3 D4M5 -0.7359 0.1289 -5.71 0

C5M1 5 0 D5M1 D5M2 -0.6975 0.1276 -5.47 0

The output is a dlmap object with 5 components. There are print, sum-
mary, and plot commands to visualize the results graphically and numerically.
These are discussed further below.

� input: the original dlcross input object

� no.qtl: the total number of QTL detected

� final.model: the output after fitting all the QTL in a multiple regres-
sion

� profile: a list with components for each chromosome where QTL
are detected. Each component is a matrix with two rows. The first
row contains the positions for the localization scan of that chromosome
(determined by the arguments step and fixpos), while the second row
contains the Wald statistic for the given position. QTL are located
based on the size of the Wald statistic, so plotting the profile will show
a profile similar to the LOD profile from CIM. Can be plotted using
the function profileplot

� Summary: information about the detected QTL. It is a data frame with
seven columns:

– Column 1 indicates the chromosome of each detected QTL

– Column 2 indicates the position in cM of the QTL

– Column 3 indicates the name of the marker flanking the QTL on
the left
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– Column 4 indicates the name of the marker flanking the QTL on
the right

– Column 5 indicates the additive (dominant) effect estimates for
the QTL

– Column 6 indicates the Z-ratio for the size estimate in the multiple
regression model

– Column 7 indicates the p-value for the Z-ratio

Thus we see that all seven QTL are detected with DLMapping, even with
the use of the conservative Bonferroni correction. The position estimates are
rough since we scanned for QTL only at markers rather than at intermarker
positions. In order to perform the same grid search as CIM, we would add the
argument step=2. Alternately, we can search a specified number of evenly
spaced positions between markers by setting the argument fixpos.

5.3 DLMapping with asreml

The same analysis can also be run using asreml to fit the mixed models
instead of lme. The results are identical; one difference in the output is that
the final.model component of the output list is the output from fitting an
asreml model rather than from a multiple linear regression.

> system.time(BSas <- dlmap.asreml(object=dl.in1, phename="phenotype",

+ filestem="BS"))

user system elapsed

45.97 1.53 47.56

> names(BSas)

[1] "input" "no.qtl" "final.model" "profile" "Summary"

> summary(BSas)

Summary of input data:

This is an object of class dlcross.

Summary of genetic and phenotypic data:

This is a bc population.

13



No. individuals: 250

No. phenotypic traits: 2

Percent phenotyped: 100 100

No. chromosomes: 9

Total markers: 99

No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

There are 250 unique genotypes and 250 unique phenotyped individuals.

Summary of final results:

Chr Pos Left Marker Right Marker Effect SD Z-value p-value

C1M5 1 41.73 D1M4 D1M6 -0.845 0.157 -5.38 0

C1M8 1 76.84 D1M7 D1M9 -0.774 0.155 -4.99 0

C2M4 2 32.04 D2M3 D2M5 -0.582 0.139 -4.19 0

C2M9 2 84.56 D2M8 D2M9 0.521 0.14 3.72 0.0002

C3M6 3 51.79 D3M5 D3M7 -0.903 0.128 -7.05 0

C4M4 4 25.29 D4M3 D4M5 -0.736 0.129 -5.71 0

C5M1 5 0 D5M1 D5M2 -0.697 0.128 -5.45 0

There are many more options available in the asreml implementation
of DLMapping. In addition to the step and fixpos options for specifying
the grid search to localize QTL, we can set the number of permutations
to perform and fit much more complicated models for phenotypic variation.
The default number of permutations is 0, in which case p-values are adjusted
with the Bonferroni correction. Permutation testing is not implemented for
dlmap.lme due to the time requirements. Fitting the same model using
dlmap.lme and dlmap.asreml takes 268 and 41 seconds, respectively.

5.4 DLMapping Log Files

In the process of performing the DLMapping analysis, two log files will be cre-
ated. The names of these files can be specified with the argument filestem,
which has a default value of ”dl”. The two files will then be created in the
working directory with names ”filestem.trace” and ”filestem.det.log”. If the
option to run permutations is selected, there will also be files created contain-
ing all of the permutation test statistics for each iteration of the detection

14



stage. These files will have the extension ”.permX”where X denotes the given
iteration.

The trace file is created in order to port all of the output from asreml

model fitting to a separate file. For each model that is fit, asreml outputs
the convergence process and various licensing information which can obscure
other, more important messages. In the trace file, this output is labelled
by whether the models are fit for testing, for marker scans in the detection
stage, or for interval mapping scans in the localization stage. However, for
the most part this output will not provide much additional useful information.

Note: The trace file will not be created with dlmap.lme because lme does
not output the same information to the screen.

The detection log (.det.log) file provides some additional information about
the detection stage. For each iteration of the detection stage, it contains
the likelihood ratio test statistics for each chromosome, along with adjusted
p-values. The p-values are adjusted for the number of chromosomes tested,
either by the Bonferroni correction or by permutation. The genomewide
threshold at the specified significance level is given using the same criterion
for multiple testing, and the marker selected for each significant chromosome
is specified. Thus this gives a much more complete picture of the QTL detec-
tion process than the final output. The test statistics from the first iteration
may be of interest in order to identify chromosomes which were significant
at different alpha levels.

The output from this file is included below as an example.

****************************************************
Iteration 1: No. Permutations=0

Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9
Obs: 80.4961 8.9876 38.2735 14.638 14.581 0.0181 0.0292 0 0.018
P-val: 0 0.0122 0 6e-04 6e-04 1 1 1 1

5% Genomewide Threshold: 6.4475
Significant chromosomes to be used for scanning/testing:

Chr1 Chr2 Chr3 Chr4 Chr5
Mrk: 5 4 6 4 1

**************************************************************
Iteration 2: No. Permutations=0
Chromosomes from previous iteration:

Chr1 Chr2 Chr3 Chr4 Chr5
Obs: 13.6822 8.0164 0.6127 0 0
P-val: 5e-04 0.0116 1 1 1

15



5% Genomewide Threshold: 5.4119
Significant chromosomes for next round of testing/scanning:

Chr1 Chr2
Mrk: 8 9

**************************************************************
Iteration 3: No. Permutations=0
Chromosomes from previous iteration:

Chr1 Chr2
Obs: 0 0.3385
P-val: 0.9967 0.5607

5% Genomewide Threshold: 3.8415

5.5 Plotting Results

There are two plot functions to visualize the dlmap object in addition to
tabulating results via the summary function. The default plot function dis-
plays the detected QTL on the genetic linkage map. If no QTL are detected,
the genetic map itself is plotted for all or a subset of chromosomes. If QTL
are detected, this subset is chosen to be those with QTL. In this case, the
function will mark the estimated positions of QTL, highlight the flanking
markers, and shade the regions between the flanking markers. This helps to
visualize where QTL have been detected. The plot for this example is given
below, where QTL have been positioned using a step size of 2 cM.

The second type of plot displays the QTL profiles for chromosomes where
they were detected. The function profileplot takes as input an object of
class dlmap and constructs plots of the Wald statistic on each chromosome
where QTL were detected. These statistics are used to localize QTL and
hence the profile plots are analogous to a LOD profile from CIM.

6 Example 2: Multiple phenotypes per geno-

type

The second example we present here is representative of a more complicated
design where we may observe multiple observations per genotype, as in a
large field trial. We use the same object BSdat for the marker data but the
object BSphe now contains the phenotypic data. The data is generated as if
from a randomized complete block design where we have four observations
per genotype. From Figure 6, which shows boxplots of the trait within each
block, we can see clear differences between blocks. We can account for this
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> BSplot <- dlmap.asreml(object=dl.in1, phename="phenotype",

+ step=2)

> plot(BSplot)
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Figure 4: Linkage map for chromosomes with detected QTL
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> profileplot(BSplot)
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Figure 5: Profile plot for chromosomes with detected QTL
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effect using the mixed modeling framework of dlmap and thus gain power to
detect QTL via the additional observations.

> data(BSphe)

> names(BSphe)

[1] "ID" "Block" "phenotype"

> table(BSphe$Block)

1 2 3 4

250 250 250 250

> boxplot(BSphe$phenotype ~ BSphe$Block)
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Figure 6: Distribution of quantitative trait within blocks

With dlmap.asreml we can analyze the data in the context of the ad-
ditional phenotypic data in BSphe. This is not possible using dlmap.lme
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or CIM. For this data we construct new input files which include all of the
phenotypic data, and then fit a model which has a random effect for block.
This requires more time than the simple model due to the larger dataset, but
at 166 seconds is still faster than dlmap.lme. As previously, all seven QTL
are detected, but the QTL effects are more significant due to the increased
number of observations. We can also recover the BLUPs for the block ran-
dom effects through the final.model component of the output. The log files
have similar formats to those described in the first example.

> dl.in2 <- dlcross(format = "rqtl", genobj = BSdat, pheobj = BSphe,

+ idname = "ID")

> summary(dl.in2)

This is an object of class dlcross.

Summary of genetic and phenotypic data:

This is a bc population.

No. individuals: 250

No. phenotypic traits: 3

Percent phenotyped: 100 100 100

No. chromosomes: 9

Total markers: 99

No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

There are 250 unique genotypes and 1000 unique phenotyped individuals.

> system.time(BSasph <- dlmap.asreml(object=dl.in2, phename = "phenotype",

+ env = T, random = ~Block))

user system elapsed

164.19 1.41 166.02

> summary(BSasph)

Summary of input data:
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This is an object of class dlcross.

Summary of genetic and phenotypic data:

This is a bc population.

No. individuals: 250

No. phenotypic traits: 3

Percent phenotyped: 100 100 100

No. chromosomes: 9

Total markers: 99

No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

There are 250 unique genotypes and 1000 unique phenotyped individuals.

Summary of final results:

Chr Pos Left Marker Right Marker Effect SD Z-value p-value

C1M4 1 33.05 D1M3 D1M5 -0.706 0.072 -9.81 0

C1M8 1 76.84 D1M7 D1M9 -0.76 0.071 -10.7 0

C2M4 2 32.04 D2M3 D2M5 -0.845 0.072 -11.74 0

C2M8 2 70.87 D2M7 D2M9 0.897 0.072 12.46 0

C3M6 3 51.79 D3M5 D3M7 -0.761 0.062 -12.27 0

C4M4 4 25.29 D4M3 D4M5 -0.699 0.062 -11.27 0

C5M1 5 0 D5M1 D5M2 -0.707 0.062 -11.4 0

> BSasph$final.model$coefficients$random

Block_1 Block_2 Block_3 Block_4

0.4835664 0.8503207 1.3388842 -2.6727712

> BSasph$final.model$gammas

Block R!variance

3.508775 1.000000
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