
fgui: A Method for Automatically Creating

Graphical User Interfaces for Command-Line R
Packages

Thomas J. Hoffmann
Harvard School of Public Health

Nan M. Laird
Harvard School of Public Health

Abstract

This introduction to the R package fgui is a (slightly) modified version of Hoffmann
and Laird (2009), published in the Journal of Statistical Software.

The fgui R package is designed for developers of R packages, to help rapidly, and
sometimes fully automatically, create a graphical user interface for a command line R
package. The interface is built upon the Tcl/Tk graphical interface included in R. The
package further facilitates the developer by loading in the help files from the command
line functions to provide context sensitive help to the user with no additional effort from
the developer. Passing a function as the argument to the routines in the fgui package
creates a graphical interface for the function, and further options are available to tweak
this interface for those who want more flexibility.

Keywords: GUI, interface, fgui.

1. Introduction

There have been many efforts to create packages to make graphical interfaces for R (R De-
velopment Core Team 2008) that make R appeal to a broader audience. These are typically
built on low level packages that provide interfaces to widget libraries. The Tcl/Tk implemen-
tation with the tcltk package (Dalgaard 2001) is included with Microsoft Windows and Linux
versions of R by default, and is only slightly more difficult to install on a Mac. Thus there
is no extra configuration or installation necessary by the user, and so it is our widget library
of choice. Other packages include the gWidgets package that aims to provide a standard
programmatic interface with different widget libraries (Verzani 2007). These have been used
to build feature-rich interfaces that expose some of the functionality of R to users that do not
want to use the command line for everything. Such menu-driven graphical interfaces include
R Commander (Rcmdr, Fox 2005) and pmg (Verzani and Noel 2008).

Rather than provide a universal graphical user interface (GUI), we created an R package
that eases the creation of a basic interface by automating the repetitive tasks in creating
such an interface. There are several packages that aim to make this easier for the developer.
The package rpanel (Bowman, Crawford, Alexander, and Bowman 2007) provides one such
graphical toolkit aimed at interactive plots. The aim of the fgui package is to make it as simple
as possible for a developer to create a basic graphical interface to a command-line function.
The main graphical routine in the fgui package behaves similarly to the ggenericwidget

2 fgui: A Method for Automatically Creating GUIs for Command-Line R Packages

Figure 1: A more advanced graphical interface from the fbati R package (Hoffmann et al.
2009) built using fgui. Shown in Linux.

routine in gWidgets, using the names of function arguments to create widgets. The fgui is
tailored towards creating a slightly different interface than the ggenericwidget routine, as
the examples below will illustrate. The fgui package is built on the tcltk package (Dalgaard
2001), and so allows for further customization later using routines in the tcltk package for
those who want more complicated interfaces, but wish to use some of the more automated
creation routines. The package also provides a menu interface “launchpad” to link together
graphical interfaces for multiple functions with no additional effort. It is available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/.

It is also tedious after writing help documentation to include context sensitive help into a
GUI, and keep it synced properly with the written documentation. We avoid this situation
by parsing the written help documentation and using it to provide context sensitive help for
each argument. Thus developers need to write and maintain only one set of documentation.

2. Using the main fgui routines

The best way to learn how to use the fgui R package is to look at the examples included in
the package’s documentation. The R package fbati (Hoffmann et al. 2009) uses this package
to create several graphical interfaces, one of which is shown in Figure 1. Here we describe
how to turn a command-line function into a graphical interface with a simple command.

2.1. A simple example

Suppose that we have a command line function that does something; for example, suppose we
want to do a simple sample size calculation. The command line function might look something
like the following

http://CRAN.R-project.org/

Thomas J. Hoffmann, Nan M. Laird 3

R> ss <- function(alpha = 0.05, beta = 0.8, sigma = 2, effect_size = 0.5)

+ ceiling((qnorm(1 - alpha / 2) + qnorm(1 - beta)) ^ 2 * sigma ^ 2 /

+ effect_size ^ 2)

Each argument to the function (i.e., alpha, beta) will be translated into a widget in our
graphical interface, and the value returned from the function will become the output in our
graphical interface. The simplest power interface could be generated simply by the command

R> guiv(ss)

shown in Figure 2. By pressing the OK button, the user invokes the ss function that we have
provided. The user can also press the cancel button to close the interface without running
the code.

A modal dialogue is chosen by default. With a modal dialogue, the R session will pause until
the user is done interacting with the graphical interface, and the return value can be stored
in an object of the users choosing. With a non-modal dialogue, the return value cannot be
stored, but can be accessed later by guiv. A modal dialogue is useful when one wants to force
the user to interact with your graphical interface before continuing. However, it prevents the
user from using R until the graphical interface is terminated, so the user would not be able to
do any intermediate calculations they might want to input into your graphical interface using
the R command line. Additionally, a modal dialogue can be confusing to the user, as the
command line becomes inactive until the window is closed. Hence a message is printed out to
the user describing how to proceed. When desired, the window can be set to be non-modal by
setting the argument modal = FALSE. In that case, functionality will return to the command
prompt.

This provides a usable interface, but we can improve on it. The type of widget is by default a
text entry for each argument, and this can be changed by passing arguments to the function.
For instance, to create a slider interface with ranges for the parameter, we can run the
command

R> gui(ss,

+ argSlider = list(alpha = c(0, 0.1, 0.001), beta = c(0, 1, 0.01),

+ sigma = c(0, 10), effect_size = c(0, 10), output = c(0, 10000, 1)),

+ exec = NULL,

+ argText = list(output = "sample size"),

+ cancelButton = FALSE,

+ title = "Sample size calculator",

+ callback = guiExec)

The first thing to note in this second example is that here we use the function gui instead
of guiv, just to show the difference of the two functions. This returns the values in the GUI
of the arguments of the function ss as a list, rather than the output. Thus the values for a
necessary sample size would be returned, rather than the sample size as was done before. The
default in this case is to create an output control that will present the output of the developers
function. Thus gui is designed with default values for when the output of the function is to
be presented in the GUI, whereas guiv is designed with default arguments to return output
to the user. The functions gui and guiv take identical arguments, but differ on their return

4 fgui: A Method for Automatically Creating GUIs for Command-Line R Packages

Figure 2: Default, basic graphical interface for the sample size function. Shown in Microsoft
Windows XP.

Figure 3: A better sample size interface, created with mgui to also provide a menu interface
for multiple command-line functions. Shown in Microsoft Windows XP.

value, and a few default argument values. A default setting of the gui routine is to create an
output text entry, where the output of the function will be displayed as the user executes the
function. The default is not to close when the OK button is pressed for gui, unlike guiv where
the value is immediately returned. However, here we disable the execute button altogether by
setting exec = NULL. We then specify that the output should instead be the form of a slider,
by referring to it with output. This is specified along with the function arguments in the
argSlider parameter. This parameter should be set to a list consisting of elements with the
same name as the function arguments, having a vector of the minimum, maximum and step
size for each as in the code above. Finally, we set the callback to guiExec, a function in the
fgui R package. We will discuss the callback further in a moment; it forces the execution of
the function ss, and displays the results. So instead of pressing the OK button, the function
is executed whenever any of the slider values change. Lastly, the argText parameter controls
the text shown in the label next to the component, i.e., the output component is labeled by
sample size, as shown in Figure 3.

The usage of sliders, as in this example, is particularly well suited for power and sample size
interfaces. Besides text entries and sliders, the package also supports an edit box, a widget
for a small set of options, a widget for a large set of options (i.e., list) that can be modified,

Thomas J. Hoffmann, Nan M. Laird 5

and a widget for choosing files. These are all created in a similar fashion, and are detailed in
the package documentation.

2.2. Further tweaking

While this may suit many users, a user may find that they need more control over the package.
For example, setting list values for a user to choose from when a certain option is pressed.
This can be accomplished with the callback function, a function that takes one argument,
which is the argument that was modified by the user. Argument values can be accessed and
changed via the guiGetValue(s) and guiSetValue(s,value) functions, respectively, where
s is the name of the parameter in the original function (i.e., alpha in the example above).
Alternatively, the function guiGetAllValues() returns a list of the current values of all of the
widgets. For example, setting the callback argument to gui to be the function function(s)
print(guiGetValue(s)) would print out the value of the argument when modified. In the
example above, guiExec causes the passed function to be evaluated at the argument values.
A useful example in this case would be handling when the sample size changes (the output
argument in the callback function) to solve for one of the other parameters, i.e., beta. A
further detailed example of how one might want to use the callback function is provided in
Section 2.4.
If we want to customize the output further or change the default values, then we could write
another function, such as

R> ssPretty <- function(alpha = 0.05, beta = 0.9, sigma = 2,

+ effect_size = 0.5) paste("The sample size needed is",

+ ss(alpha, beta, sigma, effect_size))

Then we could create the GUI with the following

R> gui(ssPretty, helpsFunc = "ss")

This allows us to use the help documentation from the ss function, had this been a real R
package.
Further customization is described in the package documentation, such as setting the griding
order for more complicated interfaces. GUI interfaces can also be nested, i.e., a function
called from gui can recurse into calling a separate gui call. This is described in detail in
the documentation. Fine-grained customization can also be done via routines in the tcltk
package. The highest level of customization of the R package could be done by including and
modifying pieces of the source code of the fgui package in one’s own R package.

2.3. A “launchpad” graphical interface for multiple functions

Now suppose that we have a full R package with multiple functions, and we would like to
present the user with a menu-driven interface to choose several of our functions. This is done
by simply using the command mgui instead of gui. The arguments are exactly the same, with
the exception that now the title argument takes a vector of strings corresponding to the
menu, as in the following code. First we create a menu with some random number generators.

R> mgui(rgeom, title = c("Random", "Geometric"))

R> mgui(rbinom, title = c("Random", "Binomial"))

6 fgui: A Method for Automatically Creating GUIs for Command-Line R Packages

The corresponding graphical interfaces would have been created with

R> gui(rgeom, title = "Geometric")

R> gui(rbinom, title = "Binomial")

Then we can add a separator

R> fguiNewMenu(c("Random","SEPARATOR"))

Then we can add in some continuous random number generators.

R> mgui(rnorm, title = c("Random", "Normal"))

R> mgui(runif, title = c("Random", "Uniform"))

Finally, we can add the function that we have created.

R> mgui(ss,

+ argSlider = list(alpha = c(0, 0.1, 0.001), beta = c(0, 1, 0.01),

+ sigma = c(0, 10), effect_size = c(0, 10), output = c(0, 10000, 1)),

+ exec = NULL, argText = list(output = "sample size"),

+ cancelButton = FALSE,

+ title = c("Misc", "Sample Size"),

+ callback = guiExec)

In this last piece of code, the only parameter changed from before is the title argument.
This creates the interface shown in Figure 3.

The file menu seen in the figure is generated by default, and allows the output in the console
to be saved in a text file. This console can be written to, for example, with the command
fguiWindowPrint("Hello world!"). Thus creating a menu driven interface to launch graph-
ical interfaces for multiple functions in fgui is really no harder than creating each interface.

2.4. An advanced example with callback

We provide one more example of how to use the R package to create a somewhat more
advanced and customized graphical interface. Here we are focused more on creating the
interface, rather than just running a function. Ultimately, we want a user to be able to fit
a linear regression with the lm routine, and give them the result. But we want to do more
than just that. We want the user to be able to simulate a dataset with the press of a button
in case they want to just test out our routine. We additionally want to create some scatter
plots, and allow the user to get some summary output, if they do not want to further use R.
We would probably want to add even more things, such as fit diagnostics, etc., but we wish
to keep the example sufficiently short. Since we want the graphical interface to do more than
just one function alone, we add arguments to the function passed to the guiv routine that
are used only to create the graphical interface, and not to be passed into the lm routine. The
final interface that we are aiming for is give in Figure 4. We have the following code that we
will pass to the guiv function.

Thomas J. Hoffmann, Nan M. Laird 7

Figure 4: The GUI for the advanced example interface for a linear regression. Shown in
Linux.

R> lmgui2 <- function(csvFilename, simData, response, explanatory,

+ scatter, summary)

+ {

+ data <- guiGetSafe("PERSONAL_dataset")

+ if(class(data)[1] != "data.frame") stop("Data must be loaded.")

+ if(length(response) == 0) stop("Must specify a response.")

+ if(length(explanatory) == 0) stop("Explanatory variable expected.")

+ modelStr <- paste(response, "~", paste(explanatory, collapse = "+"))

+ return(lm(formula = modelStr, data = data))

+ }

In this function we will make extensive use of the callback function. The simData, scatter,
and summary parameters will only be used as place holders for construction of the GUI. They
will not be evaluated, and will only be used in the callback function. The body of the functions
code first loads the data from what can be thought of as a global variable. This globably
variable will be set by the callback function. Then some error checking is done, and the lm
routine is run. Note the use of the stop function in the code above. Whenever an error
is produced, a message box with the error will be presented to the user. We can enter the
following code to handle the callback routine.

R> lmgui2Callback <- function(arg) {

+ if(arg == "csvFilename") {

+ csvFilename_press()

+ } else if(arg == "simData") {

+ simData_press()

+ } else if(arg == "scatter") {

8 fgui: A Method for Automatically Creating GUIs for Command-Line R Packages

+ scatter_press()

+ } else if(arg == "summary") {

+ summary_press()

+ }

+ }

In the callback function given below, the arg value represents what function argument was
interacted with corresponding to the widget created for it, e.g., csvFilename. When the
Load data (csv) button is pressed, and a dataset is chosen, then the lmgui2Callback rou-
tine is executed with arg set to "csvFilename", the name of the argument in the original
lmgui2 function. Then the following function is executed

R> csvFilename_press <- function()

+ {

+ data <- read.csv(guiGetValue("csvFilename"))

+ guiSet("PERSONAL_dataset", data)

+ setListElements("response", names(data))

+ setListElements("explanatory", names(data))

+ }

Our code reads in the dataset into PERSONAL_dataset, which can be thought of as a global
variable. Then we set the possible response and explanatory variables. The setListElements
takes two arguments, the first being the argument in the lmgui2 function that we are using
that will be in the argList parameter to fgui. The second argument is the possible values
that it might take; here we set this to be the names of the dataset. Alternatively, we want
the user to be able to have a simulated dataset, which is handled with the next callback.

R> simData_press <- function() {

+ set.seed(13)

+ library("MASS")

+ data <- data.frame(mvrnorm(n = 100, mu = c(0, 0, 0),

+ Sigma = matrix(c(1, 0.3, 0, 0.3, 1, 0.3, 0, 0.3, 1), nrow = 3)))

+ names(data) <- c("Response", "Covariate1", "Covariate2")

+ write.csv(data, "lmgui2_generated.csv", row.names = FALSE)

+ guiSetValue("csvFilename", "lmgui2_generated.csv")

+ lmgui2Callback("csvFilename")

+ }

This routine generates a random set of data, and then writes this dataset to disk. The value
of csvFilename is then set to the filename that was written out to disk. The data is loaded
by rerunning the callback routine as if the csvFilename button had been pressed.

Thirdly, the scatter argument is run when the scatter button has been pressed.

R> scatter_press <- function() {

+ data <- guiGetSafe("PERSONAL_dataset")

+ response <- guiGetValue("response")

Thomas J. Hoffmann, Nan M. Laird 9

+ wh.response <- which(names(data) == response)

+ if(length(wh.response) != 1)

+ stop("One and only one response must be chosen.")

+ if(class(data)[1] != "data.frame")

+ stop("Data must be loaded.")

+ par(mfrow = rep(ceiling(sqrt(ncol(data) - 1)), 2))

+ for(i in setdiff(1:ncol(data), wh.response))

+ plot(data[[i]], data[[wh.response]],

+ xlab = names(data)[i], ylab = names(data)[wh.response])

+ }

This function first gets the dataset that has been loaded in previously and stored in the object
PERSONAL_dataset. Behind the scenes, when the response widget was pressed, it was set by
the user to some value. Here, this can be only one value, but in general, a user could select
multiple values if desired. Then we just generate multiple scatterplots with this value as the
response, and all others as a covariate.

R> summary_press <- function()

+ print(summary(guiExec()))

Lastly, the summary argument is run when the corresponding button is pressed. The guiExec()
function returns the value of the function at the current arguments, so it returns the result
of the lm routine at the current arguments. Then we use the S3 generic function summary to
print a summary of the current fit.

All that is left is to link the lmgui2 and lmgui2Callback functions together in a call to guiv.

R> fit <- guiv(lmgui2,

+ argFilename = list(csvFilename = NULL),

+ argList = list(response = NULL, explanatory = NULL),

+ argCommand = list(simData = NULL, scatter = NULL, summary = NULL),

+ callback = lmgui2Callback,

+ argGridOrder = c(1, 1, 2, 2, 3, 3),

+ argText = c(csvFilename = "Load data (csv)",

+ simData = "Simulate data",

+ response = "Choose response variable",

+ explanatory = "Choose explanatory variable",

+ scatter = "Generate scatterplot to response variable",

+ summary = "Print summary"))

In the argCommand parameter, each is set to NULL. These could instead be set to functions,
which would be executed when pressed. We instead handle everything in the callback routine.
The last thing special to note from this is the argGridOrder parameter. This corresponds to
the arguments in the lmgui2 function, and handles how they are gridded. For instance, the
widget to load the dataset and that to simulate it will be placed on the same line because
they both correspond to 1, rather than the default of the first being set to 1 and the second
to 2. This continues with the next two widgets being on the same line, and the last 2 being
put on an additional line.

10 fgui: A Method for Automatically Creating GUIs for Command-Line R Packages

Figure 5: A GUI for the mean function. Shown in Mac OS X.

Although it makes no sense here, if we had wanted to provide a list values for the response,
say c("r1", "r2", "r3") to choose from, we would alter the fourth line in the code above
to be

+ argList = list(response = c("r1", "r2", "r3"), explanatory = NULL),

2.5. A note on S3 generic functions

The gui function does not generally work on S3 generic functions, but there is generally a
simple workaround. For example, suppose we wish to create a graphical interface for the
mean function. One should avoid the S3 generic function and instead call the function specific
to that class. For example, instead of running gui(mean), one should instead run it with
gui(mean.default), assuming that is what is wanted. A prettier interface could be created
with

R> gui(mean.default,

+ argText = list(output = "mean"),

+ argOption = list(trim = c("FALSE", "TRUE"), na.rm = c("TRUE", "FALSE")))

and is shown in Figure 5. The interface supports built in datasets, so, for example, one could
enter rivers in the resulting text entry, and that dataset included in R would be used.

3. Lower level Tcl/Tk routines in fgui

We open up some of the more internal functions for advanced users, but do not generally
recommend them unless the user has previous experience with the tcltk package. However, for
users that just want to use the routines in fgui to facilitate the creation and handling of Tcl/Tk
widgets, we provide a lower level interface to the tcltk R package. For example, the default
text entry option created by the gui routine could be created by a call to guiTextEntry.
Essentially all of the graphical widgets we have shown before have corresponding low-level
routines that were used to create them. These can be created, and then gridded. We have the
following simple example of creating a database GUI, as shown in Figure 6. In this example

Thomas J. Hoffmann, Nan M. Laird 11

we are still creating objects with the fgui package, but we take much more control of how
they are placed and displayed to the user.
We can create and title a Tcl/Tk form via

R> library("tcltk")

R> fr <- tktoplevel()

R> tkwm.title(fr, "Database App")

which will show a window to the user. That is, it creates an empty main window in which
we will create and place all of our graphical widgets. Most widgets are not placed on the
form automatically, so that the user can place them anywhere, which will be done later. The
exception is the guiTextEntry, which must be gridded due to how it is created. Most of the
time you will want to put each in a separate containing frame, but for some multi-column
alignments you may not want to do this. We begin by putting on a load button on, similar
to specifying things as a file loading widget before. Then we place a slider for the record
number.

R> fname <- guiFilename(sframe = fr, text = "Load database...")

R> tkgrid(fname$guiObject)

R> tkgrid.configure(fname$guiObject, sticky = "nws")

R> rec <- guiSlider(sframe = fr, text = "Database Record",

+ default = 1, min = 1, max = 100, step = 1)

R> tkgrid(rec$guiObject)

R> tkgrid.configure(rec$guiObject, sticky = "nws")

A frame can hold any type of widgets, even other frames. Thus very complicated griding
is possible, as we will demonstrate. The sframe argument either takes the result of the
tktoplevel() function, i.e., fr created above, or the result of any guiFrame call (example
below). The argument text is always the label of the widget, and default the default value.
The second, third, fifth, and sixth lines in the code above are routines from the tcltk that
handle griding and displaying the objects. Next, to make this routine look nicer, we will want
the next components to be narrower than they would be usually. We can change the default
widths or heights of the guiEdit widgets and guiTextEntry widgets with

R> guiSet("EDIT_WIDTH", 40)

R> guiSet("EDIT_HEIGHT", 3)

R> guiSet("ENTRY_WIDTH", 30)

These routines also work with the gui and fgui routines above; however, here the values
set only affect controls created after they are set. For the next part, we want to create two
columns. This is achieved by first creating one frame, and then placing two frames inside of
that frame.

R> fr1 <- guiFrame(sframe = fr)

R> tkgrid(fr1)

R> fr1.1 <- guiFrame(sframe = fr1)

R> fr1.2 <- guiFrame(sframe = fr1)

R> tkgrid(fr1.1, fr1.2)

R> tkgrid.configure(fr1.1, sticky = "n")

12 fgui: A Method for Automatically Creating GUIs for Command-Line R Packages

Figure 6: A GUI built on lower level functions. Shown in Mac OS X.

For the left hand frame, we’ll first put in two text entries. Remember that text entries are
already gridded.

R> teName1 <- guiTextEntry(sframe = fr1.1, text = "First Name",

+ default = "John")

R> teName2 <- guiTextEntry(sframe = fr1.1, text = "Last Name",

+ default = "Doe")

R> tkgrid.configure(teName1$guiObject, sticky = "nes")

R> tkgrid.configure(teName2$guiObject, sticky = "nes")

Next, we will put in two options, right next to each other. We first put in a frame, and then
we put in both options in the frame

R> fr1.1.1 <- guiFrame(sframe = fr1.1)

R> tkgrid(fr1.1.1)

R> tkgrid.configure(fr1.1.1, sticky = "news")

R> opGender <- guiOption(sframe = fr1.1.1, text = "Gender",

+ choices = c("Female", "Male"))

R> opGlasses <- guiOption(sframe = fr1.1.1, text = "Glasses",

+ choices = c("No", "Yes"))

R> tkgrid(opGender$guiObject, opGlasses$guiObject)

R> tkgrid.configure(opGender$guiObject, sticky = "nws")

R> tkgrid.configure(opGlasses$guiObject, sticky = "nes")

Lastly, we want to put an edit box on the right hand side.

R> ed <- guiEdit(sframe = fr1.2, text = "Notes")

R> tkgrid(ed$guiObject)

4. Discussion

This package simplifies the creation of graphical interfaces for R packages. This R package
was written after recognizing that many routines have a lot of repetitive code and context-
sensitive help information, e.g., pbatR (Hoffmann and Lange 2006); many of the routines in
that package were modified for usage in this package. When creating the graphical interface

Thomas J. Hoffmann, Nan M. Laird 13

for the R package fbati (Hoffmann et al. 2009) as shown in Figure 1, we found fgui added a
graphical interface in a fraction of the time than it took to create the graphical interface for
the R package pbatR.

Acknowledgments

Funding was provided in part by grants MH17119, ES007142, and R01-MH059532. We would
also like to thank the reviewers for their comments and suggestions.

References

Bowman A, Crawford E, Alexander G, Bowman R (2007). “rpanel: Simple Interactive Con-
trols for R Functions Using the tcltk package.” Journal of Statistical Software, 17(9), 1–18.
URL http://www.jstatsoft.org/v17/i09/.

Dalgaard P (2001). “A Primer on the R-Tcl/Tk Package.” R News, 1(3), 27–31. URL
http://CRAN.R-project.org/doc/Rnews/.

Fox J (2005). “The R Commander: A Basic Statistics Graphical User Interface to R.” Journal
of Statistical Software, 14(9), 1–42. URL http://www.jstatsoft.org/v14/i09/.

Hoffmann T, Lange C (2006). “P2BAT: A Massive Parallel Implementation of PBAT for
Genome-Wide Association Studies in R.” Bioinformatics, 22(24), 3103–3105.

Hoffmann TJ, Laird NM (2009). “fgui: A Method for Automatically Creating Graphical User
Interfaces for Command-Line R Packages.” Journal of Statistical Software, 30(2). URL
http://www.jstatsoft.org/v30/i02/.

Hoffmann TJ, Lange C, Vansteelandt S, Laird NM (2009). “Gene-Environment Inter-
action Tests for Dichotomous Traits in Trios and Sibships.” Genetic Epidemiology.
doi:10.1002/gepi.20421. Forthcoming.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Verzani J (2007). “An Introduction to gWidgets.” R News, 3(3), 26–33. URL http://CRAN.
R-project.org/doc/Rnews/.

Verzani J, Noel Y (2008). pmg: Poor Man’s GUI. R package version 0.9-38, URL http:
//CRAN.R-project.org/package=pmg.

http://www.jstatsoft.org/v17/i09/
http://CRAN.R-project.org/doc/Rnews/
http://www.jstatsoft.org/v14/i09/
http://www.jstatsoft.org/v30/i02/
http://dx.doi.org/10.1002/gepi.20421
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/package=pmg
http://CRAN.R-project.org/package=pmg

14 fgui: A Method for Automatically Creating GUIs for Command-Line R Packages

Affiliation:

Thomas Hoffmann, Nan Laird
Department of Biostatistics
Harvard School of Public Health
Boston, MA 02115, United States of America
E-mail: tjhoffm@gmail.com, laird@hsph.harvard.edu
URL: http://www.people.fas.harvard.edu/~tjhoffm/fgui.html

mailto:tjhoffm@gmail.com
mailto:laird@hsph.harvard.edu
http://www.people.fas.harvard.edu/~tjhoffm/fgui.html

	Introduction
	Using the main fgui routines
	A simple example
	Further tweaking
	A "launchpad" graphical interface for multiple functions
	An advanced example with callback
	A note on S3 generic functions

	Lower level Tcl/Tk routines in fgui
	Discussion

