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1 Tables

This note describes various functions in the gRbase package for opetations on tables / arrays.
Consider the HairEyeColor data:

> data(HairEyeColor)

> hec <- HairEyeColor

> hec

, , Sex = Male

Eye

Hair Brown Blue Hazel Green

Black 32 11 10 3

Brown 53 50 25 15

Red 10 10 7 7

Blond 3 30 5 8

, , Sex = Female

Eye

Hair Brown Blue Hazel Green

Black 36 9 5 2

Brown 66 34 29 14

Red 16 7 7 7

Blond 4 64 5 8

Data is of class table and has dim and dimnames attributes
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> class(hec)

[1] "table"

> dim(hec)

[1] 4 4 2

> dimnames(hec)

$Hair

[1] "Black" "Brown" "Red" "Blond"

$Eye

[1] "Brown" "Blue" "Hazel" "Green"

$Sex

[1] "Male" "Female"

> str(hec)

table [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 ...

- attr(*, "dimnames")=List of 3

..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"

..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"

..$ Sex : chr [1:2] "Male" "Female"

Notice from the output above that the first variable (Hair) varies fastest.

There is a distinction between a table and an array in R. For the purpose of what is described
here the concepts can be used interchangably. What is important is that we are working on a
vector which has a dim and dimnames attribute. (Arrays do not need a dimnames attribute,
but they are essential in what follows here).

A formal description of a table is as follows: Let ∆ = {δ1, . . . , δR} be a set of discrete
variables where δr has a finite set Ir of levels. Let |Ir| denote the number of levels of δr and
let ir ∈ Ir denote a value of δr. A configuration of the variables in ∆ is i = i∆ = (i1, . . . , iR) ∈
I1 × . . .× IR = I∆. The total number of configurations is |∆| =

∏
r |Ir|.

2 Algebraic operations on tables

To define algebraic operations on tables, let U be a non–empty subsets of ∆ with configura-
tions IU and let iU denote a specific configuration. A table TU defined on IU is a function
which maps iU into some domain for all iU ∈ IU . Let U and V be non–empty subsets of ∆
with configurations IU and IV and let T 1

U and T 2
V be corresponding potentials.

The product and quotient of T 1
U and T 2

V are potentials defined on U ∪ V given by

TU∪V := T 1
U × T 2

V and TU∪V := T 1
U/T

2
V

respectively, with the convention that 0/0 = 0.
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If V ⊂ U is non–empty1 then marginalization of T 1
U onto V is defined as

T 1
V :=

∑
U\V

T 1
U

If V ⊂ U is non–empty then a configuration i∗V defines a slice of T 1
U as

T 1
U\V (iU\V ) := T 1

U (iU\V , i
∗
V )

To illustrate we find two marginal tables

> T1.U <- tableMargin(hec, c("Hair", "Eye"))

Eye

Hair Brown Blue Hazel Green

Black 68 20 15 5

Brown 119 84 54 29

Red 26 17 14 14

Blond 7 94 10 16

> T1.V <- tableMargin(hec, c("Hair", "Sex"))

Sex

Hair Male Female

Black 56 52

Brown 143 143

Red 34 37

Blond 46 81

Multiplication of these is done with
1Marginalization onto an empty set is not implemented.
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> T1.UV <- tableOp(T1.U, T1.V, op = "*")

, , Eye = Brown

Sex

Hair Male Female

Black 3808 3536

Brown 17017 17017

Red 884 962

Blond 322 567

, , Eye = Blue

Sex

Hair Male Female

Black 1120 1040

Brown 12012 12012

Red 578 629

Blond 4324 7614

, , Eye = Hazel

Sex

Hair Male Female

Black 840 780

Brown 7722 7722

Red 476 518

Blond 460 810

, , Eye = Green

Sex

Hair Male Female

Black 280 260

Brown 4147 4147

Red 476 518

Blond 736 1296

A reorganization of the table can be made with tablePerm:

> tablePerm(T1.UV, c("Hair", "Eye", "Sex"))

, , Sex = Male

Eye

Hair Brown Blue Hazel Green

Black 3808 1120 840 280

Brown 17017 12012 7722 4147

Red 884 578 476 476

Blond 322 4324 460 736

, , Sex = Female

Eye

Hair Brown Blue Hazel Green

Black 3536 1040 780 260

Brown 17017 12012 7722 4147

Red 962 629 518 518

Blond 567 7614 810 1296

A slice of a table is obtained with tableSlice:
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> tableSlice(hec, "Sex", "Female")

Eye

Hair Brown Blue Hazel Green

Black 36 9 5 2

Brown 66 34 29 14

Red 16 7 7 7

Blond 4 64 5 8

3 Defining tables / arrays

As mentioned above, a table can be represented as an array. In general, arrays do not need
dimnames in R, but for the functions described here, the dimnames are essential.

The examples here relate to the chest clinique example of Lauritzen and Spiegelhalter. The
following two specifications are equivalent:

> yn <- c("y", "n")

> T.U <- array(c(5, 95, 1, 99), dim = c(2, 2), dimnames = list(tub = yn, asia = yn))

> T.U <- ptable(c("tub", "asia"), nLevels = list(yn, yn), values = c(5, 95, 1,

+ 99))

Using ptable(), arrays can be normalized in two ways: Normalization can be over the first
variable for each configuration of all other variables or over all configurations. We illustrate
this by defining the probability of tuberculosis given a recent visit to Asia and by defining
the marginal probability of a recent visit to Asia:

> T.U <- ptable(c("tub", "asia"), nLevels = list(yn, yn), values = c(5, 95, 1,

+ 99), normalize = "first")

asia

tub y n

y 0.05 0.01

n 0.95 0.99

> T.V <- ptable("asia", list(yn), values = c(1, 99), normalize = "all")

asia

y n

0.01 0.99

The joint distributions is

> T.all <- tableOp(T.U, T.V, op = "*")

tub

asia y n

y 0.0005 0.0095

n 0.0099 0.9801

The marginal distribution of "tub" is
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> T.W <- tableMargin(T.all, "tub")

tub

y n

0.0104 0.9896

The conditional distribution of "asia" given "tub" is

> tableOp(T.all, T.W, op = "/")

asia

tub y n

y 0.048076923 0.9519231

n 0.009599838 0.9904002
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