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Preface

This booklet shows the probability functions for all distributions available in the gamlss package.

©: The copyright remains with the authors and any reproduction of the material in this
booklet must have the authors permission.
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Chapter 1

Distributions in the gamlss
packages

In this Chapter we provide the mathematical form of the probability function of all gamlss.family
distributions together with their means and variances.

The distributions in Tables 1.1, 1.2 and 1.3 provide a list of all gamlss.family distributions
with the default link functions for each of the parameters of the distribution. The tables are
constructed according to the type of random variable involve, that is whether the random
variable is a continuous, a discrete or a mixed (i.e. a mixture of a continuous and a discrete
distribution, for example a continuous distribution with additional point probabilities) random
variables. In the rest of the chapter we will put the mixed distributions with the continuous
ones (depending of the range possible values of the response) and we will categorize the discrete
distributions depending on whether the response variable is a count or binomial type (i.e. a
count out of a binomial denominator or total.)

In each case the specific parameterization(s) used by gamlss for each of the distributions is
given. Note that the gamlss package provides, for each parameterization, functions for the prob-
ability density function (pdf), cumulative distribution function (cdf), inverse cdf (i.e. quantile)
and random number generation. The functions are given by putting each of the letters d, p, q
and r respectively before the gamlss.family name for the particular distribution parameteri-
zation. For example, for the parameterization of the normal distribution given by (1.1) below,
denoted by NO(µ,σ), the corresponding gamlss.family functions dNO, pNO, qNO and rNO define
its pdf, cdf, inverse cdf and random number generation respectively. Note also that the package
gamlss.demo provides visual presentation of all the gamlss.family distributions and can be
used to examine how changing the parameters effects the shape of the distribution.

1.1 Continuous two parameter distributions on <

1.1.1 Normal (or Gausian) distribution (NO, NO2, NOF)

First parameterization (NO)

The normal distribution is the default of the argument family of the function gamlss(). The
parameterization used for the normal (or Gaussian) probability density function (pdf), denoted
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6 CHAPTER 1. DISTRIBUTIONS IN THE GAMLSS PACKAGES

Distributions R Name µ σ ν τ
beta BE() logit logit - -
Box-Cox Cole and Green BCCG() identity log identity -
Box-Cox power exponential BCPE() identity log identity log
Box-Cox t BCT() identity log identity log
exponential EXP() log - - -
exponential Gaussian exGAUS() identity log log -
exponential gen. beta type 2 EGB2() identity identity log log
gamma GA() log log - -
generalized beta type 1 GB1() logit logit log log
generalized beta type 2 GB2() log identity log log
generalized gamma GG() log log identity -
generalized inverse Gaussian GIG() log log identity -
generalized t GT() identity log log log
Gumbel GU() identity log - -
inverse Gaussian IG() log log - -
Johnson’s SU (µ the mean) JSU() identity log identity log
Johnson’s original SU JSUo() identity log identity log
logistic LO() identity log - -
log normal LOGNO() log log - -
log normal (Box-Cox) LNO() log log fixed -
NET NET() identity log fixed fixed
normal NO() identity log - -
normal family NOF() identity log identity -
power exponential PE() identity log log -
reverse Gumbel RG() identity log - -
skew power exponential type 1 SEP1() identity log identity log
skew power exponential type 2 SEP2() identity log identity log
skew power exponential type 3 SEP3() identity log log log
skew power exponential type 4 SEP4() identity log log log
sinh-arcsinh SHASH() identity log log log
skew t type 1 ST1() identity log identity log
skew t type 2 ST2() identity log identity log
skew t type 3 ST3() identity log log log
skew t type 4 ST4() identity log log log
skew t type 5 ST5() identity log identity log
t Family TF() identity log log -
Weibull WEI() log log - -
Weibull (PH) WEI2() log log - -
Weibull (µ the mean) WEI3() log log - -

Table 1.1: Continuous distributions implemented within the gamlss packages (with default link
functions)
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Distributions R Name µ σ ν
beta binomial BB() logit log -
binomial BI() logit - -
logarithmic LG() logit - -
Delaporte DEL() log log logit
negative binomial type I NBI() log log -
negative binomial type II NBII() log log -
Poisson PO() log - -
Poisson inverse Gaussian PIG() log log -
Sichel SI() log log identity
Sichel (µ the mean) SICHEL() log log identity
zero altered beta binomial ZABB() logit log logit
zero altered binomial ZABI() logit logit -
zero altered logarithmic ZALG() logit logit -
zero altered neg. binomial ZANBI() log log logit
zero altered poisson ZAP() log logit -
zero inflated beta binomial ZIBB() logit log logit
zero inflated binomial ZIBI() logit logit -
zero inflated neg. binomial ZINBI() log log logit
zero inflated poisson ZIP() log logit -
zero inflated poisson (µ the mean) ZIP2() log logit -
zero inflated poisson inv. Gaussian ZIPIG() log log logit

Table 1.2: Discrete distributions implemented within the gamlss packages (with default link
functions)

beta inflated (at 0) BEOI() logit log logit -
beta inflated (at 0) BEINF0() logit logit log -
beta inflated (at 1) BEZI() logit log logit -
beta inflated (at 1) BEINF1() logit logit log -
beta inflated (at 0 and 1 ) BEINF() logit logit log log
zero adjusted GA ZAGA() log log logit -
zero adjusted IG ZAIG() log log logit -

Table 1.3: Mixed distributions implemented within the gamlss packages (with default link
functions)
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by NO(µ,σ), is

fY (y|µ, σ) =
1√
2πσ

exp

[
− (y − µ)2

2σ2

]
(1.1)

for −∞ < y < ∞, where −∞ < µ < ∞ and σ > 0. The mean of Y is given by E(Y ) = µ and
the variance of Y by V ar(Y ) = σ2, so µ is the mean and σ is the standard deviation of Y .

Second parameterization (NO2)

NO2(µ,σ) is a parameterization of the normal distribution where µ represents the mean and σ
represents the variance of Y , i.e. fY (y|µ, σ) = (1/

√
2πσ) exp[−(y − µ)2/(2σ)].

Normal family (of variance-mean relationships) (NOF)

The function NOF(µ,σ,ν) defines a normal distribution family with three parameters. The
third parameter ν allows the variance of the distribution to be proportional to a power of the
mean. The mean of NOF(µ,σ,ν) is equal to µ while the variance is equal to V ar(Y ) = σ2|µ|ν ,
so the standard deviation is σ|µ|ν/2. The parametrization of the normal distribution given in
the function NOF(µ,σ,ν) is

f(y|µ, σ, ν) =
1√

2πσ|µ|ν/2
exp

[
− (y − µ)2

2σ2|µ|ν

]
(1.2)

for −∞ < y <∞, where −∞ < µ <∞, σ > 0 and −∞ < ν <∞.
The function NOF(µ,σ,ν) is appropriate for normally distributed regression type models

where the variance of the response variable is proportional to a power of the mean. Models of
this type are related to the ”pseudo likelihood” models of Carroll and Rubert (1987) but here a
proper likelihood is maximized. The ν parameter here is not designed to be modelled against
explanatory variables but is a constant used as a device allowing us to model the variance
mean relationship. Note that, due to the high correlation between the σ and ν parameters, the
mixed() method argument is essential in the gamlss() fitting function. Alternatively ν can be
estimated from its profile function, obtained using gamlss package function prof.dev().

1.1.2 Logistic distribution (LO)

The logistic distribution is appropriate for moderately kurtotic data. The parameterization of
the logistic distribution, denoted here as LO(µ,σ), is given by

fY (y|µ, σ) =
1
σ

{
exp

[
−
(
y − µ
σ

)]} {
1 + exp

[
−
(
y − µ
σ

)]}−2

(1.3)

for −∞ < y < ∞, where −∞ < µ < ∞ and σ > 0, with E(Y ) = µ and V ar(Y ) = π2σ2/3,
Johnson et al. (1995) p 116.

1.1.3 Gumbel distribution (GU)

The Gumbel distribution is appropriate for moderately negative skew data. The pdf of the
Gumbel distribution (or extreme value or Gompertz), denoted by GU(µ,σ), is defined by

fY (y|µ, σ) =
1
σ

exp
[(

y − µ
σ

)
− exp

(
y − µ
σ

)]
(1.4)
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for −∞ < y < ∞, where −∞ < µ < ∞ and σ > 0, with E(Y ) = µ − γσ ' µ − 0.57722σ and
V ar(Y ) = π2σ2/6 ' 1.64493σ2. See Crowder et al. (1991) p 17.

1.1.4 Reverse Gumbel distribution (RG)

The reverse Gumbel distribution, which is also called is the type I extreme value distri-
bution is a special case of the generalized extreme value distribution, [see Johnson et al. (1995)
p 2 and p 75]. The reverse Gumbel distribution is appropriate for moderately positive skew
data. The pdf of the reverse Gumbel distribution, denoted by RG(µ,σ) is defined by

fY (y|µ, σ) =
1
σ

exp
{
−
(
y − µ
σ

)
− exp

[
− (y − µ)

σ

]}
(1.5)

for −∞ < y < ∞, where −∞ < µ < ∞ and σ > 0, with E(Y ) = µ + γσ ' µ + 0.57722σ
and V ar(Y ) = π2σ2/6 ' 1.64493σ2. [Note that if Y ∼ RG(µ, σ) and W = −Y , then W ∼
GU(−µ, σ).]

1.2 Continuous three parameter distributions on <

1.2.1 Exponential Gaussian distribution (exGAUS)

The pdf of the ex-Gaussian distribution, denoted by exGAUS(µ,σ), is defined as

fY (y|µ, σ, ν) =
1
ν

exp
[
µ− y
ν

+
σ2

2ν2

]
Φ
(
y − µ
σ
− σ

ν

)
(1.6)

for −∞ < y <∞, where −∞ < µ <∞, σ > 0 and ν > 0, and where Φ is the cdf of the standard
normal distribution. Since Y = Y1 +Y2 where Y1 ∼ N(µ, σ2) and Y2 ∼ EX(ν) are independent,
the mean of Y is given by E(Y ) = µ+ ν and the variance is given by V ar(Y ) = σ2 + ν2. This
distribution has also been called the lagged normal distribution, Johnson et al., (1994), p172.

1.2.2 Power Exponential distribution (PE, PE2)

First parameterization (PE)

The power exponential distribution is suitable for leptokurtic as well as platykurtic data. The
pdf of the power exponential family distribution, denoted by PE(µ,σ,ν), is defined by

fY (y|µ, σ, ν) =
ν exp[−

∣∣ z
c

∣∣ν ]
2cσΓ

(
1
ν

) (1.7)

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0 and ν > 0 and where z = (y − µ)/σ and
c2 = Γ(1/ν)[Γ(3/ν)]−1.

In this parameterization, used by Nelson (1991), E(Y ) = µ and V ar(Y ) = σ2. Note that
ν = 1 and ν = 2 correspond to the Laplace (i.e. two sided exponential) and normal distributions
respectively, while the uniform distribution is the limiting distribution as ν →∞.

The cdf of Y is given by FY (y) = 1
2 [1 + FS(s)sign(z)] where S = |z/c|ν has a gamma

distribution with pdf fS(s) = s1/ν exp(−s)/Γ
(

1
ν

)
.
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Second parameterization (PE2)

An alternative parameterization, the power exponential type 2 distribution, denoted by PE2(µ,σ,ν),
is defined by

fY (y|µ, σ, ν) =
ν exp[− |z|ν ]

2σΓ
(

1
ν

) (1.8)

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0 and ν > 0 and where z = (y − µ)/σ. Here
E(Y ) = µ and V ar(Y ) = σ2/c2, where c2 = Γ(1/ν)[Γ(3/ν)]−1.

See also Johnson et al., 1995, volume 2, p195, equation (24.83) for a re-parameterized version
by Subbotin (1923).

1.2.3 t family distribution (TF)

The t family distribution is suitable for modelling leptokurtic data, that is, data with higher
kurtosis than the normal distribution. The pdf of the t family distribution, denoted here as
TF(µ,σ,ν), is defined by

fY (y|µ, σ, ν) =
1

σB
(

1
2 ,

ν
2

)
ν

1
2

[
1 +

(y − µ)2

σ2ν

]− ν+1
2

(1.9)

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0 and ν > 0, where B(a, b) = Γ(a)Γ(b)/Γ(a + b)
is the beta function. The mean and variance of Y are given by E(Y ) = µ and V ar(Y ) =
σ2ν/(ν− 2) when ν > 2. Note that T = (Y −µ)/σ has a standard t distribution with ν degrees
of freedom, given by Johnson et al. (1995), p 363, equation (28.2).

1.3 Continuous four parameter distributions on <
1.3.1 Exponential Generalized Beta type 2 distribution (EGB2)

The pdf of the exponential generalized beta type 2 distribution, denoted by EGB2(µ, σ, ν, τ),
is defined by

fY (y|µ, σ, ν, τ) = eνz{|σ|B(ν, τ) [1 + ez]ν+τ}−1 (1.10)

for −∞ < y < ∞, where −∞ < µ < ∞, −∞ < σ < ∞, ν > 0 and τ > 0, and where
z = (y−µ)/σ, McDonald and Xu (1995), equation (3.3). Here E(Y ) = µ+σ [Ψ(ν)−Ψ(τ)] and
V ar(Y ) = σ2

[
Ψ(1)(ν) + Ψ(1)(τ)

]
, from McDonald (1996), p437.

1.3.2 Generalized t distribution (GT)

This pdf of the generalized t distribution, denoted by GT(µ,σ,ν,τ), is defined by

fY (y|µ, σ ν, τ) = τ
{

2σν1/τB (1/τ, ν) [1 + |z|τ/ν]ν+(1/τ)
}−1

(1.11)

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0, ν > 0 and τ > 0, and where z = (y −
µ)/σ, McDonald (1991) and McDonald and Newey (1988) Here E(Y ) = µ and V ar(Y ) =
σ2ν2/τB

(
3
τ , ν −

2
τ

)
/B
(

1
τ , ν
)
, from McDonald (1991) p274.
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1.3.3 Johnson SU distribution (JSUo, JSU)

First parameterization (JSUo)

This is the original parameterization of the Johnson Su distribution, Johnson (1949). The
parameter ν determines the skewness of the distribution with ν > 0 indicating negative skewness
and ν < 0 positive skewness. The parameter τ determines the kurtosis of the distribution. τ
should be positive and most likely in the region above 1. As τ →∞ the distribution approaches
the normal density function. The distribution is appropriate for leptokurtotic data.

The pdf of the original Johnson’s Su, denoted here as JSUo(µ,σ,ν,τ), is defined by

fY (y|µ, σ ν, τ) =
τ

σ

1
(r2 + 1)

1
2

1√
2π

exp
[
−1

2
z2

]
(1.12)

for −∞ < y <∞, where −∞ < µ <∞, σ > 0, −∞ < ν <∞ and τ > 0, and where

z = ν + τ sinh−1(r) = ν + τ log
[
r + (r2 + 1)

1
2

]
, (1.13)

where r = (y − µ)/σ. Note that Z ∼ NO(0, 1). Here E(Y ) = µ − σω1/2 sinh (ν/τ) and
V ar(Y ) = σ2 1

2 (ω − 1) [ω cosh(2ν/τ) + 1], where ω = exp(1/τ2).

Second parameterization (JSU)

This is a reparameterization of the original Johnson Su distribution, Johnson (1949), so that
parameters µ and σ are the mean and the standard deviation of the distribution. The parameter
ν determines the skewness of the distribution with ν > 0 indicating positive skewness and ν < 0
negative. The parameter τ determines the kurtosis of the distribution. τ should be positive and
most likely in the region above 1. As τ → ∞ the distribution approaches the normal density
function. The distribution is appropriate for leptokurtic data.

The pdf of the Johnson’s Su, denoted here as JSU(µ,σ,ν,τ), is defined by

fY (y|µ, σ ν, τ) ==
τ

cσ

1
(r2 + 1)

1
2

1√
2π

exp
[
−1

2
z2

]
(1.14)

for −∞ < y <∞, where −∞ < µ <∞, σ > 0, −∞ < ν <∞, τ > 0, and where

z = −ν + τ sinh−1(r) = −ν + τ log
[
r + (r2 + 1)

1
2 )
]
, (1.15)

r =
y − (µ+ cσw

1
2 sinh Ω)

cσ
,

c =
{

1
2

(w − 1) [w cosh (2Ω) + 1]
}− 1

2

,

w = exp(1/τ2) and Ω = −ν/τ . Note that Z ∼ NO(0, 1). Here E(Y ) = µ and V ar(Y ) = σ2.
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1.3.4 Normal-Exponential-t distribution (NET)

The NET distribution is a four parameter continuous distribution, although in gamlss it is
used as a two parameter distribution with the other two of its parameters fixed. It was intro-
duced by Rigby and Stasinopoulos (1994) as a robust method of fitting the mean and the scale
parameters of a symmetric distribution as functions of explanatory variables. The NET distri-
bution is the abbreviation of the Normal-Exponential-Student-t distribution and is denoted by
NET(µ,σ,ν,τ), for given values for ν and τ . It is normal up to ν, exponential from ν to τ and
Student-t with (ντ − 1) degrees of freedom after τ . Fitted parameters are the first two parame-
ters, µ and σ. Parameters ν and τ may be chosen and fixed by the user. Alternatively estimates
of the third and forth parameters can be obtained, using the gamlss function prof.dev().

The pdf of the normal exponential t distribution, denoted here as NET(µ,σ,ν,τ), is given
by Rigby and Stasinopoulos (1994) and defined by

fY (y|µ, σ, ν, τ) =
c

σ


exp

{
− z

2

2

}
, when |z| ≤ ν

exp
{
−ν|z|+ ν2

2

}
, when ν < |z| ≤ τ

exp
{
−ντ log

(
|z|
τ

)
− ντ + ν2

2

}
, when |z| > τ

(1.16)

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0, ν > 1, τ > ν 1, and where z = (y − µ)/σ
and c = (c1 + c2 + c3)−1, where c1 =

√
2π [1 − 2Φ(−ν)], c2 = 2

ν exp
{
−ν

2

2

}
and c3 =

2
(ντ−1)ν exp

{
−ντ + ν2

2

}
, where Φ(·) is the cumulative distribution function of the standard

normal distribution. Here µ is the mean of Y .

1.3.5 Sinh-Arcsinh (SHASH)

The pdf of the Sinh-Arcsinh distribution, denoted by SHASH(µ,σ,ν,τ), Jones(2005), is defined
by

fY (y|µ, σ ν, τ) =
c√

2πσ(1 + r2)1/2
e−z

2/2 (1.17)

where

z =
1
2
{

exp
[
τ sinh−1(r)

]
− exp

[
−ν sinh−1(r)

]}
and

c =
1
2
{
τ exp

[
τ sinh−1(r)

]
+ ν exp

[
−ν sinh−1(r)

]}
and r = (y − µ)/σ for −∞ < y < ∞, where −∞ < µ < +∞, σ > 0, ν > 0 and τ > 0.
Note sinh−1(r) = log(u) where u = r +

(
r2 + 1

)1/2. Hence z = 1
2 (uτ − u−ν). Note that

Z ∼ NO(0, 1). Hence µ is the median of Y .

1since NET involves the Student-t distribution with (ντ -1) degrees of freedom
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1.3.6 Skew Exponential Power type 1 distribution (SEP1)

The pdf of the skew exponential power type 1 distribution, denoted by SEP1(µ,σ,ν,τ), is defined
by

fY (y|µ, σ, ν, τ) =
2
σ
fZ1(z) FZ1(νz) (1.18)

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0, −∞ < ν < ∞ and τ > 0, and where z =
(y−µ)/σ and fZ1 and FZ1 are the pdf and cdf of Z1 ∼ PE2(0, τ1/τ , τ), a power exponential type
2 distribution with fZ1(z) = α−1 exp [−|z|τ/τ ], where α = 2τ (1/τ)−1Γ(1/τ). This distribution
was introduced by Azzalini (1986) as his type I distribution.

Here E(Y ) = µ+ σE(Z) and V ar(Y ) = σ2V (Z) = σ2
{
E(Z2)− [E(Z)]2

}
where Z = (Y −

µ)/σ and E(Z) = sign(ν)τ1/τ
[
Γ
(

2
τ

)
/Γ
(

1
τ

)]
pBEo

(
ντ

1+ντ ,
1
τ ,

2
τ

)
, andE(Z2) = τ2/τΓ

(
3
τ

)
/Γ
(

1
τ

)
,

where pBEo(q, a, b) is the cdf of an original beta distribution BEo(a, b) evaluated at q, Azzalini
(1986), p202-203.

The skew normal type 1 distribution, denoted by SN1(µ,σ,ν), a special case of SEP1(µ,σ,ν,τ)
given by τ = 2, has mean and variance given by E(Y ) = µ + σsign(ν)

{
2ν2/

[
π(1 + ν2)

]}1/2

and V ar(Y ) = σ2
{

1− 2ν2/
[
π(1 + ν2)

]}
, Azzalini (1985), p174. Note that SN1 is not currently

implemented as a specific distribution, but can be obtained by fixing τ = 2 in SEP1 using the
arguments tau.start=2, tau.fix=TRUE in gamlss().

1.3.7 Skew Exponential Power type 2 distribution (SEP2)

The pdf of the skew exponential power type 2 distribution, denoted by SEP2(µ,σ,ν,τ), is defined
by

fY (y|µ, σ ν, τ) =
2
σ
fZ1(z) Φ(ω) (1.19)

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0, −∞ < ν < ∞, and τ > 0, and where
z = (y−µ)/σ and ω = sign(z)|z|τ/2ν

√
2/τ and fZ1 is the pdf of Z1 ∼ PE2(0, τ1/τ , τ) and Φ(ω)

is the cdf of a standard normal variable evaluated at ω.
This distribution was introduced by Azzalini (1986) as his type II distribution and was

further developed by DiCiccio and Monti (2004). The parameter ν determines the skewness of
the distribution with ν > 0 indicating positive skewness and ν < 0 negative. The parameter
τ determines the kurtosis of the distribution, with τ > 2 for platykurtic data and τ < 2 for
leptokurtic.

Here E(Y ) = µ+ σE(Z) and V ar(Y ) = σ2V (Z) where

E(Z) =
2τ1/τν

√
πΓ
(

1
τ

)
(1 + ν2)(2/τ)+(1/2)

∞∑
n=0

Γ
(

2
τ + n+ 1

2

)
(2n+ 1)!!

(
2ν2

1 + ν2

)n
(1.20)

and E(Z2) = τ1/τΓ
(

3
τ

)
/Γ
(

1
τ

)
, where (2n+ 1)!! = 1.3.5...(2n− 1), DiCiccio and Monti (2004),

p439.
For τ = 2 the SEP2(µ,σ,ν,τ) distribution is the skew normal type 1 distribution, Azzalini

(1985), denoted by SN1(µ,σ,ν), while for ν = 1 and τ = 2 the SEP2(µ,σ,ν,τ) distribution is
the normal density function, NO(µ,σ).
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1.3.8 Skew Exponential Power type 3 distribution (SEP3)

This is a ”spliced-scale” distribution with pdf, denoted by SEP3(µ,σ,ν,τ), defined by

fY (y|µ, σ ν, τ) =
c

σ

{
exp

[
−1

2
|νz|τ

]
I(y < µ) + exp

[
−1

2

∣∣∣ z
ν

∣∣∣τ] I(y ≥ µ)
}

(1.21)

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0, ν > 0, and τ > 0, and where z = (y − µ)/σ
and c = ντ/

[
(1 + ν2)21/τΓ

(
1
τ

)]
, Fernandez, Osiewalski and Steel (1995). Note that I() is an

indicator function, where I(u) = 1 if u is true and I(u) = 0 if u is false.
Note that µ is the mode of Y . Here E(Y ) = µ + σE(Z) and V ar(Y ) = σ2V (Z) where

E(Z) = 21/τΓ
(

2
τ

) (
ν − 1

ν

)
/Γ
(

1
τ

)
and E(Z2) = 22/τΓ

(
3
τ

) (
ν3 + 1

ν3

)
/
[
Γ
(

1
τ

) (
ν + 1

ν

)]
, Fernan-

dez, Osiewalski and Steel (1995), p1333, eqns. (12) and (13).
The skew normal type 2 distribution, Johnson et al. (1994) p173, denoted by SN2(µ,σ,ν),

(or two-piece normal) is a special case of SEP3(µ,σ,ν,τ) given by τ = 2.

1.3.9 Skew Exponential Power type 4 distribution (SEP4)

This is a ”spliced-shape” distribution with pdf, denoted by SEP4(µ,σ,ν,τ), defined by

fY (y|µ, σ, ν, τ) =
c

σ
{exp[−|z|ν ] I(y < µ) + exp[−|z|τ ] I(y ≥ µ)} (1.22)

for −∞ < y <∞, where −∞ < µ <∞, σ > 0, ν > 0, and τ > 0, and where z = (y − µ)/σ and
c =

[
Γ
(
1 + 1

ν

)
+ Γ

(
1 + 1

τ

)]−1, Jones (2005). Note that µ is the mode of Y .
Here E(Y ) = µ + σE(Z) and V ar(Y ) = σ2V (Z) where E(Z) = c

[
1
τ Γ
(

2
τ

)
− 1

νΓ
(

2
ν

)]
and

E(Z2) = c
[

1
νΓ
(

3
ν

)
+ 1

τ Γ
(

3
τ

)]
.

1.3.10 Skew t type 1 distribution (ST1)

The pdf of the skew t type 1 distribution, denoted by ST1(µ,σ,ν,τ), is defined by

fY (y|µ, σ, ν, τ) =
2
σ
fZ1(z) FZ1(νz) (1.23)

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0, −∞ < ν < ∞ and τ > 0, and where
z = (y − µ)/σ and fZ1 and FZ1 are the pdf and cdf of Z ∼ TF (0, 1, τ), a t distribution with
τ > 0 degrees of freedom, with τ treated as a continuous parameter. This distribution is in the
form of a type I distribution of Azzalini (1986).

1.3.11 Skew t type 2 distribution (ST2)

The pdf of the skew t type 2 distribution, denoted by ST2(µ,σ,ν,τ), is defined by

fY (y|µ, σ, ν, τ) =
2
σ
fZ1(z) FZ2(w) (1.24)

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0, −∞ < ν < ∞, and τ > 0, and where
z = (y− µ)/σ, w = νλ1/2z and λ = (τ + 1)/(τ + z2) and fZ1 is the pdf of Z1 ∼ TF (0, 1, τ) and
FZ1 is the cdf of Z2 ∼ TF (0, 1, τ+1). This distribution is the univariate case of the multivariate
skew t distribution introduced by Azzalini and Capitanio (2003).

Here the mean and variance of Y are given by E(Y ) = µ + σE(Z) and V ar(Y ) = σ2V (Z)
where E(Z) = ντ1/2Γ

(
τ−1

2

)
/
[
π1/2(1 + ν2)1/2Γ

(
τ
2

)]
for τ > 1 and E(Z2) = τ/(τ − 2) for

τ > 2, Azzalini and Capitanio (2003), p382.



1.4. CONTINUOUS ONE PARAMETER DISTRIBUTION IN <+ 15

1.3.12 Skew t type 3 distribution (ST3)

This is a ”spliced-scale” distribution with pdf, denoted by ST3(µ, σ, ν, τ), defined by

fY (y|µ, σ, ν, τ) =
c

σ

{
1 +

z2

τ

[
ν2 I(y < µ) +

1
ν2

I(y ≥ µ)
]}

(1.25)

for −∞ < y <∞, where −∞ < µ <∞, σ > 0, ν > 0, and τ > 0, and where z = (y − µ)/σ and
c = 2ν/

[
σ (1 + ν2)B

(
1
2 ,

τ
2

)
τ1/2

]
, Fernandez and Steel (1998).

Note that µ is the mode of Y . The mean and variance of Y are given by E(Y ) = µ +
σE(Z) and V ar(Y ) = σ2V (Z) where E(Z) = 2τ1/2(ν2 − 1)/

[
(τ − 1)B

(
1
2 ,

τ
2

)
ν
]

and E(Z2) =
τ
(
ν3 + 1

ν3

)
/
[
(τ − 2)

(
ν + 1

ν

)]
, Fernandez and Steel (1998), p360, eqn. (5).

1.3.13 Skew t type 4 distribution (ST4)

This is a ”spliced-shape” distribution with pdf, denoted by ST4(µ, σ, ν, τ), defined by

fY (y|µ, σ, ν, τ) =
c

σ

{[
1 +

z2

ν

]−(ν+1)/2

I(y < µ) +
[
1 +

z2

τ

]−(τ+1)/2

I(y ≥ µ)

}
(1.26)

for −∞ < y <∞, where −∞ < µ <∞, σ > 0, ν > 0 and τ > 0, and where z = (y − µ)/σ and
c = 2

[
ν1/2B

(
1
2 ,

ν
2

)
+ τ1/2B

(
1
2 ,

τ
2

)]−1
.

Here E(Y ) = µ + σE(Z) and V ar(Y ) = σ2V (Z) where E(Z) = c
[

1
τ−1 −

1
ν−1

]
, provided

ν > 1 and τ > 1, and E(Z2) = c
2

{[
τ3/2B

(
1
2 ,

τ
2

)
/(τ − 2)

]
+
[
ν3/2B

(
1
2 ,

ν
2

)
/(ν − 2)

]}
, provided

ν > 2 and τ > 2.

1.3.14 Skew t type 5 distribution (ST5)

The pdf of the skew t distribution type 5, denoted by ST5(µ,σ,ν,τ), Jones and Faddy (2003),
is defined by

fY (y|µ, σ, ν, τ) =
c

σ

[
1 +

z

(a+ b+ z2)1/2

]a+1/2 [
1− z

(a+ b+ z2)1/2

]b+1/2

for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0, −∞ < ν < ∞ and τ > 0 , and where z =
(y−µ)/σ and c =

[
2a+b−1(a+ b)1/2B(a, b)

]−1
and ν = (a−b)/ [ab(a+ b)]1/2 and τ = 2/(a+b).

Here E(Y ) = µ + σE(Z) where E(Z) = (a − b)(a + b)1/2Γ
(
a− 1

2

)
Γ
(
a− 1

2

)
/ [2Γ(a)Γ(b)]

and V ar(Y ) = σ2V (Z) where E(Z2) = (a + b)
[
(a− b)2 + a+ b− 2

]
/ [4(a− 1)(b− 1)], Jones

and Faddy (2003), p162.

1.4 Continuous one parameter distribution in <+

1.4.1 Exponential distribution (EXP)

This is the only one parameter continuous distribution in gamlss packages. The exponential
distribution is appropriate for moderately positive skew data. The parameterization of the
exponential distribution, denoted here as EXP(µ), is defined by

fY (y|µ) =
1
µ

exp
{
− y
µ

}
(1.27)

for y > 0, where µ > 0 and where E(Y ) = µ and V ar(Y ) = µ2.
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1.5 Continuous two parameter distribution in <+

1.5.1 Gamma distribution (GA)

The gamma distribution is appropriate for positively skew data. The pdf of the gamma distri-
bution, denoted by GA(µ,σ), is defined by

fY (y|µ, σ) =
1

(σ2µ)1/σ2

y
1
σ2−1 e−y/(σ

2µ)

Γ(1/σ2)
(1.28)

for y > 0, where µ > 0 and σ > 0. Here E(Y ) = µ and V ar(Y ) = σ2µ2. This a reparame-
terization of Johnson et al. (1994) p 343 equation (17.23) obtained by setting σ2 = 1/α and
µ = αβ.

1.5.2 Log Normal distribution (LOGNO, LNO)

Log Normal distribution (LOGNO)

The log-normal distribution is appropriate for positively skew data. The pdf of the log-normal
distribution, denoted by LOGNO(µ,σ), is defined by

fY (y|µ, σ) =
1√

2πσ2

1
y

exp

{
− [log(y)− µ]2

2σ2

}
(1.29)

for y > 0, where µ > 0 and σ > 0. Here E(Y ) = ω1/2eµ and V ar(Y ) = ω(ω − 1)e2µ, where
ω = exp(σ2).

Log normal family (i.e. original Box-Cox) (LNO)

The gamlss function LNO(µ,σ,ν) allows the use of the Box-Cox power transformation approach,
Box and Cox (1964), where the transformation Y (ν) is applied to Y in order to remove skewness,
where Z = (Y ν − 1)/ν(if ν 6= 0) + log(Y )(if ν = 0). The transformed variable Z is then
assumed to have a normal NO(µ, σ) distribution. The resulting distribution for Y is denoted
by LNO(µ,σ,ν). When ν = 0, this results in the distribution in equation (1.29). For values of
ν different from zero we have the resulting three parameter distribution

fY (y|µ, σ, ν) =
yν−1

√
2πσ2

exp
[
− (z − µ)2

2σ2

]
(1.30)

for y > 0, where µ > 0, σ > 0 and −∞ < ν < ∞, and where z = (yν − 1)/ν(if ν 6=
0) + log(y)(if ν = 0). The distribution in (1.30) can be fitted for fixed ν only, e.g. ν = 0.5,
using the following arguments of gamlss(): family=LNO, nu.fix=TRUE, nu.start=0.5. If ν
is unknown, it can be estimated from its profile likelihood. Alternatively instead of (1.30), the
more orthogonal parameterization of (1.30) given by the BCCG distribution in Section 1.6.1 can
be used.

1.5.3 Inverse Gaussian distribution (IG)

The inverse Gaussian distribution is appropriate for highly positive skew data. The pdf of the
inverse Gaussian distribution, denoted by IG(µ,σ) is defined by

fY (y|µ, σ) =
1√

2πσ2y3
exp

[
− 1

2µ2σ2y
(y − µ)2

]
(1.31)



1.6. CONTINUOUS THREE PARAMETER DISTRIBUTION IN <+ 17

for y > 0, where µ > 0 and σ > 0 with E(Y ) = µ and V ar(Y ) = σ2µ3. This is a reparameteri-
zation of Johnson et al. (1994) p 261 equation (15.4a), obtained by setting σ2 = 1/λ.

1.5.4 Weibull distribution (WEI, WEI2, WEI3)

First parameterization (WEI)

There are three version of the two parameter Weibull distribution implemented into the gamlss
package. The first, denoted by WEI(µ,σ), has the following parameterization

fY (y|µ, σ) =
σyσ−1

µσ
exp

[
−
(
y

µ

)σ]
(1.32)

for y > 0, where µ > 0 and σ > 0, [see Johnson et al. (1994) p629]. The mean and the variance of
Y in this parameterization (1.32) of the two parameter Weibull are given by E(Y ) = µ Γ

(
1
σ + 1

)
and V ar(Y ) = µ2

{
Γ
(

2
σ + 1

)
−
[
Γ
(

1
σ + 1

)]2}, from Johnson et al. (1994) p632. Although
the parameter µ is a scale parameter, it also affects the mean of Y . The median of Y is
mY = µ(log 2)1/σ, see Johnson et al. (1994), p630.

Second parameterization (WEI2)

The second parameterization of the Weibull distribution, denoted by WEI2(µ,σ), is defined as

fY (y|µ, σ) = σµyσ−1e−µy
σ

(1.33)

for y > 0, where µ > 0 and σ > 0, Johnson et al. (1994), p686. The mean of Y in
this parameterization (1.33) is E(Y ) = µ−1/σ Γ

(
1
σ + 1

)
and the variance of Y is V ar(Y ) =

µ−2/σ
{

Γ
(

2
σ + 1

)
−
[
Γ
(

1
σ + 1

)]2}.
In the second parameterization of the Weibull distribution the two parameters µ and σ are

highly correlated, so the RS method of fitting is very slow and therefore the CG() method of
fitting should be used.

Third parameterization (WEI3)

This is a parameterization of the Weibull distribution where µ is the mean of the distribution.
This parameterization of the Weibull distribution, denoted by WEI3(µ,σ), is defined as

fY (y|µ, σ) =
σ

β

(
y

β

)σ−1

exp
{
−
(
y

β

)σ}
(1.34)

for y > 0, where µ > 0 and σ > 0 and where β = µ/Γ( 1
σ + 1). The mean of Y is given by

E(Y ) = µ and the variance V ar(Y ) = µ2
{

Γ( 2
σ + 1)

[
Γ( 1

σ + 1)
]−2 − 1

}
.

1.6 Continuous three parameter distribution in <+

1.6.1 Box-Cox Cole and Green distribution (BCCG)

The Box-Cox Cole and Green distribution is suitable for positively or negatively skew data. Let
Y > 0 be a positive random variable having a Box-Cox Cole and Green distribution, denoted
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here as BCCG(µ,σ,ν), defined through the transformed random variable Z given by

Z =


1
σν

[(
Y
µ

)ν
− 1
]
, if ν 6= 0

1
σ log(Yµ ), if ν = 0

(1.35)

for 0 < Y < ∞, where µ > 0, σ > 0 and −∞ < ν < ∞, and where the random variable
Z is assumed to follow a truncated standard normal distribution. The condition 0 < Y < ∞
(required for Y ν to be real for all ν) leads to the condition −1/(σν) < Z < ∞ if ν > 0 and
−∞ < Z < −1/(σν) if ν < 0, which necessitates the truncated standard normal distribution
for Z.

Hence the pdf of Y is given by

fY (y) =
yν−1 exp(− 1

2z
2)

µνσ
√

2πΦ( 1
σ|ν| )

(1.36)

where z is given by (1.35) and Φ() is the cumulative distribution function (cdf) of a standard
normal distribution.

If the truncation probability Φ(− 1
σ|ν| is negligible, the variable Y has median µ. The pa-

rameterization (1.35) was used by Cole and Green (1992) who assumed a standard normal
distribution for Z and assumed that the truncation probability was negligible.

1.6.2 Generalized gamma distribution (GG, GG2)

First parameterization (GG)

The specific parameterization of the generalized gamma distribution used here and denoted by
GG(µ,σ,ν) was used by Lopatatzidis and Green (2000), and is defined as

fY (y|µ, σ, ν) =
|ν|θθzθ exp {−θz}

Γ(θ)y
(1.37)

for y > 0, where µ > 0, σ > 0 and −∞ < ν <∞ and where z = (y/µ)ν and θ = 1/(σ2ν2).
The mean and variance of Y are given by E(Y ) = µΓ

(
θ + 1

ν

)
/
[
θ1/νΓ(θ)

]
and V ar(Y ) =

µ2
{

Γ(θ)Γ
(
θ + 2

ν

)
−
[
Γ
(
θ + 1

ν

)]2}
/
{
θ2/ν [Γ(θ)]2

}
. Note that GG2 is not currently implemented

in gamlss.

Second parameterization (GG2)

A second parameterization, given by Johnson et al., (1995), p401, denoted by GG2(µ,σ,ν), is
defined as

fY (y|µ, σ, ν) =
|µ|yµν−1

Γ(ν)σµν
exp

{
−
( y
σ

)µ}
(1.38)

for y > 0, where −∞ < µ <∞, σ > 0 and ν > 0.
The mean and variance of Y ∼ GG2(µ,σ,ν) can be obtained from those of GG(µ,σ,ν) since

GG(µ,σ,ν) ≡ GG2(ν,µθ−1/ν ,θ) and GG2(µ,σ,ν) ≡ GG(σν1/µ,
[
µ2ν

]−1/2, µ).
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1.6.3 Generalized inverse Gaussian distribution (GIG)

The parameterization of the generalized inverse Gaussian distribution, denoted by GIG(µ,σ,ν),
is defined as

fY (y|µ, σ, ν) =
(
c

µ

)ν [
yν−1

2Kν

(
1
σ2

)] exp
[
− 1

2σ2

(
cy

µ
+
µ

cy

)]
(1.39)

for y > 0, where µ > 0, σ > 0 and −∞ < ν <∞, where c =
[
Kν+1

(
1/σ2

)] [
Kν

(
1/σ2

)]−1 and
Kλ(t) = 1

2

∫∞
0
xλ−1 exp{− 1

2 t(x+ x−1)}dx.
Here E(Y ) = µ and V ar(Y ) = µ2

[
2σ2(ν + 1)/c+ 1/c2 − 1

]
. GIG(µ,σ,ν) is a reparame-

terization of the generalized inverse Gaussian distribution of Jorgensen (1982) . Note also that
GIG(µ,σ,-0.5) ≡ IG(µ, σµ−1/2) a reparameterization of the inverse Gaussian distribution.

1.6.4 Zero adjusted Gamma distribution (ZAGA)

The zero adjusted Gamma distribution is appropriate when the response variable Y takes values
from zero to infinity including zero, i.e. [0,∞). Hence Y = 0 has non zero probability ν. The
pdf of the zero adjusted Gamma distribution, denoted by ZAGA(µ,σ,ν), is defined by

fY (y|µ, σ, ν) =

 ν if y = 0

(1− ν)
[

1
(σ2µ)1/σ2

y
1
σ2 −1

e−y/(σ
2µ)

Γ(1/σ2)

]
if y > 0 (1.40)

for 0 ≤ y < ∞, where 0 < ν < 1, µ > 0 and σ > 0 with E(Y ) = (1 − ν)µ and V ar(Y ) =
(1− ν)µ2(ν + σ2).

1.6.5 Zero adjusted Inverse Gaussian distribution (ZAIG)

The zero adjusted inverse Gaussian distribution is appropriate when the response variable Y
takes values from zero to infinity including zero, i.e. [0,∞). Hence Y = 0 has non zero probability
ν. The pdf of the zero adjusted inverse Gaussian distribution, denoted by ZAIG(µ,σ,ν), is
defined by

fY (y|µ, σ, ν) =

{
ν if y = 0
(1− ν) 1√

2πσ2y3
exp

[
− 1

2µ2σ2y (y − µ)2
]

if y > 0 (1.41)

for 0 ≤ y < ∞, where 0 < ν < 1, µ > 0 and σ > 0 with E(Y ) = (1 − ν)µ and V ar(Y ) =
(1− ν)µ2(ν + µσ2).

1.7 Continuous four parameter distribution in <+

1.7.1 Box-Cox t distribution (BCT)

Let Y be a positive random variable having a Box-Cox t distribution, Rigby and Stasinopoulos
(2006), denoted by BCT(µ,σ,ν,τ), defined through the transformed random variable Z given
by (1.35), where the random variable Z is assumed to follow a truncated t distribution with
degrees of freedom, τ > 0, treated as a continuous parameter.
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The pdf of Y , a BCT(µ,σ,ν,τ) random variable, is given by

fY (y|µ, σ, ν, τ) =
yν−1fT (z)
µνσFT ( 1

σ|ν| )
(1.42)

for y > 0, where µ > 0, σ > 0 and −∞ < ν < ∞, and where z is given by (1.35) and fT (t)
and FT (t) are respectively the pdf and cumulative distribution function of a random variable
T having a standard t distribution with degrees of freedom parameter τ > 0, ie T ∼ tτ ≡
TF(0,1,τ). If the truncation probability FT (− 1

σ|ν| ) is negligible, the variable Y has median µ.

1.7.2 Box-Cox power exponential distribution (BCPE)

Let Y be a positive random variable having a Box-Cox power exponential distribution, Rigby
and Stasinopoulos (2004) , denoted by BCPE(µ,σ,ν,τ), defined through the transformed ran-
dom variable Z given by (1.35), where the random variable Z is assumed to follow a truncated
standard power exponential distribution with power parameter, τ > 0, treated as a continuous
parameter.

The pdf of Y , a BCPE(µ,σ,ν,τ) random variable, is given by (1.42), where fT (t) and FT (t)
are respectively the pdf and cumulative distribution function of a variable T having a standard
power exponential distribution, T ∼ PE(0,1,τ). If the truncation probability FT (− 1

σ|ν| ) is
negligible, the variable Y has median µ.

1.7.3 Generalized Beta type 2 distribution (GB2)

This pdf of the generalized beta type 2 distribution, denoted by GB2(µ, σ, ν, τ), is defined by

fY (y|µ, σ, ν, τ) = |σ|yσν−1
{
µσν B(ν, τ) [1 + (y/µ)σ]ν+τ

}−1

=
Γ(ν + τ)
Γ(ν)Γ(τ)

σ(y/µ)σν

y [1 + (y/µ)σ]ν+τ (1.43)

for y > 0, where µ > 0, −∞ < σ < ∞, ν > 0 and τ > 0, McDonald and Xu (1995),
equation (2.7). The mean and variance of Y are given by E(Y ) = µB

(
ν + 1

σ , τ −
1
σ

)
/B (ν, τ)

for −ν < 1
σ < τ and E(Y 2) = µ2B

(
ν + 2

σ , τ −
2
σ

)
/B (ν, τ) for −ν < 2

σ < τ , McDonald (1996),
p434. Note the by setting ν = 1 in 1.43 we obtain the Burr distribution:

fY (y|µ, σ, τ) =
τσ(y/µ)σ

y [1 + (y/µ)σ]τ+1 . (1.44)

By setting σ = 1 in 1.43 we obtain the Generalized Pareto distribution:

fY (y|µ, ν, τ) =
Γ(ν + τ)
Γ(ν)Γ(τ)

(µτyν−1

(y + µ)ν+τ . (1.45)

1.8 Continuous two parameter distribution in <[0, 1]

1.8.1 Beta distribution (BE, BEo)

The beta distribution is appropriate when the response variable takes values in a known re-
stricted range, excluding the endpoints of the range. Appropriate standardization can be ap-
plied to make the range of the response variable (0,1), i.e. from zero to one excluding the
endpoints. Note that 0 < Y < 1 so values Y = 0 and Y = 1 have zero density under the model.
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First parameterization (BEo)

The original parameterization of the beta distribution, denoted by BEo(µ, σ), has pdf given by
fY (y|µ, σ) = 1

B(µ,σ) y
µ−1(1 − y)σ−1 for 0 < y < 1, with parameters µ > 0 and σ > 0. Here

E(Y ) = µ/(µ+ σ) and V ar(Y ) = µσ(µ+ σ)−2(µ+ σ + 1)−1.

Second parameterization (BE)

In the second parameterization of the beta distribution below the parameters µ and σ are
location and scale parameters that relate to the mean and standard deviation of Y . The pdf of
the beta distribution, denoted by BE(µ,σ), is defined by

fY (y|µ, σ) =
1

B(α, β)
yα−1(1− y)β−1 (1.46)

for 0 < y < 1, where α = µ(1 − σ2)/σ2 and β = (1 − µ)(1 − σ2)/σ2, α > 0, and β > 0 and
hence 0 < µ < 1 and 0 < σ < 1. [Note the relationship between parameters (µ,σ) and (α,β) is
given by µ = α/(α + β) and σ = (α + β + 1)−1/2.] In this parameterization, the mean of Y is
E(Y ) = µ and the variance is V ar(Y ) = σ2µ(1− µ).

1.8.2 Beta inflated distribution (BEINF, BEINF0, BEINF1)

The beta inflated distribution is appropriate when the response variable takes values in a known
restricted range including the endpoints of the range. Appropriate standardization can be
applied to make the range of the response variable [0,1], i.e. from zero to one including the
endpoints. Values zero and one for Y have non zero probabilities p0 and p1 respectively. The
probability (density) function of the inflated beta distribution, denoted by BEINF(µ,σ,ν,τ) is
defined by

fY (y|µ, σ, ν, τ) =


p0 if y = 0
(1− p0 − p1) 1

B(α,β) y
α−1(1− y)β−1 if 0 < y < 1

p1 if y = 1
(1.47)

for 0 ≤ y ≤ 1, where α = µ(1 − σ2)/σ2, β = (1 − µ)(1 − σ2)/σ2, p0 = ν(1 + ν + τ)−1,
p1 = τ(1 + ν + τ)−1 so α > 0, β > 0, 0 < p0 < 1, 0 < p1 < 1− p0. Hence BEINF(µ,σ,ν,τ) has
parameters µ = α/(α+β) and σ = (α+β+1)−1/2, ν = p0/p2, τ = p1/p2 where p2 = 1−p0−p1.
Hence 0 < µ < 1, 0 < σ < 1, ν > 0 and τ > 0. Note that E(y) = τ+µ

(1+ν+τ) .
The probability (density) function of the inflated at zero beta distribution, denoted by

BEINF0(µ,σ,ν) is defined by

fY (y|µ, σ, ν) =
{
p0 if y = 0
(1− p0) 1

B(α,β) y
α−1(1− y)β−1 if 0 < y < 1 (1.48)

for 0 ≤ y < 1, where α = µ(1−σ2)/σ2, β = (1−µ)(1−σ2)/σ2, p0 = ν(1+ν)−1, so α > 0, β > 0,
0 < p0 < 1. Hence BEINF0(µ,σ,ν) has parameters µ = α/(α + β) and σ = (α + β + 1)−1/2,
ν = p0/1 − p0. Hence 0 < µ < 1, 0 < σ < 1, ν > 0. Note that for BEINF0(µ,σ,ν),
E(y) = µ

(1+ν) .
The probability (density) function of the inflated beta distribution, denoted by BEINF1(µ,σ,ν)

is defined by

fY (y|µ, σ, ν) =
{

(1− p1) 1
B(α,β) y

α−1(1− y)β−1 if 0 < y < 1
p1 if y = 1

(1.49)
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for 0 < y ≤ 1, where α = µ(1−σ2)/σ2, β = (1−µ)(1−σ2)/σ2, p1 = τ(1+τ)−1 so α > 0, β > 0,
0 < p1 < 1. Hence BEINF1(µ,σ,ν) has parameters µ = α/(α + β) and σ = (α + β + 1)−1/2,
ν = p1/(1− p2). Hence 0 < µ < 1, 0 < σ < 1, ν > 0. Note that E(y) = ν+µ

(1+ν) .
For different parametrization of the BEINF0(µ,σ,ν) and BEINF1(µ,σ,ν) distributions see

also BEZI(µ,σ,ν) and BEOI(µ,σ,ν) distributions contributed to gamlss by Raydonal Ospina,
Ospina and Ferrari (2010).

1.8.3 Generalized Beta type 1 distribution (GB1)

The generalized beta type 1 distribution is defined by assuming Z = Y τ/[ν + (1 − ν)Y τ ] ∼
BE(µ, σ). Hence, the pdf of generalized beta type 1 distribution, denoted by GB1(µ, σ, ν, τ), is
given by

fY (y|µ, σ, ν, τ) =
τνβyτα−1(1− yτ )β−1

B(α, β)[ν + (1− ν)yτ ]α+β
(1.50)

for 0 < y < 1, where α = µ(1− σ2)/σ2 and β = (1− µ)(1− σ2)/σ2, α > 0 and β > 0. Hence,
GB1(µ, σ, ν, τ) has adopted parameters µ = α/(α + β), σ = (α + β + 1)−1/2, ν and τ , where
0 < µ < 1, 0 < σ < 1, ν > 0 and τ > 0. The beta BE(µ, σ) distribution is a special case of
GB1(µ, σ, ν, τ) where ν = 1 and τ = 1.

1.9 Binomial type data one parameter distributions

1.9.1 The Binomial distribution (BI)

The probability function of the binomial distribution, denoted here as BI(n,µ) , is given by

pY (y|n, µ) = P (Y = y|n, µ) =
n!

y!(n− y)!
µy (1− µ)n−y

for y = 0, 1, 2, ..., n, where 0 < µ < 1, (and n is a known positive integer), with E(Y ) = nµ and
V ar(Y ) = nµ(1− µ). See Johnson et al. (1993), p 105 where µ = p.

1.10 Binomial type data two parameters distributions

1.10.1 Beta Binomial distribution (BB)

The probability function of the beta binomial distribution denoted here as BB(n,µ,σ) is given
by

pY (y|µ, σ) =
Γ(n+ 1)

Γ(y + 1)Γ(n− y + 1)
Γ( 1

σ )Γ(y + µ
σ )Γ[n+ (1−µ)

σ − y]
Γ(n+ 1

σ )Γ(µσ )Γ( 1−µ
σ )

(1.51)

for y = 0, 1, 2, . . . , n, where 0 < µ < 1 and σ > 0 (and n is a known positive integer). Note that
E(Y ) = nµ and V ar(Y ) = nµ(1− µ)

[
1 + σ

1+σ (n− 1)
]
.

The binomial BI(n,µ) distribution is the limiting distribution of BB(n,µ,σ) as σ → 0. For
µ = 0.5 and σ = 0.5, BB(n,µ,σ) is a uniform distribution.
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1.10.2 Zero altered (or adjusted) binomial (ZABI)

Let Y = 0 with probability σ and Y ∼ BItr(n, µ) with probability (1 − σ), where BItr(n, µ)
is a Binomial truncated at zero distribution, then Y has a zero altered (or adjusted) binomial
distribution, denoted by ZABI(n, µ, σ), given by

pY (y|n, µ, σ) =


σ, if y = 0

(1−σ)n!µy(1−µ)n−y

[1−(1−µ)n]y!(n−y)! , if y = 1, 2, 3, . . .
(1.52)

For 0 < µ < 1, and 0 < σ < 1. The mean and variance of Y are given by

E(Y ) =
(1− σ)nµ

[1− (1− µ)n]

and

V ar(Y ) =
nµ (1− σ) (1− µ+ nµ)

[1− (1− µ)n]
− [E (Y )]2

respectively.

1.10.3 Zero inflated binomial (ZIBI)

Let Y = 0 with probability σ and Y ∼ BI(n, µ) with probability (1 − σ), then Y has a zero
inflated binomial distribution, denoted by ZIBI(n, µ, σ), given by

pY (y|n, µ, σ) =


σ + (1− σ) (1− µ)n , if y = 0

(1−σ)n!µy(1−µ)n−y

y!(n−y)! , if y = 1, 2, 3, . . .
(1.53)

For 0 < µ < 1, and 0 < σ < 1. The mean and variance of Y are given by

E(Y ) = (1− σ)nµ

and
V ar(Y ) = nµ (1− σ) [1− µ+ nµσ]

respectively.

1.11 Binomial type data three parameters distributions

1.11.1 Zero altered (or adjusted) beta binomial (ZABB)

Let Y = 0 with probability ν and Y ∼ BBtr(n, µ, σ) with probability (1−ν), whereBBtr(n, µ, σ)
is a beta binomial truncated at zero distribution, then Y has a zero altered (or adjusted) beta
binomial distribution, denoted by ZABB(n, µ, σ, ν), given by

pY (y|n, µ, σ, ν) =


ν, if y = 0

(1−ν)pY ′ (y|n,µ,σ)
[1−pY ′ (0|n,µ,σ)] , if y = 1, 2, 3, . . .

(1.54)

where Y ′ ∼ BB(n, µ, σ). For 0 < µ < 1, σ > 0 and 0 < ν < 1. The mean and variance of Y are
given by

E(Y ) =
(1− ν)nµ

[1− pY ′(0|n, µ, σ)]



24 CHAPTER 1. DISTRIBUTIONS IN THE GAMLSS PACKAGES

and

V ar(Y ) =
(1− ν)

{
nµ (1 = µ)

[
1 + σ

1+σ (n− 1)
]
− n2µ2

}
[1− pY ′(0|n, µ, σ)]

− [E(Y )]2

respectively.

1.12 Binomial type data three parameters distributions

1.12.1 Zero inflated beta binomial (ZIBB)

Let Y = 0 with probability ν and Y ∼ BB(n, µ, σ) with probability (1− ν), then Y has a zero
inflated beta binomial distribution, denoted by ZIBB(n, µ, σ, ν), given by

pY (y|n, µ, σ, ν) =

 ν + (1− ν) pY ′(0|n, µ, σ), if y = 0

(1− ν) pY ′(y|n, µ, σ), if y = 1, 2, 3, . . .
(1.55)

For 0 < µ < 1, σ > 0 and 0 < ν < 1 where Y ′ ∼ BB(n, µ, σ). The mean and variance of Y are
given by

E(Y ) = (1− ν)nµ

and

V ar(Y ) = (1− ν)nµ (1− µ)
[
1 +

σ

1 + σ
(n− 1)

]
+ ν (1− ν)n2µ2

respectively.

1.13 Count data one parameter distributions

1.13.1 Poisson distribution (PO)

Poisson distribution

The probability function of the Poisson distribution, denoted here as PO(µ), is given by

pY (y|µ) = P (Y = y|µ) =
e−µµy

y!
(1.56)

where y = 0, 1, 2, . . . , where µ > 0, with E(Y ) = µ and V ar(Y ) = µ. [See Johnson et al. (1993),
p 151.] The moment ratios of the distribution are given by

√
β1 = µ−0.5 and β2 = 3 + µ−1

respectively. Note that the Poisson distribution has the property that E[Y ] = V ar[Y ] and
that β2 − β1 − 3 = 0. The coefficient of variation of the distribution is given by µ−0.5. The
index of dispersion, that is, the ratio V ar[Y ]/E[Y ] is equal to one for the Poisson distribution.
For V ar[Y ] > E[Y ] we have overdispersion and for V ar[Y ] < E[Y ] we have underdispersion
or repulsion. The distribution is skew for small values of µ, but almost symmetric for large µ
values.
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1.13.2 Logarithmic distribution (LG)

The probability function of the logarithmic distribution, denoted here as LG(µ), is given by

pY (y|µ) = P (Y = y|µ) =
αµy

y
, for y = 1, 2, . . . (1.57)

where α = − [log(1− µ)]−1 for 0 < µ < 1. Note that the range of Y starts from 1. The mean
and variance of Y are given by E(Y ) = αµ

(1−µ) and V ar(Y ) = αµ(1−αµ)

(1−µ)2
, see Johnson et al.

(2005) p.302-342.

1.14 Count data two parameters distributions

1.14.1 Negative Binomial distribution (NBI, NBII)

First parameterization: Negative Binomial type I (NBI)

The probability function of the negative binomial distribution type I, denoted here as NBI(µ,σ),
is given by

pY (y|µ, σ) =
Γ(y + 1

σ )
Γ( 1

σ )Γ(y + 1)

(
σµ

1 + σµ

)y ( 1
1 + σµ

)1/σ

for y = 0, 1, 2, ..., where µ > 0, σ > 0 with E(Y ) = µ and V ar(Y ) = µ+ σµ2. [This parameter-
ization is equivalent to that used by Anscombe (1950) except he used α = 1/σ, as pointed out
by Johnson et al. (1993), p 200, line 5.]

Second parameterization: Negative Binomial type II (NBII)

The probability function of the negative binomial distribution type II, denoted here as NBII(µ,σ),
is given by

pY (y|µ, σ) =
Γ(y + µ/σ)σy

Γ(µ/σ)Γ(y + 1)(1 + σ)y+µ/σ

for y = 0, 1, 2, ...,, where µ > 0 and σ > 0. Note E(Y ) = µ and V ar(Y ) = (1 + σ)µ, so σ
is a dispersion parameter [This parameterization was used by Evans (1953) as pointed out by
Johnson et al (1993) p 200 line 7.]

1.14.2 Poisson-inverse Gaussian distribution (PIG)

The probability function of the Poisson-inverse Gaussian distribution, denoted by PIG(µ,σ), is
given by

pY (y|µ, σ) =
(

2α
π

) 1
2 µye1/σKy− 1

2
(α)

(ασ)yy!

where α2 = 1
σ2 + 2µ

σ , for y = 0, 1, 2, ...,∞ where µ > 0 and σ > 0 andKλ(t) = 1
2

∫∞
0
xλ−1 exp{− 1

2 t(x+
x−1)}dx is the modified Bessel function of the third kind. [Note that the above parameterization
was used by Dean, Lawless and Willmot (1989). It is also a special case of the gamlss.family
distribution SI(µ, σ, ν) when ν = − 1

2 .]
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1.14.3 Zero inflated poisson (ZIP, ZIP2)

First parameterization (ZIP)

Let Y = 0 with probability σ and Y ∼ Po(µ) with probability (1 − σ), then Y has a zero
inflated Poisson distribution, denoted by ZIP(µ,σ), given by

pY (y|µ, σ) =


σ + (1− σ)e−µ, if y = 0

(1− σ)µ
y

y! e
−µ, if y = 1, 2, 3, . . .

(1.58)

See Johnson et al (1993), p 186, equation (4.100) for this parametrization. This parametrization
was also used by Lambert (1992). The mean of Y in this parametrization is given by E(Y ) =
(1− σ)µ and its variance by V ar(Y ) = µ(1− σ) [1 + µσ].

Second parameterization (ZIP2)

A different parameterization of the zero inflated poisson distribution, denoted by ZIP2(µ,σ),
is given by

pY (y|µ, σ) =

 σ + (1− σ)e−( µ
1−σ ), if y = 0

(1− σ) µy

y!(1−σ)y e
−( µ

1−σ ), if y = 1, 2, 3, . . .
(1.59)

The mean of Y in (1.59) is given by E(Y ) = µ and the variance by V ar(Y ) = µ+ µ2 σ
(1−σ) .

1.14.4 Zero altered (or adjusted) poisson (ZAP)

Let Y = 0 with probability σ and Y ∼ POtr(µ) with probability (1 − σ), where POtr(µ) is a
Poisson truncated at zero distribution, then Y has a zero adjusted Poisson distribution, denoted
by ZAP(µ,σ), given by

pY (y|µ, σ) =


σ, if y = 0

(1−σ)e−µµy

y!(1−e−µ) , if y = 1, 2, 3, . . .
(1.60)

The mean of Y in this parametrization is given by E(Y ) = (1− σ)µ/ (1− e−µ) and its
variance by V ar(Y ) = (1−σ)

(1−e−µ)

[
µ+ µ2

]
− [E (Y )]2.

1.14.5 Zero altered (or adjusted) logarithmic (ZALG)

Let Y = 0 with probability σ and Y ∼ LG(µ), a logarithmic distribution with probability
(1−σ), then Y has a zero altered (adjusted) logarithmic distribution, denoted by ZALG(µ,σ),
with probability function given by

pY (y|µ, σ) =


σ, if y = 0

(1− σ)αµ
y

y , if y = 1, 2, 3, . . .
(1.61)

where α = − [log(1− µ)]−1 for 0 < µ < 1 and 0 < σ < 1. The mean and variance of of Y are
given by E(Y ) = (1−σ)αµ

(1−µ) and its variance by V ar(Y ) = (1−σ)αµ[1−(1−σ)αµ]

(1−µ)2
.
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1.15 Count data three parameters distributions

1.15.1 Delaporte distribution (DEL)

The probability function of the Delaporte distribution, denoted by DEL(µ,σ,ν), is given by

pY (y|µ, σ, ν) =
e−µν

Γ(1/σ)
[1 + µσ(1− ν)]−1/σ

S (1.62)

where

S =
y∑
j=0

(
y
j

)
µyνy−j

y!

[
µ+

1
σ(1− ν)

]−j
Γ
(

1
σ

+ j

)
for y = 0, 1, 2, ...,∞ where µ > 0 , σ > 0 and 0 < ν < 1. This distribution is a reparameterization
of the distribution given by Wimmer and Altmann (1999) p 515-516 where α = µν, k = 1/σ
and ρ = [1 + µσ(1 − ν)]−1. The mean of Y is given by E(Y ) = µ and the variance by
V ar(Y ) = µ+ µ2σ (1− ν)2.

1.15.2 Sichel distribution (SI, SICHEL)

First parameterization (SI)

The probability function of the first parameterization of the Sichel distribution, denoted by
SI(µ,σ,ν), is given by

pY (y|µ, σ, ν) =
µyKy+ν(α)

(ασ)y+νy!Kν( 1
σ )

(1.63)

where α2 = 1
σ2 + 2µ

σ , for y = 0, 1, 2, ...,∞ where µ > 0 , σ > 0 and −∞ < ν <∞ and Kλ(t) =
1
2

∫∞
0
xλ−1 exp{− 1

2 t(x+x−1)}dx is the modified Bessel function of the third kind. Note that the
above parameterization is different from Stein, Zucchini and Juritz (1988) who use the above
probability function but treat µ, α and ν as the parameters. Note that σ = [(µ2 +α2)

1
2 −µ]−1.

Second parameterization (SICHEL)

The second parameterization of the Sichel distribution, Rigby, Stasinopoulos and Akantziliotou
(2008), denoted by SICHEL(µ,σ,ν), is given by

pY (y|µ, σ, ν) =
(µ/c)yKy+ν(α)
y! (ασ)y+ν

Kν

(
1
σ

) (1.64)

for y = 0, 1, 2, ...,∞, where α2 = σ−2 + 2µ(cσ)−1. The mean of Y is given by E(Y ) = µ and
the variance by V ar(Y ) = µ+ µ2

[
2σ(ν + 1)/c+ 1/c2 − 1

]
.

1.15.3 Zero inflated negative binomial distribution (ZINBI)

Let Y = 0 with probability ν and Y ∼ NBI(µ, σ), with probability (1− ν), then Y has a zero
inflated negative binomial distribution, denoted by ZINBI(µ, σ, ν), with probability function
given by

pY (y|µ, σ, ν) =

 ν + (1− ν) pY ′(0|µ, σ), if y = 0

(1− ν)pY ′(y|µ, σ), if y = 1, 2, 3, . . .
(1.65)
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for µ > 0 , σ > 0 and 0 < ν < 1, where Y ′ ∼ NBI(µ, σ) so

pY ′(0|µ, σ) = (1 + σµ)−
1
σ

and

pY ′(y|µ, σ) =
Γ(y + 1

σ )
Γ( 1

σ )Γ(y + 1)

(
σµ

1 + σµ

)y ( 1
1 + σµ

)1/σ

for y = 0, 1, 2, 3, . . .. The mean of Y is given by E(Y ) = (1− ν)µ and the variance by V ar(Y ) =
µ (1− ν) [1 + (σ + ν)µ], since for any three parameter zero inflated distribution

E(Y ) = (1− ν)E (Y ′)

and
V ar(Y ) = (1− ν)V ar (Y ′) + ν (1− ν) [E (Y ′)]2 .

1.15.4 Zero altered (or adjusted) negative binomial distribution (ZANBI)

Let Y = 0 with probability ν and Y ∼ NBItr(µ, σ), with probability (1−ν), where NBItr(µ, σ)
is a negative binomial truncated at zero distribution, then Y has a zero altered (or adjusted)
negative binomial distribution, denoted by ZANBI(µ, σ, ν), with probability function given
by

pY (y|µ, σ, ν) =


ν, if y = 0

(1−ν)pY ′ (y|µ,σ)
[1−pY ′ (0|µ,σ)] , if y = 1, 2, 3, . . .

(1.66)

for µ > 0 , σ > 0 and 0 < ν < 1 where Y ′ ∼ NBI(µ, σ) so

pY ′(0|µ, σ) = (1 + σµ)−
1
σ

. and

pY ′(y|µ, σ) =
Γ(y + 1

σ )
Γ( 1

σ )Γ(y + 1)

(
σµ

1 + σµ

)y ( 1
1 + σµ

)1/σ

for y = 0, 1, 2, 3, . . .. The mean of Y is given by

E(Y ) =
(1− ν)µ

[1− pY ′(0|µ, σ)]

and the variance by

V ar(Y ) =
(1− ν)

[1− pY ′(0|µ, σ)]
{
µ+ (σ + 1)µ2

}
− [E(Y )]2

since for any three parameter zero altered distribution we have

E(Y ) =
(1− ν)E (Y ′)

[1− pY ′(0|µ, σ)]

and

V ar(Y ) =
(1− ν)

[1− pY ′(0|µ, σ)]

{
V ar(Y ′) + [E(Y ′)]2

}
− [E(Y )]2 .
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1.15.5 Zero inflated Poisson inverse Gaussian distribution (ZIPIG)

Let Y = 0 with probability ν and Y ∼ PIG(µ, σ), with probability (1− ν), then Y has a zero
inflated Poisson inverse Gaussian distribution, denoted by ZIPIG(µ, σ, ν), with probability
function given by

pY (y|µ, σ, ν) =

 ν + (1− ν) pY ′(0|µ, σ), if y = 0

(1− ν)pY ′(y|µ, σ), if y = 1, 2, 3, . . .
(1.67)

for µ > 0 , σ > 0 and 0 < ν < 1, where Y ′ ∼ PIG(µ, σ). The mean of Y is given by
E(Y ) = (1− ν)µ and the variance by V ar(Y ) = µ (1− ν) [1 + (σ + ν)µ].
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