
 

 

  

Abstract—An optimal solution for a large number of constraint 
satisfaction problems can be found using the technique of 
substitution and elimination of variables analogous to the technique 
that is used to solve systems of equations. A decision function 
f(A)=max(A2) is used to determine which variables to eliminate.  
The algorithm can be expressed in six lines and is remarkable in 
both its simplicity and its ability to find an optimal solution. 
However it is inefficient in that it needs to square the updated A 
matrix after each variable elimination. To overcome this inefficiency 
the algorithm is analyzed and it is shown that the A matrix only 
needs to be squared once at the first step of the algorithm and then 
incrementally updated for subsequent steps, resulting in significant 
improvement and an algorithm complexity of O(n3). 
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I. INTRODUCTION 

 uppose there are n objects each of which are incompatible 
with some subset of the other n-1 objects. The problem is 

to partition all n objects (xi) into a set of k* equivalence 
classes such that no object is incompatible with any other 
object in its equivalence class and where k* is minimum over 
all possible partitionings. The problem is usually stated in 
terms of the adjacency matrix (A) of ones and zeros which 
summarizes the compatibility of each object (variable xi) with 
every other object (variable xj). A one in the (i,j) element of 
the A matrix indicates incompatibility between variables xi 
and xj while a zero represents compatibility. This problem is 
usually referred to as an ILP (Integer Linear Program)[1] and 
has the same form as a system of equations Ax=b (Figure 1). 

Ax=b              systems of equations 
Ax ≤ b           systems of inequalities 
Ax=λx             eigenvalue problem 
Ax ≠ x             systems of inequations 

 
Figure 1.  Fundamental Mathematical Problems 

 
Figure 1 lists four fundamental problems of mathematics 

all of which involve the simultaneous solution of more than 
one equation, inequation[9][10] or inequality. Each of these 
problem formulations  involve a matrix A which which make 
the general statement of the problem very concise.  
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The first three of the problems formulations in Figure 1 are 
quite well known and have been widely studied and analyzed 
in the scientific mathematical and engineering literature. The 
fourth problem formulation Ax ≠ x (system of inequations) 
[9][10] is not nearly as well known as the first three since the    
alternative representation of the Integer Linear Program 
Ax=b, x integer, is normally used. The motivation for 
creating a separate formulation is that the compatibility 
problem may be better characterized by using a logical or set-
theoretical formulation as opposed to trying to fit it into an 
existing formulation which is inherently arithmetic. The 
Ax ≠ x representation requires that addition in matrix 
multiplication be interpreted as a logical union and the 
≠ symbol be interpreted as the symbol for not being a 
member of a set. In other words the value of variable xi is not 
equal to that of any member of some subset of the other n-1 
variables, that subset  selected by values of row i of the A 
matrix which equal 1.  

One reason for having a separate formulation for  
inequations is that there are many subtle differences between 
the two. Table 1 shows that a system of inequations usually 
has a large number of suboptimal solutions and always has at 
least one optimal solution. The number of optimal solutions is 
related to how constrained the system is. A system of 
inequations that has more than one optimal solution is called 
underconstrained. If there is exactly one optimal solution and 
the removal of a single constraint increases the number of 
optimal solutions then the system is  perfectly constrained. If 
there is only one optimal solution and there is at least one 
constraint whose removal does not increase the number of 
optimal solutions then the system is called overconstrained.  
A system of equations can have 0, 1 or an infinite number of 
solutions. This represents an important difference between 
equations and inequations since a system of inequations 
always has at least one optimal solution.    

II.   CONSTRAINT SATISFACTION PROBLEMS 

 Finding an optimal solution for a system of inequations is 
in general an NP-hard[5][7] problem. Finding an optimal 
solution for a system of inequations for solution cardinality 
k*=3 is NP-complete[6]. An algorithm that can determine an 
optimal solution for a system of inequations can be used to 
solve a wide variety of important problems spanning across 
many diverse fields from artificial intelligence[12] to 
bioinformatics[11] including many problems known as 
constraint satisfaction problems [12].   
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Table 1. Comparison of Equations and Inequations 

 

 Number of Solutions (q) 
Equations  q=1 (equations=unknowns)  q= ∞ (equations<unknowns)  q=0 (equations>unknowns) 
Inequations q=1 (perfectly constrained)  1 < q < ∞  (underconstrained)  q=1  (overconstrained)  

 
Some constraint satisfaction problems explicitly maximize or 
minimize an objective function while others do not. An 
example of the latter is the n-queens problem[12] where n 
queens are placed on an nxn chessboard in such a way that no 
two of them are in the same row, column or diagonal. For  
this  problem any solution that satisfies the constraints is a 
valid solution. If any valid solution can be found before all the 
possibilities are searched it is known with certainty that the 
problem has been solved and the algorithm can terminate at 
that point.  
 
Another category is the class of constraint problems that also 
maximize or minimize an objective function. In this case it is 
generally not possible to know with any certainty if an 
optimal solution has been found without checking every 
possibility. An example of this type of problem is the  system 
of inequations[3][10]. The algorithm for solving a system of 
inequations can be viewed as a search of the feasible 
solutions. Each time a feasible solution vector is generated the 
objective function is calculated. A solution vector (s) is a 
mapping of each variable xi into an integer si such that 1<= 
si <= k while ensuring that si ≠ sj when A[i,j] = 1. The set of 
all solution vectors can be represented by a tree with n-k*+1 
levels representing all solutions of cardinality k*, k*+1,...n. 
The total number of solutions equals the number of nodes in 
the decision tree and grows exponentially with n. One way to 
find an optimal solution s* is to check all the possibilities.  

III.  SUBSTITUTION OF VARIABLES 

 All feasible solutions to a system of inequations can also 
be generated by substitution and elimination of variables in a 
manner analogous to finding a solution to a system of 
equations. It is also similar to gaussian elimination except 
that arithmetic addition is replace by logical OR. Two 
variables xi and xj can substitute for one another only if the 
inequation xi ≠ xj is not present in the system, in other words 
A[i,j]=0.  To solve a system of inequations using this 
technique two variables xi and xj are chosen and set equal to 
one another xi = xj by mapping their constraints onto one 
another (logical OR). Since the two variables have been made 
equal one can be substituted for the other and one of them can 
be eliminated (substitution and elimination of variables).  

 
A decision function f(A) can be used to choose a specific xi 

and xj to combine. This decision function f(A) can be 
considered a global decision function if it takes into account 
every possible combination (i.e., for which A[i,j]=0). Perhaps 

the simplest decision function is f(A)=max(A). Since all pairs 
of variables that can be combined have A[i,j]=0 the decision 
function f(A)=max(A) will combine with equal probability 
any legal pair of variables xi and xj, i ≠ j and A[i,j]=0. This 
can be called the ambivalent decision function which is 
equivalent to choosing i and j at random. This procedure is 
repeated recursively and the final solution vector is 
determined by the standard method of back substitution.  

 
Another decision function is f(A)=max(A2). This decision 

function maximizes the number of shared constraints between 
every possible pair of variables that can be combined (i.e., 
where A[i,j]=0). The idea is illustrated by Figure 2 which 
considers the block diagonal form of the A matrix which is 
also known as a complete k-partite system (any system of 
inequations can be derived by removing constraints from 
some complete k-partite system). Considering each variable’s 
constraints as a row of the A matrix the number of shared 
constraints can be calculated as xi * xj (where * represents 
the vector product). Performing this operation across all ij 
leads to matrix multiplication and the decision function 
f(A)=max(A2).  

 
In Figure 2 the maximum value of A2 is 5 and it can be 

shown that in this case (as in almost all cases) combining the 
pair of variables corresponding to max(A2) leads to an 
optimal solution. A simple algorithm for solving systems of 
inequations based on the decision function f(A)=max(A2) is 
given in Figure (3) as algorithm ineq.  

 
ineq(A) 
ij<->max(A2) 
if ij={} return A 
xi=xi|xj 
A=A[-j,-j] 
ineq(A) 

Figure 3. The ineq algorithm 
 

The ineq algorithm starts with a solution vector s which 
has an initial value of s = (1,2,3,...n).  The algorithm squares 
the adjacency matrix A and finds the maximum value of A2 
[i,j] for pairs of variables that can be combined (i.e., 
A[i,j]=0). It then combines variables xi and xj by taking the 
constraints that are in xj but not in xi and adding them to xi 
(xi=xi|xj) where | = logical OR. Then it updates the solution 
vector s[j]=s[i] and eliminates variable xj (i.e., remove row 
and column j from A as represented by the line A=A[-j,-j]). 
The matrix A is reduced by one in dimension each time a 
variable is eliminated. 



 

 

 The difference with gaussian elimination is that the 
algorithm ineq uses logical OR instead of addition and uses a 
decision function f(A)=max(A2) to determine[i,j].  Note that 
ineq is recursive and stops when there is no longer any 
variables to combine. A system of dimension n=100, optimal 
solution cardinality k*=3 requires the decision function (for 
example f(A) = max(A2)) to make 97 consecutive correct 
decisions to find an optimal solution in n-k*  (i.e., O(n)) 
iterations. This would establish the complexity of ineq at 
O(n4) since squaring the A matrix is O(n3) and this must be 
done O(n) times.  However it is shown in the next section that 
the A matrix only needs to be squared on the first iteration 
and then updated for each iteration thereafter.  

Any decision function that can identify two variables in the 
same equivalence class with probability=1 will always find an 
optimal solution s* using the ineq algorithm. For systems of 
n=100 variables the decision function f(A)=max(A2) can 
determine two variables in the same equivalence class of an 
optimal solution s* with approximately 99.8% accuracy 
across the entire system space[3]. As a result tests have shown 
[3] the ineq algorithm can directly solve 90% of systems of 
inequations of n=100 variables.  By using the ineq algorithm 
multiple times the success rate can be brought close to 
100%[2,3,4]. The number of iterations required depends on 
the constraint density[2] and could be of the order of several 
hundred for systems of dimension n=100[2].  

IV.  COMPLEXITY ANALYSIS 

The ineq algorithm in Figure 3 involves the calculating the 
square of a matrix (O(n3)), finding the maximum (O(n2)) and 
the substitution and elimination of variables (O(n)). The 
complexity is therefore dominated by the complexity of 
squaring the A matrix. This is relatively inefficient since the 
elimination of a variable only adds relatively few constraints 
to another variable which is a relatively small change to the A 
matrix. As a result the complexity if the ineq algorithm has 
previously[2,3,4] been estimated at O(n4).  However it can be 
shown that the overall complexity can be reduced to O(n3) by 
updating the A2 matrix instead of performing the full matrix 
multiplication at each iteration.  

 Representing the new A’ matrix as the old A matrix plus 
an incremental matrix ∆A allows A’2 to be represented as in 
equation (1): 

 A’2 = (A + ∆A)2 = A2 + A*∆A + ∆A*A + (∆A)2                 
(1) 

It is sufficient to show that one of the three terms (for 
example A*∆A) can be calculated in O(n2) time complexity 
since ∆A*A is just the transpose of A*∆A and calculation of 
(∆A)2 is the same as the other two with A replaced by ∆A. 
Suppose that only one new constraint was added then ∆A 
would be all zeros except for row i and column i each of 
which would have a single 1. Calculation of A*∆A copies the 
columns of the A matrix that correspond to these two 1’s to 
an all zero matrix which is an O(n) operation. In the general 
case of combining two variables all constraints that were in 
variable j but not in i are added to row and column i in a 
matrix of all zeros to create ∆A. To calculate A*∆A the 
column vector corresponding to each added constraint is 
copied into the appropriate column of A*∆A and the sum of 
these column vectors is placed in column i. In a worst case 
this requires all of the values of the A2 to be updated resulting 
in O(n2) time complexity. 

ada<-0 
acol<-0 
for(qq in added){ 
acol<-acol+a[,qq]} 
ada[,i]<-acol 
for(qq in added){ 
ada[,qq]<-a[,i]} 
 

Figure 4  Calculation of A*∆A matrix 

Figure 4 shows code for calculating the A*∆A matrix 
where “added” is the vector of added constraints, “acol” is a 
column vector, “ada” is A*∆A and qq is an index variable. 
∆A*A is just the transpose of A*∆A and (∆A)2  is calculated 
the same as A*∆A with A replaced by ∆A.  Since the three 
matrix additions are O(n2) the computation of A’2 from A2 is 
O(n2). A total of O(n) updates could be required to complete 
the ineq algorithm.  In the general case therefore the 
complexity of the ineq algorithm can be established as 
O(n)*O(n2) = O(n3). 
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Figure 2.  Block Diagonal Form of the A Matrix and Corresponding A2 Matrix 



 

 

IV.  OPTIMAL SOLUTION OF CONSTRAINT 

SATISFACTION PROBLEMS 

The first step is to take the desired constraint satisfaction 
problem and convert it into a system of inequations. If the 
problem happens to be vertex coloring (i.e., the classic 
compatibility problem) then it is already in the required form. 
If problem has been classified as NP-complete [8] then there 
exists a polynomial time algorithm to convert the given 
problem into a system of inequations[1][6]. For the 8 queens 
problem the conversion can be done by creating an A matrix 
(64x64) with each row representing a square on the 
chessboard. The entire matrix is filled with 0’s and then a 1 is 
placed in columns corresponding to chessboard squares that 
are incompatible with the square represented by that 
particular row. The second step would be to use the ineq 
algorithm directly or in one of its powerful variations [2,3,4] 
to produce a solution vector s which is shown in Figure 5.  
 

1 5 6 4 7 8 2 3 

2 7 8 3 1 9 5 4 

3 9 4 7 5 6 8 1 

4 1 3 8 2 7 9 5 

5 8 2 1 9 3 4 7 

6 3 9 5 4 2 1 8 

7 4 1 2 6 5 3 9 

8 2 5 9 3 4 7 6 

 

Figure 5  A Solution to the 8 Queens Problem 

Figure 5 represents a vertex coloring of the chessboard 
squares where each of the numbers 1 through 9 represents a 
different color.  It is equivalent to placing 64 queens of 9 
different colors on the chessboard in such a way that no two 
queens of the same color are attacking each other.  In 
actuality there are 8 queens of color 3, 4 and 5, 7 queens of 
color 1, 2, 7, 8 and 9 and 5 queens of color 6. These numbers 
are arranged in such a way that no number is repeated along 
any row, column or diagonal. If this were just a vertex 
coloring problem the solution vector s is the desired solution 
and max(s) is the solution cardinality k.  In the case of the n-
queens problem the s vector must be sorted to find the largest 
equivalence class to find the solution. For this type of 
constraint satisfaction it is possible  to recognize immediately 
when an optimal solution is found. For other more general 
cases the constraint density of the system of inequations can 
then be calculated to give an estimate of the probability that 
an optimal solution has been found[2,3,4]. The reason for 
this, as shown in[2,3,4], is that there are large contiguous 
regions of constraint density over which the ineq algorithm 
has virtually a 100% success rate. It is a simple matter to 
calculate the constraint density for any particular problem.   

V.  SUMMARY AND CONCLUSIONS 

 
An optimal solution for a large number of constraint 

satisfaction problems can be found using the technique of 
substitution and elimination of variables analogous to the 
technique that is used to solve systems of equations. A 
decision function f(A)=max(A2) is used to determine which 
variables to eliminate.  The resulting algorithm can be 
expressed in only six lines of pseudocode and is remarkable 
in both its simplicity and its ability to find an optimal 
solution. However it is inefficient in that it needs to square 
the updated A matrix after each variable elimination. To 
overcome this inefficiency the algorithm was analyzed and 
the importantant result was established that the matrix A in 
the decision function only needs to be squared once at the first 
step of the algorithm and then incrementally updated for 
subsequent steps, resulting in significant improvement and an 
overall algorithm complexity of O(n3). A wide variety of 
algorithms (such as backtracking) exist for searching for an 
optimal solution for constraint satisfaction problems[12].  The 
idea of converting these problems into of a system of 
inequations and solving them using substitution and 
elimination of variables represents a significant paradigm 
shift from the past and is an attempt to attain a more unified 
viewpoint across a broad class of important problems in many 
fields. Once a problem has been converted into a system of 
inequations the constraint density is easily calculated. The 
constraint density can be used to estimate the difficulty of the 
problem [2] and estimate the probability that an optimal 
solution has been found after a given amount of effort.  This 
unified approach may shed new insight by allowing 
comparisons between systems of inequations and other 
fundamental problems in mathematics.    
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