

Abstract—The equivalence class subset algorithm is a powerful

tool for solving a wide variety of constraint satisfaction problems

and is based on the use of a decision function which has a very high

but not perfect accuracy. Perfect accuracy is not required in the

decision function as even a suboptimal solution contains valuable

information that can be used to help find an optimal solution. In the

hardest problems, the decision function can break down leading to a

suboptimal solution where there are more equivalence classes than

are necessary and which can be viewed as a mixture of good

decision and bad decisions. By choosing a subset of the decisions

made in reaching a suboptimal solution an iterative technique can

lead to an optimal solution, using series of steadily improved

suboptimal solutions. The goal is to reach an optimal solution as

quickly as possible. Various techniques for choosing the decision

subset are evaluated.

Keywords— np-complete, complexity, algorithm.

I. INTRODUCTION

Consider the well-known compatibility problem, also

known as a system of inequations[4,5,10,11] which is one of

the best known examples of an NP-hard problem[2,6,8]

which include the set of NP-complete problems as a special

case[7]. The compatibility problem can be stated as follows.

Suppose there are n objects each of which are incompatible

with some subset of the other n-1 objects. The problem is to

partition all n objects into a set of k equivalence classes such

that no object is incompatible with any other object in its

equivalence class and where k is minimum.

The problem can be stated in terms of an adjacency matrix

(A) of ones and zeros which summarizes the compatibility of

each object (variable xi) with every other object (variable xj).

A one in the (i,j) element of the A matrix indicates

incompatibility between variables xi and xj while a zero

represents compatibility. A solution vector (s) is a mapping

of each variable xi into an integer si such that 1<= si <= k

while ensuring that si ≠ sj when A[i,j] = 1. If an optimal

solution vector s* is permuted such that all equivalence

classes are grouped together and the corresponding A matrix

is permuted accordingly, it is seen that the A matrix takes on

a block diagonal form. A zero inside the block diagonal

represents a good decision which leads towards an optimal

J. L. Duffany is with the Electrical and Computer Engineering Department,

Universidad del Turabo, Gurabo, PR 00778 USA, (e-mail:

jduffany@suagm.edu).

solution. A zero outside the block diagonal or any zero of a

suboptimal solution may be good or bad and may or may not

lead to an optimal solution. A typical problem of n=100

variables has n2 = 10,000 elements each of which is a zero or

a one. For example a system may have 5000 zeros of which

3000 are inside the block diagonal (zin) and 2000 which are

outside (zout). Each zero represents a possible decision and at

each step of the solution only one of these can be chosen.

Clearly there can be a large number of choices and some kind

of decision function is required to proceed towards a solution.

A pair association {ij} occurs when a pair of variables xi and

xj are combined into the same equivalence class. Generally

speaking the lower the solution cardinality (k) the greater the

number of zeros in the blocks of the block diagonal form.

Consider a decision function f(A) =max(A2) which is the

maximum value of the square of the A matrix over all (i,j)

elements where A(i,j)=0 (all pairs of variables that can be

combined to form the basis of an equivalence class). This is

also known as the correlation function which represents for

each (i,j) the number of constraints that match between the

variables xi and xj. Using the ineq algorithm (described in

section IV) it is possible to find an optimal solution vector s*

and permute the A matrix into block diagonal form. Now

compute A2 and take only the values corresponding to

A(i,j)=0 and place all of these values into two groups: zin for

those inside the block diagonal and zout for those outside and

plot them as a histogram. The result for four different A

matrices of four different ones densities is shown in

Figures(1)-(4). The solid line in each of the figures represents

the distribution of correlation values for pairs of variables xi

and xj inside the block diagonal zin and the dashed line is for

those pair associations xi and xj outside the block diagonal

zout. The area underneath each curve represents the number of

zeros either inside or outside of the diagonal blocks.

Figure 1 shows the result of squaring an A matrix of very

high ones density while Figure 2 shows what happens when

that ones density is reduced by about half. In Figure 1 all of

the zeros are in the block diagonal and none outside which is

known as a complete k-partite system. It can be seen in this

case that there are three equivalence classes of different sizes

resulting in three separate spectral peaks. The decision

function f(A) =max(A2) tells us to choose the pair association

corresponding to the rightmost tail of the distribution which

has a value of about f(A) = max(A2) = 42.

Equivalence Class Subset Algorithm

Jeffrey L. Duffany, Ph.D.

0 10 20 30 40 50

0
5
0

0
1

0
0
0

1
5

0
0

2
0
0

0

correlation

c
o

u
n

t

inside block diagonal

outside block diagonal

Fig. 1 Matrix A with very high constraint density

Because this is a complete k-partite system choosing any valid

pair association will lead to an optimal solution so any

decision function could be used in this case. This is a special

case where any decision is a good decision and there are no

bad decisions. There are other decision functions such as a

power series expansion of the A matrix f(A) =max(∑ciA
i)

which is explored in more depth in [5].

Figure 2 shows the result for an A matrix with average ones

density where the zeros outside of the main block diagonal

increase significantly. However the decision function f(A)

=max(A2) can clearly still differentiate between good

decisions which lead to an optimal solution (under the solid

curve) and other decisions or pair associations which may or

may not lead to an optimal solution (under the dashed curve).

The decision function will continue to work as long as the tail

of the solid curve extends further to the right than the dashed

curve since it only needs to make one correct decision at a

time. The decision function f(A) =max(A2) is not perfect it

has been estimated to be correct about 99.5% of the time over

the ensemble of systems of dimension n=100. Usually an

optimal solution will be found for any system similar to the

one in Figure 2 because as the solution proceeds the system

gets closer to a complete k-partite system (Figure 1).

Figure 3 illustrates what happens when the number of

zeros zout continues to increase to the point where it equals or

exceeds zin. It can be seen in Figure 3 the two distributions do

overlap however the right hand tail of the solid line

distribution extends significantly higher than the dashed

distribution so the decision function still works. Figure 4

shows the extreme case where there are far more zeros

outside the block diagonal zout than inside zin.

0 5 10 15 20 25 30 35

0
2

0
0

4
0

0
6

0
0

correlation

c
o

u
n

t

inside block diagonal

outside block diagonal

Fig. 2 Matrix A with average constraint density

Note in Figure 4 that the two distributions are almost

perfectly overlapping causing the decision function to break

down and lose its ability to discriminate. This also

corresponds to a very low ones density which is known to be

the where the most difficult problems are[1,3]. This provides

clear insight as to why the problems are so hard at this

constraint density.

It is important to note that all problems start near to one of

the situations (Figures (1)-(4)) and then progresses towards a

complete k-partite as in Figure 1. That explains why most of

these problems are easily solved except for low density

problems such as in Figure 4. Each system progresses along

a trajectory towards a solution and will always pass through

and end up as a complete k-partite system[3] as in Figure 1.

II. EQUIVALENCE CLASS SUBSET ALGORITHM

Consider the case of a typical np-complete problem which

must determine if a given set of variables can be represented

as three equivalence classes (k*=3) or not. If a wrong

decision is made at any point during the solution it will find a

suboptimal solution of more than k*=3 equivalence classes.

In the more general case of the np-hard compatibility problem

the optimal solution is k* equivalence classes and the

algorithm finds a suboptimal solution of cardinality k >k*.

One technique to improve the success rate is to assume that

the suboptimal solution is somehow close to an optimal

solution and that most of the decisions made by the decision

function were correct. The method chooses some subset of the

decisions that were made in reaching the suboptimal solution

and combines those variables creating a problem that does fall

into the optimal solution space of the decision function.

0 10 20 30

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0

0

correlation

c
o
u
n

t

inside block diagonal
outside block diagonal

 Fig. 3 Matrix A with low constraint density

The central idea is that somewhere near every system A that

cannot be solved directly in one iteration is another

equivalent system A' with the same optimal solution as

system A which can be solved in one iteration. Finding this

system A' can be viewed as a search of the very top of the

decision tree. The equivalence class subset algorithm can be

stated as in Figure 5:

(1) find any solution s to system A

 (2) choose a subset of variable associations from s

 (3) combine these variables to create the A' matrix

 (4) find a solution s' to system A'

Figure 5. The Equivalence Class Subset Algorithm

The equivalence class subset algorithm is based on the

observation that any solution vector s will partition the zeros

of the A matrix into two groups: those inside the block

diagonal zin and those outside the block diagonal zout.

Combining a small subset of pair associations corresponding

to zeros inside the block diagonal may lead to an optimal

solution if all of the decisions they represent were good. The

exact size of the subset can be referred to as the search depth.

Easier problems are solved by combining variables in the

same equivalence class while difficult problems can require

combining variables in different equivalence classes.

The equivalence class subset algorithm works by stepping

through a sequence of suboptimal solutions towards an

optimal solution. Each time a solution s' is found the number

of zeros on the block diagonal (zin) is calculated. If this is

more than in the previous solution use s' to take the next

subset otherwise continue using s. If you take two suboptimal

solutions it is likely that that one has more zeros on the main

diagonal than the other. The one with more zeros is likely to

0 5 10 15

0
1
0
0

0
2

0
0
0

3
0
0
0

4
0

0
0

5
0
0

0
6

0
0
0

correlation

c
o
u
n
t

inside block diagonal

outside block diagonal

 Fig. 4 Matrix A with very low constraint density

be closer to an optimal solution. Each time you find a system

where the number of zeros on the block diagonal is greater

than any yet calculated, choose that as the new system s’.

Figure 6 shows a typical trajectory of the equivalence class

subset algorithm from suboptimal to optimal solution for a

system of n=100 variables and optimal solution cardinality

k*=13. The lower line represents the sequence of k values

starting at k=15 and ending an optimal solution k*=13. The

dashed line represents the total number of pair associations zin

which it is desired to maximize (for simplicity the actual

numbers are not shown for the pair associations). The

method required choosing about 100 subsets from suboptimal

solution vectors before an optimal solution was found.

Usually an optimal solution is found in fewer attempts and

occasionally it can take several hundred attempts[3] for

systems of dimension n=100. The optimal size for the subset

is a parameter of great interest and has been studied in [3].

The larger the size of the subset, the higher the probability it

is to contain an incorrect decision. The smaller the size of the

subset, the less likely it is to contain an incorrect decision

however the less likely it is to move the system over to one

that is in the solution space of the decision function. For

systems of dimension n=100 it has been seen a range of

subsets from as few as 1 to as many as 9 falling off rapidly in

what appears to be a geometric type of distribution[3].

The assumptions behind the equivalence class subset

algorithm that a suboptimal solution is somehow close to an

optimal solution may not hold for a small set of the most

difficult problems which are typically of low ones density as

seen in Figure 4. This is due to a type of avalanche effect

whereby mistakes made by a decision function early on can

lead to suboptimal solutions that are far away from an optimal

solution. In this situation it can be hopeless to combine any

subset of variables as the probability of including a bad

decision is very high. In this situation it would be better to

0 20 40 60 80 100

1
2

1
4

1
6

1
8

2
0

iteration

k

 Figure 6. Typical Trajectory of the Equivalence Class Subset Algorithm

assume that the suboptimal solution is far from an optimal

solution and do the opposite. Instead of combining variables

from the same equivalence class the method should split

variables under the assumption that a significant proportion

of the decisions made were probably wrong. For example,

variables combined in the smallest equivalence class can act

like a set of misfits that should be split up rather than

combined in the equivalence class subset algorithm.

That raises the problem of how to separate the split pair

associations so that they don't recombine. This can be done

quite effectively by creating a list of all pair associations that

were previously combined and the resulting value of zin that

resulted from doing this. When a pair association needs to be

split it is looked up on the list and combined with a variable it

is most compatible with. Use of this technique has extended

the capability of the equivalence class subset algorithm to

solve very difficult problems. Since the difficulty of a given

problem is not known a priori, techniques of both splitting

and combining can be used in an alternate fashion.

III. PROBLEM COMPLEXITY

Considerable discussion has been put forth already on the

ones density of the A matrix and the number of zeros inside

and outside of the block diagonal. From a purely probabilistic

viewpoint the odds of making a good decision depends on the

underlying ratio of good to bad which is related to the number

of zeros inside and outside of the block diagonal. The

decision function works most of the time except in low ones

density problems as in Figure 4. By contrast, in a complete k-

partite system (the opposite extreme) there are only good

decisions. For any given system and optimal solution vector

s* there will be a zozi ratio given by equation (1):

(1) zozi = zout/zin

In general it makes intuitive sense that the higher the zozi

ratio the more difficult the problem. Recall for example that

the easiest problems all have a zozi ratio of zozi=0. Difficult

can be defined as the average time complexity of solving a

problem[3] or as the difficulty of guessing at random and

getting the correct answer. Figure 7 shows the result from a

sample of 200 systems all in the most difficult region of low

density but with different zozi ratios. It was observed that all

of the most difficult problems had a zozi ratio of greater than

about 1.8. The zozi ratio for k*=3 can vary between about

.0006 and 2. The difficulty tapered off as the zozi ratio

decreased from 1.8 to 1.5 and for zozi ratios less than about

1.5 all were solved in one iteration. It is premature to reach a

general conclusion from a small sample of 200 however there

is a clear indication that most if not all of the difficult

problems are concentrated in the region with the highest ratio

of zeros outside zout to zeros inside the block diagonal zin.

This leads to the question of how it is possible to construct

problems which have the highest ratio of zeros outside to

zeros inside the block diagonal. Simply decreasing the ones

Figure 7. Problem Complexity and Number of Zeros zin and zout

density does not necessarily accomplish the desired result as it

can result in the trivial problem where the ones density is

zero. Referring to equation (1) it can be seen that to maximize

the zozi ratio it would be necessary to consider both

maximizing the numerator and minimizing the denominator

of the fraction. The formula for calculating the minimum

number zeros in the block diagonal is given by equation (2):

(2) zmin = k*(n/k)2 = n2/k

which gives approximately the minimum number of block

diagonal zeros for solution cardinality k (exactly if n is

divisible by k). This tells us that the minimum number of

zeros on the block diagonal occurs when the size of all the

equivalence classes are the same (n/k). For n=100 and k=3

this gives about 3334 as the minimum and it is for these

problems that would be expected to be the most difficult. To

test this hypothesis a sample of 200 systems were chosen and

solved. For each system the ratio zin/zmin was plotted against

complexity as shown in Figure 8. All of the most difficult

problems were seen to fall very close (within 4%) of zmin.

IV. THE INEQ ALGORITHM

The decision function f(A) =max(A2) and the equivalence

class subset algorithm were discussed in some detail.

However this does not give the details of how to use a

decision function by itself to generate a solution vector s as

required in step (1) and step (4) of the equivalence class

subset algorithm as given in Figure 5. The method used to

generate solutions is called the ineq algorithm (see Figure 9).

Figure 8. Problem Complexity and Number of Zeros zin > zmin

ineq(A)

ij<-max(A2)

xi=xi|xj

s[j]=s[i]

A=A[-j,-j]

ineq(A)

Figure 9. The ineq algorithm

The ineq algorithm is so named because it can solve

systems of inequations[4][10][11]. The algorithm starts with

a solution vector s which has an initial value of s =

(1,2,3,...n). The algorithm squares the adjacency matrix A

and finds the maximum value of A2 [i,j] for pairs of variables

that can be combined (i.e., A[i,j]=0). Similar to gaussian

elimination it then combines variables xi and xj by taking the

constraints that are in xj but not in xi and adding them to xi.

It then updates the solution vector s[j]=s[i] and eliminates

variable xj as in Gaussian elimination. The matrix A is

reduced by one in dimension each time a variable is

eliminated. Note that the algorithm ineq is recursive, calling

itself in the last step of the algorithm and stopping when there

are no longer any variables to combine. The difference

between ineq and Gaussian elimination is that ineq uses

logical OR instead of addition and uses a decision function

f(A)=max(A2) to determine (i,j). Since squaring a matrix is

complexity O(n3) it would appear that ineq would be O(n4)

however it is shown in [12] that ineq is O(n3). This has to be

repeated for O(n) repetitions giving O(n3)*O(n) = O(n4) for

the equivalence class subset algorithm.

0 2 4 6 8 10

0

100

200

300

400

 percent Zin > Zmin

1.65 1.70 1.75 1.80 1.85 1.90

0

100

200

300

400

 Zo/Zi ratio

V. SUMMARY AND CONCLUSIONS

A method called the equivalence class subset algorithm is

described which can solve a wide variety of constraint

satisfaction problems even in the most difficult ones[1]. It is

based on the idea of the use of an imperfect decision function

and by successively improving suboptimal solutions until an

optimal solution is found. It was found that two different

techniques were required depending on how far the

suboptimal solution is from an optimal solution. If the

suboptimal solution was close to an optimal solution then

most of the decisions it made were correct so that choosing a

subset of pair associations from even a suboptimal solution s

will in many cases only contain pair associations which lead

toward an optimal solution. When the subset of pair

associations {ij} are associated by combining the indicated

variables the matrix A is modified to form a new matrix A’. If

no incorrect decisions were included in {ij} then the A’

matrix will have the same optimal solution cardinality as the

matrix A. If in addition the matrix A’ falls into the solution

space of the decision function f(A) being used then an optimal

solution will also be found. In the case where the suboptimal

solution is very far from an optimal solution the opposite

approach of splitting up pair associations was seen to be far

more successful. For any given problem it is not known

whether a solution is optimal so in those cases it appears best

to alternate between the two techniques. Each time a new

solution is generated the number of block diagonal zeros zin is

calculated. If the new solution vector has a higher zin value

than previous solutions it is kept as the new basis for

choosing subsets to combine or split. If not it is discarded.

This method has been used on thousands of problems in the

most difficult problem regions and has found an optimal

solution in every case within at most a few hundred iterations.

This leads to a conservative estimate for a lower bound of

success rate of over 99.9% for systems of n=100 variables[3].

This investigation also further explored the idea of

characterizing the most difficult problems[1,3]. Any insight

into the nature of the most difficult problems can lead to

either new or improved methods for solving these types of

problems. It was found that one of the main source of problem

difficulty is a result of the ratio of the number of zeros inside

the block diagonal zin to those outside the block diagonal zout

which can also be called the zozi ratio. It was further

determined that the problems with the smallest number of

zeros in the block diagonal would also be among the most

difficult and this was corroborated by experimental results.

Future research in this area is planned to include extending

the dimension of the problems to be solved into the range of

several thousand variables. Another goal is to test this

algorithm more thoroughly by applying it to known problems

for example the standard set of problems at the Carnegie

Mellon University mathematics website[13]. It is also desired

to create a package for the R language[14] for the ineq and

ecsa algorithms so any results can be independently verified.

REFERENCES

[1] S. Cook and D. Mitchell. (1997). “Finding Hard Instances of the

Satisfiability Problem: A Survey”, Satisfiability Problems: Theory and

Applications. American Mathematical Society, Providence, Rhode Island.

[2] C.H. Papadimitrou and K. Steiglitz, "Combinatorial Optimization:

Algorithms and Complexity", Dover, ISBM 0-486-40258-4, pp. 344.

[3] Duffany, J.L., “Statistical Characterization of NP-Complete Problems”,

Foundations of Computer Science Conference, World Computer Congress,

Las Vegas, Nevada, July 14-17, 2008.

[4] Duffany, J.L. “Systems of Inequations”, 4th LACCEI Conference,

Mayaguez, PR, June 21-23, 2006.

[5] Duffany, J.L. “Generalized Decision Function and Gradient Search

Technique for NP-Complete Problems”, XXXII CLEI Conference,

Santiago Chile, August 20-23, 2006.

[6] E. Horowitz, S. Sahni, “Fundamentals of Computer Algorithms”,

Computer Science Press, Maryland, 1978.

[7] R. M. Karp, “Reducibility Among Combinatorial Problems”, In

Complexity of Computer Computation, pages 85-104. Plenum Press, New

York, 1972.

[8] Weisstein, E. W., "NP-Hard Problem." From MathWorld--A Wolfram

Web Resource. http://mathworld.wolfram.com/NP-HardProblem.html.

[9] Weisstein, E. W., "NP-Complete Problem." From MathWorld--A Wolfram

Web Resource: http:// mathworld.wolfram.com/NP-

CompleteProblem.html.

[10] Weisstein, E. W., "Inequation." From MathWorld--A Wolfram Web

Resource. http:// mathworld.wolfram.com /Inequation.html.

[11] Wikipedia – Inequation page: http://en.wikipedia.org /wiki/Inequation.

[12] Duffany, J.L., “Optimal Solution of Constraint Satisfaction Problems”,

International Conference on Applied Computer Science, Sharm el Sheik,

Egypt, January, 2009.

[13] http://mat.gsia.cmu.edu/COLOR/instances.html

[14] http://www.r-project.org

Jeffrey L. Duffany, Ph.D (M’77) became a Member (M) of IEEE in 1977.

Dr. Duffany was born in Waterbury, CT and received the BSEE degree from the

University of Connecticut in 1977. Dr. Duffany received the MSEE degree from

Columbia University in 1979 and a dual Ph.D. in Computer and Information

Engineering from Stevens Institute of Technology in 1996.

 He joined the Bell Laboratories as a member of technical staff in 1977 where

he worked in research and development publishing over 100 internal technical

reports and receiving two US patents. He also spent a year working at Lucent

Espana in Madrid, Spain. He joined the Universidad del Turabo in Gurabo PR in

2003. In 2005 he was a visiting scientist at Sandia National Laboratories Center

for Cyber Defense in Albuquerque, NM. In 2006 he was a visiting faculty

researcher at the University of Southern California Information Sciences

Institute in Marina del Rey California. In 2008 he was named Office of Naval

Research Faculty fellow and worked at the SPAWAR (Space and Naval Warfare

Systems Center) in San Diego California. Currently he teaching graduate and

undergraduate classes in computer science, electrical engineering and computer

engineering.

 Currently Dr. Duffany is pursuing research interests in the areas of computer

algorithms, artificial intelligence and network/computer security. Dr. Duffany is

a member of the IEEE and the ACM.

