
 

 

  

Abstract—The equivalence class subset algorithm is a powerful 

tool for solving a wide variety of constraint satisfaction problems 

and is based on the use of a decision function which has a very high 

but not perfect accuracy.  Perfect accuracy is not required in the 

decision function as even a suboptimal solution contains valuable 

information that can be used to help find an optimal solution. In the 

hardest problems, the decision function can break down leading to a 

suboptimal solution where there are more equivalence classes than 

are necessary and which can be viewed as a mixture of good 

decision and bad decisions. By choosing a subset of the decisions 

made in reaching a suboptimal solution an iterative technique can 

lead to an optimal solution, using series of steadily improved 

suboptimal solutions.  The goal is to reach an optimal solution as 

quickly as possible. Various techniques for choosing the decision 

subset are evaluated. 
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I. INTRODUCTION 

Consider the well-known compatibility problem, also   

known as a system of inequations[4,5,10,11] which is one of 

the best known examples of an NP-hard problem[2,6,8] 

which include the set of NP-complete problems as a special 

case[7]. The compatibility problem can be stated as follows. 

Suppose there are n objects each of which are incompatible 

with some subset of the other n-1 objects. The problem is to 

partition all n objects into a set of k equivalence classes such 

that no object is incompatible with any other object in its 

equivalence class and where k is minimum.  

 

The problem can be stated in terms of an adjacency matrix 

(A) of ones and zeros which summarizes the compatibility of 

each object (variable xi) with every other object (variable xj). 

A one in the (i,j) element of the A matrix indicates 

incompatibility between variables xi and xj while a zero 

represents compatibility.  A solution vector (s) is a mapping 

of each variable xi into an integer si such that 1<= si <= k 

while ensuring that si ≠ sj when A[i,j] = 1.  If an optimal 

solution vector s* is permuted such that all equivalence 

classes are grouped together and the corresponding A matrix 

is permuted accordingly, it is seen that the A matrix takes on 

a block diagonal form.  A zero inside the block diagonal 

represents a good decision which leads towards an optimal 
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solution. A zero outside the block diagonal or any zero of a 

suboptimal solution may be good or bad and may or may not 

lead to an optimal solution. A typical problem of n=100 

variables has n2 = 10,000 elements each of which is a zero or 

a one. For example a system may have 5000 zeros of which 

3000 are inside the block diagonal (zin) and 2000 which are 

outside (zout). Each zero represents a possible decision and at 

each step of the solution only one of these can be chosen. 

Clearly there can be a large number of choices and some kind 

of decision function is required to proceed towards a solution. 

A pair association {ij} occurs when a pair of variables xi and 

xj are combined into the same equivalence class. Generally 

speaking the lower the solution cardinality (k) the greater the  

number of zeros in the blocks of the block diagonal form. 

 

Consider a decision function f(A) =max(A2) which is the 

maximum value of the square of the A matrix over all (i,j) 

elements where A(i,j)=0 (all pairs of variables that can be 

combined to form the basis of an equivalence class). This is 

also known as the correlation function which represents for 

each (i,j) the number of constraints that match between the 

variables xi and xj. Using the ineq algorithm (described in 

section IV)  it is possible to find an optimal solution vector s* 

and permute the A matrix into block diagonal form. Now 

compute A2 and take only the values corresponding to 

A(i,j)=0 and place all of these values into two groups:  zin for 

those inside the block diagonal and zout for those outside and 

plot them as a histogram. The result for four different A 

matrices of four different ones densities is shown in 

Figures(1)-(4). The solid line in each of the figures represents 

the distribution of correlation values for pairs of variables xi 

and xj inside the block diagonal zin and the dashed line is for 

those pair associations xi and xj outside the block diagonal 

zout. The area underneath each curve represents the number of 

zeros either inside or outside of the diagonal blocks. 

 

Figure 1 shows the result of squaring an A matrix of very 

high ones density while Figure 2 shows what happens when 

that ones density is reduced by about half. In Figure 1 all of 

the zeros are in the block diagonal and none outside which is 

known as a complete k-partite system.  It can be seen in this 

case that there are three equivalence classes of different sizes 

resulting in three separate spectral peaks. The decision 

function f(A) =max(A2) tells us to choose the pair association 

corresponding to the rightmost tail of the distribution which 

has a value of about f(A) = max(A2) = 42. 
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Fig. 1   Matrix A with very high constraint density 

 

Because this is a complete k-partite system choosing any valid 

pair association will lead to an optimal solution so any 

decision function could be used in this case. This is a special 

case where any decision is a good decision and there are no 

bad decisions. There are other decision functions such as a 

power series expansion of the A matrix  f(A) =max(∑ciA
i) 

which is explored in more depth in [5]. 

 

Figure 2 shows the result for an A matrix with average ones 

density where the zeros outside of the main block diagonal 

increase significantly. However the decision function f(A) 

=max(A2) can clearly still differentiate between good 

decisions which lead to an optimal solution (under the solid 

curve) and other decisions or pair associations which may or 

may not lead to an optimal solution (under the dashed curve). 

The decision function will continue to work as long as the tail 

of the solid curve extends further to the right than the dashed 

curve since it only needs to make one correct decision at a 

time. The decision function f(A) =max(A2) is not perfect it 

has been estimated to be correct about 99.5% of the time over 

the ensemble of  systems of dimension n=100. Usually an 

optimal solution will be found for any system similar to the 

one in Figure 2 because as the solution proceeds the system 

gets closer to a complete k-partite system (Figure 1).  

 

Figure 3 illustrates what happens when the number of 

zeros zout continues to increase to the point where it equals or 

exceeds zin.  It can be seen in Figure 3 the two distributions do 

overlap however the right hand tail of the solid line 

distribution extends significantly higher than the dashed 

distribution so the decision function still works. Figure 4 

shows the extreme case where there are far more zeros 

outside the block diagonal zout than inside zin.  
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Fig. 2   Matrix A with average constraint density 

 

Note in Figure 4 that the two distributions are almost 

perfectly overlapping causing the decision function to break 

down and lose its ability to discriminate. This also 

corresponds to a very low ones density which is known to be 

the where the most difficult problems are[1,3]. This provides 

clear insight as to why the problems are so hard at this 

constraint density.  

 

It is important to note that all problems start near to one of 

the situations (Figures (1)-(4)) and then progresses towards a 

complete k-partite as in Figure 1. That explains why most of 

these problems are easily solved except for low density 

problems such as in  Figure 4.  Each system progresses along 

a trajectory towards a solution and will always pass through 

and end up as a complete k-partite system[3] as in Figure 1.    

II. EQUIVALENCE CLASS SUBSET ALGORITHM 

Consider the case of a typical np-complete problem which 

must determine if a given set of variables can be represented 

as three equivalence classes (k*=3) or not. If a wrong 

decision is made at any point during the solution it will find a 

suboptimal solution of more than k*=3 equivalence classes. 

In the more general case of the np-hard compatibility problem 

the optimal solution is k* equivalence classes and the 

algorithm finds a suboptimal solution of cardinality k >k*. 

One technique to improve the success rate is to assume that 

the suboptimal solution is somehow close to an optimal 

solution and that most of the decisions made by the decision 

function were correct. The method chooses some subset of the 

decisions that were made in reaching the suboptimal solution 

and combines those variables creating a problem that does fall 

into the optimal solution space of the decision function.    
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          Fig. 3   Matrix A with low constraint density 

The central idea is that somewhere near every system A that 

cannot be solved directly in one iteration is another 

equivalent system A' with the same optimal solution as 

system A which can be solved in one iteration. Finding this 

system A' can be viewed as a search of the very top of the 

decision tree. The  equivalence class subset algorithm can be 

stated as in Figure 5: 

(1)  find any solution s to system A  

 (2)  choose a subset of variable associations from  s     

 (3)  combine these variables  to create the A' matrix  

 (4)  find a solution s' to system A'  

Figure 5.  The Equivalence Class Subset Algorithm 

The equivalence class subset algorithm is based on the 

observation that any solution vector s will partition the zeros 

of the A matrix into two groups: those inside the block 

diagonal zin and those outside the block diagonal zout. 

Combining a small subset of pair associations corresponding 

to zeros inside the block diagonal may lead to an optimal 

solution if all of the decisions they represent were good. The 

exact size of the subset can be referred to as the search depth. 

Easier problems are solved by combining variables in the 

same equivalence class while difficult problems can require 

combining variables in different equivalence classes.  

 

The equivalence class subset algorithm works by stepping 

through a sequence of suboptimal solutions towards an 

optimal solution. Each time a solution s' is found the number 

of zeros on the block diagonal (zin) is calculated.  If this is 

more than in the previous solution use s' to take the next 

subset otherwise continue using s. If you take two suboptimal 

solutions it is likely that that one has more zeros on the main 

diagonal than the other. The one with more zeros is likely to   
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         Fig. 4   Matrix A with very low constraint density 

be closer to an optimal solution. Each time you find a system 

where the number of zeros on the block diagonal is greater 

than any yet calculated,  choose that as the new system s’. 

Figure 6 shows a typical trajectory of the equivalence class 

subset algorithm from suboptimal to optimal solution for a 

system of n=100 variables and optimal solution cardinality 

k*=13.  The lower line represents the sequence of k values 

starting at k=15 and ending an optimal solution k*=13. The 

dashed line represents the total number of pair associations zin 

which it is desired to maximize (for simplicity the actual 

numbers are not shown for the pair associations).  The 

method required choosing about 100 subsets from suboptimal 

solution vectors before an optimal solution was found.  

Usually an optimal solution is found in fewer attempts and 

occasionally it can take several hundred attempts[3] for 

systems of dimension n=100.  The optimal size for the subset 

is a parameter of great interest and has been studied in [3]. 

The larger the size of the subset, the higher the probability it 

is to contain an incorrect decision. The smaller the size of the 

subset, the less likely it is to contain an incorrect decision 

however the less likely it is to move the system over to one 

that is in the solution space of the decision function. For 

systems of dimension n=100 it has been seen a range of 

subsets from as few as 1 to as many as 9 falling off rapidly in 

what appears to be a geometric type of distribution[3].       

The assumptions behind the equivalence class subset 

algorithm that a suboptimal solution is somehow close to an 

optimal solution may not hold for a small set of the most 

difficult problems which are typically of low ones density as 

seen in    Figure 4. This is due to a type of avalanche effect 

whereby mistakes made by a decision function early on can 

lead to suboptimal solutions that are far away from an optimal 

solution. In this situation it can be hopeless to combine any  

subset of variables as the probability of including a bad 

decision is very high. In this situation it would be better to  
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 Figure 6. Typical Trajectory of the Equivalence Class Subset Algorithm 

  

assume that the suboptimal solution is far from an optimal 

solution and do the opposite. Instead of combining variables 

from the same equivalence class the method should split 

variables under the assumption that a significant proportion 

of the decisions made were probably wrong. For example, 

variables combined in the smallest equivalence class can act 

like a set of misfits that should be split up rather than 

combined in the equivalence class subset algorithm. 

 

That raises the problem of how to separate the split pair 

associations so that they don't recombine. This can be done 

quite effectively by creating a list of all pair associations that 

were previously combined and the resulting value of zin that 

resulted from doing this. When a pair association needs to be 

split it is looked up on the list and combined with a variable it 

is most compatible with. Use of this technique has extended 

the capability of the equivalence class subset algorithm to 

solve very difficult problems. Since the difficulty of a given 

problem is not known a priori, techniques of both splitting 

and combining can be used in an alternate fashion. 

III.   PROBLEM COMPLEXITY 

Considerable discussion has been put forth already on the 

ones density of the A matrix and the number of zeros inside 

and outside of the block diagonal. From a purely probabilistic 

viewpoint the odds of making a good decision depends on the 

underlying ratio of good to bad which is related to the number 

of zeros inside and outside of the block diagonal. The 

decision function works most of the time except in low ones 

density problems as in Figure 4. By contrast, in a complete k-

partite system (the opposite extreme) there are only good 

decisions. For any given system and optimal solution vector 

s* there will be a zozi ratio given by equation (1): 

 

(1)           zozi = zout/zin 

 

In general it makes intuitive sense that the higher the zozi 

ratio the more difficult the problem.  Recall for example that 

the easiest problems all have a zozi ratio of zozi=0. Difficult 

can be defined as the average time complexity of solving a 

problem[3] or as the difficulty of guessing at random and 

getting the correct answer. Figure 7 shows the result from a 

sample of 200 systems all in the most difficult region of low 

density but with different zozi ratios. It was observed that all 

of the most difficult problems had a zozi ratio of greater than 

about 1.8. The zozi ratio for k*=3  can vary between about 

.0006 and 2.  The difficulty tapered off as the zozi ratio 

decreased from 1.8 to 1.5 and for zozi ratios less than about 

1.5 all were solved in one iteration. It is premature to reach a 

general conclusion from a small sample of 200 however there 

is a clear indication that most if not all of the difficult 

problems are concentrated in the region with the highest ratio 

of zeros outside zout to zeros inside the block diagonal zin. 

This leads to the question of how it is possible to construct 

problems which have the highest ratio of zeros outside to 

zeros inside the block diagonal. Simply decreasing the ones  



 

 

 

 
 

Figure 7. Problem Complexity and Number of Zeros zin and zout 

 

density does not necessarily accomplish the desired result as it 

can result in the trivial problem where the ones density is 

zero. Referring to equation (1) it can be seen that to maximize 

the zozi ratio it would be necessary to consider both 

maximizing the numerator and minimizing the denominator 

of the fraction. The formula for calculating the minimum 

number zeros in the block diagonal is given by equation (2): 

 

(2)         zmin = k*(n/k)2 = n2/k 

 

which gives approximately the minimum number of block 

diagonal zeros for solution cardinality k (exactly if n is 

divisible by k). This tells us that the minimum number of 

zeros on the block diagonal occurs when the size of all the 

equivalence classes are the same (n/k). For n=100 and k=3 

this gives about 3334 as the minimum and it is for these 

problems that would be expected to be the most difficult. To 

test this hypothesis a sample of 200 systems were chosen and 

solved. For each system the ratio zin/zmin was plotted against 

complexity as shown in Figure 8. All of the most difficult 

problems were seen to fall very close (within 4% ) of zmin.   

IV. THE INEQ ALGORITHM 

The decision function f(A) =max(A2) and the equivalence 

class subset algorithm were discussed in some detail. 

However this does not give the details of how to use a 

decision function by itself to generate a solution vector s as 

required in step (1) and step (4) of the equivalence class 

subset algorithm as given in Figure 5. The method used to 

generate solutions is called the ineq algorithm (see Figure 9).   

 

 

 
 

Figure 8. Problem Complexity and Number of Zeros zin >  zmin 

 

ineq(A) 

ij<-max(A2) 

xi=xi|xj 

s[j]=s[i] 

A=A[-j,-j] 

ineq(A) 

 

Figure 9.  The ineq algorithm 

 

The ineq algorithm is so named because it can solve 

systems of inequations[4][10][11]. The algorithm starts with 

a solution vector s which has an initial value of s = 

(1,2,3,...n).  The algorithm squares the adjacency matrix A 

and finds the maximum value of A2 [i,j] for pairs of variables 

that can be combined (i.e., A[i,j]=0). Similar to gaussian 

elimination it then combines variables xi and xj by taking the 

constraints that are in xj but not in xi and adding them to xi. 

It then updates the solution vector s[j]=s[i] and eliminates 

variable xj as in Gaussian elimination. The matrix A is 

reduced by one in dimension each time a variable is 

eliminated.  Note that the algorithm ineq is recursive, calling 

itself in the last step of the algorithm and stopping when there 

are no longer any variables to combine. The difference 

between ineq and Gaussian elimination is that ineq uses 

logical OR instead of addition and uses a decision function 

f(A)=max(A2) to determine (i,j). Since squaring a matrix is 

complexity O(n3) it would appear that ineq would be O(n4) 

however it is shown in [12] that ineq is O(n3). This has to be 

repeated for O(n) repetitions giving O(n3)*O(n) = O(n4) for 

the equivalence class subset algorithm. 
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V. SUMMARY AND CONCLUSIONS 

A method called the equivalence class subset algorithm is 

described which can solve a wide variety of constraint 

satisfaction problems even in the most difficult ones[1]. It is 

based on the idea of the use of an imperfect decision function 

and by successively improving suboptimal solutions until an 

optimal solution is found. It was found that two different 

techniques were required depending on how far the 

suboptimal solution is from an optimal solution. If the 

suboptimal solution was close to an optimal solution then 

most of the decisions it made were correct so that choosing a 

subset of pair associations from even a suboptimal solution s 

will in many cases only contain pair associations which lead 

toward an optimal solution. When the subset of pair 

associations {ij} are associated by combining the indicated 

variables the matrix A is modified to form a new matrix A’. If 

no incorrect decisions were included in {ij} then the A’ 

matrix will have the same optimal solution cardinality as the 

matrix A. If in addition the matrix A’ falls into the solution 

space of the decision function f(A) being used then an optimal 

solution will also be found. In the case where the suboptimal 

solution is very far from an optimal solution the opposite 

approach of splitting up pair associations was seen to be far 

more successful. For any given problem it is not known 

whether a solution is optimal so in those cases it appears best 

to alternate between the two techniques. Each time a new 

solution is generated the number of block diagonal zeros zin is 

calculated.  If the new solution vector has a higher zin value 

than previous solutions it is kept as the new basis for 

choosing subsets to combine or split. If not it is discarded. 

This method has been used on thousands of problems in the 

most difficult problem regions and has found an optimal 

solution in every case within at most a few hundred iterations. 

This leads to a conservative estimate for a lower bound of 

success rate of over 99.9% for systems of n=100 variables[3]. 

This investigation also further explored the idea of 

characterizing the most difficult problems[1,3]. Any insight 

into the nature of the most difficult problems can lead to 

either new or improved methods for solving these types of 

problems. It was found that one of the main source of problem 

difficulty is a result of the ratio of the number of zeros inside 

the block diagonal zin to those outside the block diagonal zout 

which can also be called the zozi ratio. It was further 

determined that the problems with the smallest number of 

zeros in the block diagonal would also be among the most 

difficult and this was corroborated by experimental results. 

Future research in this area is planned to include extending 

the dimension of the problems to be solved into the range of 

several thousand variables. Another goal is to test this 

algorithm more thoroughly by applying it to known problems 

for example the standard set of problems at the Carnegie 

Mellon University mathematics website[13]. It is also desired 

to create a package for the R language[14] for the ineq and 

ecsa algorithms so any results can be independently verified. 
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