
Fourth LACCEI International Latin American and Caribbean Conference on Engineering and Technology (LACCEI ‘2006)

“Breaking Frontiers and Barriers in Engineering: Education, Research and Practice”, 21-23 June 2006, Mayaguez, Puerto Rico

Systems of Inequations

Jeffrey L. Duffany, Ph.D.

Universidad del Turabo

Gurabo, PR USA

jduffany@suagm.edu

Abstract

A system of inequations is equivalent to the compatibility problem which is one of the best known and

classic examples of np-complete problem. A solution method is described which is analogous to solving

systems of equations using substitution and elimination of variables. A decision function is used to

determine which variables to combine. The solution method can be implemented using set-theoretical

operators such as union and intersection or using a combination of modular and traditional arithmetic

operators. The performance of the basic method is shown to be significantly improved when used in a

variation called the equivalence class subset algorithm.

1 Introduction

A system of inequations is represented by a set of n variables ix and a set of compatibilities involving all

pairs of variables),(ji xx . For example suppose n=2 and the system is represented by inequation (1):

21 xx ≠ (1)

For this example 11 =x and 22 =x is a solution as is px =1 and npx =2 , since both satisfy every

inequation in the system. In general, the solution to a system of inequations is drawn from an arbitrary set

of distinct elements. There are an infinite number of solutions to this system but a solution s* is called

optimal only if the number of elements in the solution set is minimum over all possible solution sets {s}.

In this case the cardinality of the optimal solution k*=max(s*) is 2 since s*={1,2} is a solution and it is

not possible to solve this system with a set of lower cardinality. The cardinality of a solution k=max(s) is

not the same as the cardinality of the solution |s| which is always equal to the dimension of the system

(i.e., the number of variables “n”). A system of inequations can be represented by a binary symmetric

square matrix A, with a zero representing a compatibility and a one an incompatibility as in equation (2).

=

01

10
A (2)

The matrix A in equation (2) is a representation of the system of inequations 21 xx ≠ . There are always

two ones in the A matrix for every inequation representing both ji xx ≠ and ij xx ≠ . A system of

inequations can also be represented by inequation (3):

xAx ≠ (3)

if the addition operator “+” in the vector product is replaced by the union (∪) set operator. The variable

1x is represented as the first row of column vector x and 2x is represented by the second row of column

vector x. Analogous to a matrix representation of equations, inequation (3) represents a system of

inequations of the form ...kji xxx ∪≠ . Note that “ ≠ ”in inequation (3) is interpreted differently from

standard usage when either side of the expression is a set of variables. In this case the “ ≠ ” symbol

distributes over each element of the set. In other words, kji xxx ∪≠ is equivalent to inequations

ji xx ≠ and ki xx ≠ . Another way to express this would be using the set-theoretical ∉ (not a member of)

symbol. However the ≠ symbol will be used to emphasize the similarity between systems of equations

and systems of inequations. Systems of inequations are equivalent to the well-known compatibility

problem[Clay,2005] which is categorized as NP-hard[Weisstein, 2005a][Horowitz, 1978].

2 Substitution and Elimination of Variables

A solution technique for systems of inequations can be defined which is analogous to the technique used

for systems of equations, also known as the method of substitution and elimination of variables. This

method always finds a feasible solution “s” but the solution that it finds may or may not be optimal. An

example of substitution of variables is given by the following pair of inequations (4) where variable 1x is

used to substitute for and eliminate variable 4x :

534

321

xxx

xxx

∪≠

∪≠
 ⇒ 5321 xxxx ∪∪≠ (4)

Since there is no constraint that 41 xx ≠ in the pair of inequations (4) it is possible to set x1 = x1 ∪ x4 and

eliminate x4 (the symbol “ ∪ ” representing the union operator). The union operator can be considered the

set-theoretical equivalent of the addition operator. The combined inequations assert that x1 ≠ x2 and that

x1 ≠ x3 and that x1 ≠ x5. An optimal solution is given by s*=(1,2,2,1,2). The substitution of x1 for x4

results in x1=x4=1 and x2=x3=x5=2 in the optimal solution. The variables have been partitioned into two

sets {x1,x4} and {x2,x3,x5}. Since k*=2 any optimal solution will partition the variables into two sets each

of which is referred to as an equivalence class or independent set. This leads to the following observation.

Observation: For any system of inequations any two variables that are in the same equivalence class of

any optimal solution can be associated to create a new system of inequations which has the same optimal

solution cardinality k* as the original system.

Combining variables in this fashion will always lead to a feasible but not necessarily optimal solution.

This process can be continued until eventually ji xx ≠ for all pairs of variables),(ji xx . At this point

either an optimal solution s* has been found or a feasible but not optimal solution s(k>k*) has been

found. Back substitution is used to find the solution for the original system.

For every system of n inequations there is at least one optimal solution of minimum cardinality k* and

exactly one trivial solution s(n)={1,2,3…n}. The trivial solution s(n) represents the association of each

variable to a different integer ixi = , i∈{1,2,3,..n}. In the system 21 xx ≠ the unique optimal solution s*

and the trivial solution s(n) are the same s*=s(n)=(1,2). It should also be noted that in this case the

number of solutions of cardinality less than k*=2 and greater than n=2 is zero. In general, any solution

that is not optimal has cardinality k>k* and can be referred to as a suboptimal solution. For any given

system there can be a large number of suboptimal solutions for k*<k< n.

The number of pairs of variables that can be substituted for one another in a given system is an integer

between 0 and n(n-1)/2 inclusive. Finding an optimal solution for a system of inequations is equivalent to

having a decision function that can for any A matrix select two variables that are in the same equivalence

class of some optimal solution s* in {s*}. For any system of inequations the set X of off-diagonal zeros of

the matrix A represent the set of all pairs of variables that can be combined into equivalence classes

X={xi,xj | aij=0, i ≠ j}. If |X|=0 (X={φ }) then the system is called a complete system. For any system that

is not complete there is always at least one pair of variables that when combined leads to an optimal

solution. If |X|=n(n-1)/2 then all variables are in the same equivalence class and Xec=X, where Xec is the

subset of X corresponding to an optimal or suboptimal solution “s” Xec={xi,xj|xi,xj in s}.

Finding an optimal solution for a system of inequations can be accomplished by finding a mapping

function f(X) which partitions the set X= {xi,xj | aij=0} into two mutually exclusive subsets Xa ∪ Xc=X,

Xa∩Xc={φ }. The set Xc represents the subset of X for which the variables xi and xj can be found in the

same equivalence class of at least one optimal solution. The set Xa represents the subset of X for which

the variables (xi,xj) are never found in the same equivalence class of any optimal solution. The subscripts

c and a of Xa and Xc are abbreviations of the words chromatic and achromatic. If two variables are

combined and the cardinality of an optimal solution of the new A’ matrix is the same as the original A

matrix then the operation it can be said to represent a chromatic transformation. If not then it can be said

to be an achromatic transformation. Without loss of generality the mapping function f(X) can be referred

to as the decision function f(A). For example the decision function f(A) could take every xij∈X and map

each xij into a 1 or a 0, depending on whether association will lead to an optimal solution or not.

3 Canonical Form

Consider a system of inequations in 5 variables as shown in equation 5(a). In a manner similar to what

was done for equation (4) an optimal solution is easily found as s*=(1,2,1,2,1). There is only one unique

optimal solution s* which partitions the variables into two equivalence classes {x1,x3,x5} and {x2,x4}.

A =

01000

10100

01010

00101

00010

 (a) A* =

00110

00011

10000

11000

01000

 (b) (5)

The matrix A* given in equation 5(b) is a permutation of the variables of A that corresponds to the

partitioning into the equivalence classes of s*. Note that A
*

is in block diagonal form with square

submatrices of zeros of dimension 3x3 and 2x2 along the main diagonal. The matrix A
*
 resembles the

echelon form used in solving systems of equations. It

can be regarded as a canonical form in that any

system of inequations can always be represented in this form. The canonical form can also be regarded as

a spectral decomposition of the matrix A by a permutation matrix P as in equation (6):

 A
*
= P

-1
AP (6)

If the variables are ordered such that the last one of each equivalence class cannot combine with the first

variable of the next, the canonical form A* has the property that an optimal solution s* can be determined

by repeatedly choosing and associating (i.e., combining) variables whose subscript differs by one (xi,xi+1)

for i).1,...2,1{ −∈ n In example 5(b) this would require switching the last two rows. Using this technique

the canonical form A* can be used to uniquely represent an optimal solution vector s*.

From Equation 5(a) it is seen that the off-diagonal zeros represent the set X and that there are six ways of

choosing pairs of the 5 variables xij, ij 5,..2,1∈ ,i ≠ j, for the purpose of substitution and elimination. Of

the six exactly four belong to Xc={x13,x15,x35,x24} and exactly two belong to Xa={x14,x25}. In equation

5(b) the set Xc corresponds to zeros inside the diagonal blocks and the set Xa corresponds to zeros outside

the diagonal blocks. In general systems that have more than one solution will have members of Xc outside

of the diagonal blocks.

4 K-partite Systems

The matrix A* in Figure 5(b) is an incomplete bipartite system due to the zeros outside of the diagonal

blocks. A complete bipartite system has all ones outside of the diagonal blocks. Similarly, a complete k-

partite system has a unique optimal solution s* which partitions the variables into k* equivalence classes

and when permuted into canonical form has all ones outside the diagonal blocks. A complete k-partite

system is represented by the symbol Kp1p2..pk where the values pi represent the number of variables in each

equivalence class. This is illustrated in equation (7) for the complete k-partite system K322.

322K =

0011111

0011111

1100111

1100111

1111000

1111000

1111000

 (7)

The system K322 is an overconstrained system. Removing any single constraint will create a different

system K'322 which has the same unique optimal solution as the original system. In general more than one

constraint can be removed from a complete k-partite system without changing the optimal solution s*.

Let A be any system of inequations with an optimal solution vector s*. Let the cardinality of the

equivalence classes of s* be given by (p1,p2…pk). Then there is a complete k-partite system Kp1p2..pk that

has the same optimal solution vector s* as A which can be derived from A by changing all zeros to ones

everywhere outside the block diagonals of the canonical form of the A matrix. For example refer to

equation 5(b) which has two zeros outside the block diagonal. Either or both of these zeros can be

changed to ones creating a new and more overconstrained system of inequations with the same unique

optimal solution vector s*. If both zeros are changed to one it results in the complete bipartite system K32

having the same optimal solution vector s*=(1,1,1,2,2).

5 Decision Functions

A decision function f(A) is a function which imposes an ordering on the set X of pairs of variables that

reflects the likelihood they belong to the same equivalence class of an optimal solution. For example the

decision function f(A) = A for a system of inequations can be considered an ordering of the set X where

each pair of variables is given the same likelihood or probability of being in the same equivalence class

since for f(A) = A, aij=0 for all xij in X. Since this decision function provides no information regarding

the ordering of the pairs it implies that to find an optimal solution all of the possibilities must be searched.

The decision function f(A) = A can be considered an ambivalent or neutral decision function.

On the opposite extreme is the perfect decision function which will always choose two variables (xi,xj) of

a system of inequations that are in the same equivalence class of an optimal solution s*. However even if

a perfect decision function does not exist it may be possible to find an imperfect decision function such

that a particular xij∈X is more likely than another to be in the same equivalence class of some s* in{s*}.

The existence of even an imperfect decision function could imply the existence of an algorithm for

finding an optimal solution without having to search all of the possibilities.

The canonical form shown in equations 5(b) and (7) represent the variables of a system partitioned into

equivalence classes. In particular, it is seen that in any complete k-partite system such as K322 the rows of

the matrix are identical for each variable in any equivalence class. If each row is considered as a vector

each pair of variables in the same equivalence class share the same set of constraints. In other words the

intersection (logical AND) of the two sets of constraints is the same for all pairs of variables in the same

equivalence class. This coincidentally is equal to the inner product of the two vectors representing the

rows of the A matrix as indicated in equation (8).

xi • xj = | xi ∩ xj | (8)

To calculate the intersection of the set of constraints of every variable with every other variable in a

system of inequations matrix multiplication can be used. In other words equation (8) can be generalized

for every pair of variables in the system by using the square of the A matrix (A
2
). For example equation

(9(b)) shows the result of applying equation (8) to all pairs of variables (xi,xj) in the complete k-partite

system 322K of Equation (7) by squaring the matrix.

322K =

0011111

0011111

1100111

1100111

1111000

1111000

1111000

(a) 322
2

K =

5533222

5533222

3355222

3355222

2222444

2222444

2222444

(b) (9)

The value of 322
2

K for all pairs within an equivalence class is either 4 or 5 and that this value is greater

than that of any pair chosen from two different equivalence classes. The decision function f(A) = max(A
2
)

is a perfect decision function for all complete k-partite systems regardless of optimal solution cardinality

k* or system dimension n {n| n>0, n-> ∞ }. For systems which are not complete k-partite the pair of

variables (xi,xj) corresponding to the maximum value f(A) = max(A
2
) is not guaranteed to be in the same

equivalence class of an optimal solution {s*}. Note that the decision function f(A)=max(A
2
) is global in

the sense that it makes use of information about every possible choice of variables {(xi,xj) |

(i,j)∈{1,2,3....n}} when making a decision. A geometrical interpretation of the decision function

f(A)=max(A
2
) is that it chooses two points that are as close together as possible without touching.

For another example of the decision function f(A) = max(A
2
) consider a system of n=100 variables

generated at random with solution cardinality k*= max(s*) = 3. The matrix A for this system was squared

and the intersection between every (xi,xj) pair in X is shown in Figure 1. The solid line represents the

distribution of intersection between pairs of variables in the same equivalence class Xec as determined

from the canonical form of the A matrix corresponding to s*. The dashed line in Figure 1 represents the

distribution of the intersection between pairs of variables in different equivalence classes X ec.

Figure 1. Result of applying f(A) = A
2
 to a random system of 100 variables

Figure 1 corresponds to a matrix of dimension n=100 that has ten thousand aij values (3740 zeros and

7260 ones). Of the 3740 zeros 100 are on the main diagonal leaving a total of |X| = 3640 off of the main

diagonal. Of the 3640 a total of Xec = 3302 were inside a diagonal block and X ec = 338 were outside any

diagonal block of the canonical form of A corresponding to an optimal solution vector s*. Even though

the A matrix was not complete k-partite it was close enough to be in the region of convergence of the

decision function f(A) = max(A
2
) since it separated X into two sets Xec and X ec whose ranges did not

overlap. In other words the intersection of any pair of variables in the same equivalence class of s* was

greater than that of any pair of variables in different equivalence classes of s*. Note that sets Xec and X ec

are not equivalent to Xa and Xc. All xij in Xec of s* are in Xc while xij in X ec may be in either Xa or Xc.

In general the perfect separation of distributions in Figure 1 will not be the case for all systems of

inequations. In some cases there will be a perfect separation or partial overlap but in other cases there will

be a complete overlap of the distributions. To make a correct decision it is not necessary for all the values

of A
2
 within an equivalence class to be greater than every A

2
 value for variables in different equivalence

classes. To make a correct decision it is necessary that one pair of variables in an equivalence class of an

optimal solution s* have an intersection greater than the largest intersection of any two variables that are

not in the same equivalence class of any optimal solution {s*}.

0 2 0 4 0 6 0 8 0

0
5

0
1

0
0

1
5

0

inte rs e c tio n o f xi a nd xj

n
u

m
b

e
r

o
f
x
i
x
j
p

a
ir

s

s a m e e q uiva le nc e c la s s
d i ffe re nt e q uiva le nce c la ss e s

6 Algorithm

Using a decision function f(A) an algorithm can be derived for solving systems of inequations (Figure 2).

The algorithm is recursive. It takes as input an nxn matrix A and reduces it to an (n-1)x(n-1) system,

calling itself to solve the reduced system. The solution cardinality k is the dimension of the reduced A

matrix when no more variables can be combined.

ineq(A)

ij ����f(A)

if {ij}={φ } return A

xi=xi ∪ xj

A=A-xj

ineq(A)

Figure 2. Algorithm for solving systems of inequations

The decision function f(A) identifies a pair of variables ix and jx (also represented as ij or xij) that are

likely to be in the same equivalence class. If using f(A) = max(A
2
) then a given pair would be chosen

because the intersection of their constraints was greater than or equal to that of any other pair of variables.

The two variables xi and xj are combined using the set union operation (logical OR or modulo 2 addition)

and then row i and column i of the A matrix are updated to the “sum” or union of xi and xj. The binary

subtraction operator (-) is used to represent the elimination of the variable xj from the system (i.e., the

removal of row j and column j from A). The algorithm terminates when the set {ij} is empty returning the

same A matrix that it received as input with the solution indicated by rows and columns permuted into

canonical form. The algorithm could also return the solution vector s as shown in Figure 3.

ineq(A)

s={1,2,3,...n}

ij ���� max(
2A)

if ij ={φ } return s

xi=xi ∪ xj

A=A-xj

s[s=j]=i

s[s>j]=s[s>j]-1

ineq(A)

Figure 3. Algorithm with f(A) = max(A
2
) and solution vector s

The first step in the algorithm of Figure 3 is to initialize the solution vector to the trivial solution

s(n)={1,2,3,...n}. The algorithm then steps through a series of feasible solutions. Each time the dimension

of the matrix is reduced by one the number of equivalence classes in the solution vector s is also reduced

by one. The solution vector is updated by taking all variables that currently have solution value j and

assigning a new solution value i. All variables that currently have a solution greater than j have their

current value reduced by one. For this to work properly the subscripts {ij} must be chosen such that i<j.

There must also be a deterministic stopping criterion and a deterministic method of choosing a unique xij

when more than one pair of variables has the same maximal intersection. The convention that has been

adopted uses the upper triangular part of the A
2
 matrix since A

2
 is symmetric. If there are more than one

pair of variables in {ij} choose the one with the lowest i and then the lowest j value. This uniquely

determines i and j in any step of the algorithm and assures that any program implementation will go

through the exact same deterministic steps. This also ensures that i<j so that the solution vector is

calculated properly. The stopping criterion is that the set {ij} is empty ({ij}={φ }) .

7 Solution Space

The system space {A} is the set of all binary symmetric zero-diagonal matrices that represent any system

of inequations. The solution space S of a decision function can be defined as the subset of all systems {A}

where the method provides an optimal solution S={A| f(A) → s*)} where s* is an optimal solution of

cardinality k*. The solution space of a decision function can be estimated using simulation as illustrated

in Figure 4 for f(A) = max(A
2
).

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

equivalence class (k)

c
o
n
s
tr
a
in

t
d
e
n
s
it
y
 (
%

)

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

** *

*

*

*
*

*

*

* *

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*

*

*

*

*

*
*

*

*

*

*

**

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

* *

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

* *

*

*
*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Figure 4. Solution Space S for f(A) = max(A
2
)

Figure 4 was generated using the algorithm of Figure 2 for 5000 systems of dimension n=100 variables

using uniform distributions of optimal solution cardinality k* and constraint density (∑aij /((n)*(n-1)).

The points in Figure 4 represent optimal solutions and the asterisks represent suboptimal solutions. Of the

5000 systems of inequations represented in Figure 4 there are approximately 4500 points representing

where an optimal solution was found (see Table 1) all falling into a semi-contiguous region. Systems for

which an optimal solution was not found can be visualized as teeter-tottering on the edge of indecision,

located in somewhere in-between the regions of absolute convergence of a number of complete k-partite

"attractors". Finding the optimal solution s* for the general case where 1<=k*<=n is classified as NP-

hard[Weisstein, 2005a][Horowitz, 1978]. Finding an optimal solution s* for the case of three equivalence

classes (k*=3) is a special case which is classified as both NP-hard and NP-complete[Weisstein, 2005b].

A solution for either the general case 1<=k*<=n or the NP-complete special case of k*=3 would provide a

solution for the entire class NP complete [Cook, 2005], [Karp, 1972].

Figure 5. Venn Diagram illustrating decision functions A
2
, A A , and A 2

The decision function f(A) = max(A
2
) is only one of many that have been identified based on the powers

of the matrix A and its complement A . For example f(A) = max(A 2
) is the decision function based on the

number of zeros in common (i.e., the intersection of non-constraints). This decision function can be

thought of as maximizing the number of variables in each equivalence class or independent set. Another

decision function)min()(AAAf = minimizes the number of constraints added to a variable when

associating it with another variable. Figure 5 illustrates these decision functions for two variables

ix =(1,1,1,0,1,0,1) and jx =(1,1,1,0,0,1,0) whose first 4 elements agree and last 3 elements disagree. The

intersection of constraints or number of ones in common for xi and xj corresponding to f(A) = max(A
2
)

ix •
jx = 3. Similarly, for f(A) = max(A 2

) the number of zeros in common is ix • jx = 1. If the

constraints of ix are added to jx the number of constraints of jx is increased by 2 whereas if the

constraints of jx are added to ix the number of constraints of jx is increased by 1 so

(min(ix • jx , ix • jx) = 1). A generating function for decision functions is given by K
m

= (A+ A)
m

where K is the complete system (k* = n). For m=2 these decision functions are related by equation (10).

2222)(AAAAAAAAK +++=+= (10)

It is also possible to use a power series expansion to generate decision functions as in equation (11).

i

i

i AcAf ∑
∞

=

=
0

)((11)

Each set of ci values generates a unique decision function. Note that both (10) and (11) include as a subset

the set of decision functions f(A) = A
n
 .

1

xi xj

0

0

1

1

1

1

0

0

1

Table 1. Estimated percent solution space S for various decision functions

decision function n=10 20 30 50 100 200 300 500 1000

1. max(A
2
) 99.5% 98.6% 96.8% 93.2% 90.0% 87.6% 86.1% 87.4% 86.8%

2. max(A 2
) 91.3% 80.9% 73.7% 66.1% 63.4% 60.2% 58.5% 62.0% 56.7%

3. min(A A) 99.9% 98.4% 96.5% 91.3% 89.2% 88.8% 88.3% 86.6% 87.2%

4. min(A(A *A
2
)) 99.9% 99.4% 97.2% 94.6% 92.6% 90.3% 90.0% 88.9% 88.1%

5. combined (1-4) 100% 100% 98.8% 96.4% 94.6% 92.5% 90.8% 89.8% 89.3%

6. f(A)=A 72.4% 61.2% 57.3% 56.8% 55.7% 57.9% 56.9% 56.5% 55.2%

Table 1 shows the estimated solution space of various decision functions for systems of dimension

between 10 and 1000. In general the success rate drops off with increasing n but stabilizes to nearly a

constant value as n increases. The success rate of f(A)=max(A 2
) is lower than f(A)=max(A

2
) while that

of f(A)=min(A A) is about the same. The decision function with the best success rate

f(A)=min(A(A *A
2
)) is a variation on f(A)=min(A A) which weights the matrix A using scalar

multiplication (*) with A
2
. The effect of this weighting is that it discourages combining two variables if

doing so would prevent one of them from combining with another variable that it is highly correlated

with. The solution space for each decision function overlaps with the others but not completely so that

using more than one decision function increases the overall success rate. The row of Table 1 labeled

“combined” shows that calculating the first four decision functions and using the best result increases the

solution space S to almost 90% for systems as large as n =1000. The last row shows the result of the

ambivalent or neutral decision function f(A)=A. The resolving ability of any decision function can be

measured by calculating the ratio if its success rate to that of the ambivalent decision function.

Consider any bipartite system in canonical form such as B in equation (12). Any bipartite system will

have two blocks of zeros on the main diagonal so the inner product of any two variables from different

equivalence classes will always be zero. If the variables are from different equivalence classes the

intersection will not be equal to zero. Therefore f(A) = max(A
2
) solves all bipartite and acyclic systems.

B =

0001011

0001111

0001101

1110000

0110000

1100000

1110000

 (12)

Observation: the decision function f(A) = max(A
2
) solves all systems of inequations with k*=2. This

includes all incomplete and complete bipartite systems and all acyclic systems. In addition, it solves all

complete k-partite systems and all systems close enough to complete k-partite to be within its region of

convergence as in Figure 1. The solution space of f(A) = max (A
2
) includes systems of dimension n→∞ .

Observation: whenever the set of constraints of a variable xi are a subset of the constraints of another

variable xj the variable xi is redundant and can be combined with xj without changing the cardinality of

the optimal solution k*. This is the basis of the decision function f(A)=min(A A) which minimizes the

number of new constraints added to a variable when it is combined with another variable.

8 Equivalence Class Subset Algorithm

The equivalence class subset algorithm is based on the observation that in most cases the decisions made

by a decision function f(A) to obtain a solution vector s will be correct. For example it can be estimated

from Table 1 thar for n=100 the decision function f(A)=max(A
2
) made a correct decision 99.5% of the

time (approximately one incorrect decision out of every 200 correct decisions). This means that for a

solution vector s generated by f(A)=max(A
2
) any particular xij in Xec is more likely to be in Xc than a

given xij in X since even a suboptimal solution s found by a decision function f(A) is in some sense close

to an optimal solution s*. As a consequence, a significant number of possible subsets {xij}∈ Xec will be

usually be chromatic (i.e., {xij}∈ Xc) even when the entire set Xec is not chromatic. If {xij} is chromatic it

can be used to generate a new matrix A' = A(xij) having the same optimal solution cardinality as the

original A matrix by associating all the pairs of variables in {xij}. The new A' = A(xij) matrix represents a

node on the tree of all feasible solutions and if {xij}∈ Xc it is certain that there is at least one path below

it that leads to an optimal solution. The A' = A(xij) matrix will generally be closer to complete k-partite

than the matrix A and has a possibility to be in the solution space S of one of the decision functions even

when the matrix A was not. This observation is the basis of a technique called the equivalence class

subset algorithm which significantly improves the success rate of the decision functions listed in Table 1.

It is possible to choose a random subset {xij} of X and significantly improve the overall success rate.

However it is also possible to choose a subset {xij} of X in such a way that decreases the amount of

search required to find an optimal solution. To do this requires the introduction of the parameter z which

is the number of block diagonal zeros in the A matrix when the rows and columns are permuted into

block diagonal form (as in equation (5)). The desired expression is given by equation (13):

∑
=

=
k

i

ikz
1

2
 (13)

where ki is the number of variables in each of the k equivalence classes. The underlying quantity of

interest is the total number of pair associations Xec in a solution vector s which is given by Xec = (1/2)(z –

n) which represents half the number of off-diagonal zeros in all diagonal blocks of A. For example the

solution vector s = (1,2,1,2,1) from equation(5) would have z=13 and Xec = 4 since k1=3 and k2=2 as is

easily verified by counting the off-diagonal zeros in equation(5). In practice equation (13) is used rather

than the formula for Xec since it leads to the same result. To estimate which pair associations are likely to

lead to an optimal solution an nxn pair association matrix Z can be defined as shown in equation (14).

=

....

.0

.0

.0

3231

2321

1312

zz

zz

zz

Z (14)

The element zij of the matrix Z represents an estimate of the average number of total pair associations

found when the pairs i and j are in the same equivalence class. In general, the more pair associations in a

solution s means the less number of equivalence classes k required. This can be seen from the formula for

zmin ≈ k(n/k)
2 ≈ n

2
/k which is the minimum number of block diagonal zeros for solution cardinality k.

During an equivalence class subset search, many feasible solutions are found. Every time any solution s

is calculated, the total number of pair associations z corresponding to s is calculated and used to update

the matrix Z for the set of pair associations in s. On average pair associations with the largest values in the

Z matrix are more likely to lead to optimal solutions. The resulting algorithm involves using the Z matrix

to choose a maximum likelihood subset {ij} to maximize the probability of finding an optimal solution.

while(condition){

A’ = A({ij})

s = ineq(A’)

k = max(s)

z = z(s)

if(k==k* && z>z*) s*=s, z*=z

if(k<k*) s*=s, k*=k,z*=z}

Figure 7. Equivalence class subset algorithm

The equivalence class subset algorithm is given in Figure 7. The first step in the equivalence class subset

algorithm (not shown for clarity) is to initialize s*=(1,2,…n), k*=max(s) = n, and z*=n where s*, k*, and

z* represent the current best solution and n is the dimension of the system. This corresponds to the trivial

solution that solves any system of inequations and also the optimal solution for k=n. The while(condition)

provides a stopping criterion which limits the number of iterations to some number such as n or n
2
. The

first step of the algorithm is to take the system A matrix and create a new A’ matrix by combining some

subset of variables {ij} based on the matrix Z and the current best solution s*. The first time through the

algorithm all values of zij in Z=0 and s*=(1,2,3…n) which means that {ij}={φ } so that A’=A. The

solution vector s corresponding to A’ is then calculated using the ineq(A) algorithm in Figure 2 and this

solution is used to calculate the solution cardinality k=max(s). The total number of block diagonal zeros

z=z(s) is then calculated according to equation (13). There are three possible outcomes: k=k*, k<k*, or

k>k*. If the solution cardinality has not improved (k*=k) but the number of pair associations z has

improved (z>z*) then the solution s is taken as the new best solution s*. If the solution cardinality has

improved (k<k*) then the solution s is taken to be the new best solution s*. If the solution cardinality of s

is greater than s* (k>k*) or if k=k* and z<z* then the solution s* is not updated. Each time an improved

solution is found it increases the probability of finding an optimal solution on subsequent iterations

because a subset of s'(k') is in general more likely to be chromatic than a subset of s(k) for k'<k. Before

starting the next iteration the pair association matrix Z is updated using equation (14).

The selection of the subset size |{xij}| is a direct tradeoff between two opposing factors. The smaller the

subset size the higher the probability that the set {xij} is jointly chromatic (each individual xij being

chromatic does not guarantee that property for the set {xij}). On the other hand the larger the subset size

the lower the probability that {xij} is chromatic. However the larger the subset size the higher the

probability that the intermediate node on the tree of feasible solutions corresponding to the subset {xij}

will be on one of the decision function paths to an optimal terminal node (i.e., A(xij) closer to complete k-

partite). Experimentation has shown that subset sizes less than about 30% of the maximum value of | Xec|

are more likely to result in an improved solution cardinality. Once the size of a subset is chosen the {xij}

can be chosen using the rank ordering of ijz given by the Z matrix (the higher the value the better).

The number of iterations required to find an optimal solution varies however under certain circumstances

the algorithm can terminate when it is certain that an optimal solution has been found. This could happen

if the cardinality of a feasible solution is found to be equal to k=2 or k=3 or the cardinality of a solution

equals a lower bound on k*=kLB. Since the algorithm f(A) = max(A
2
) always finds an optimal solution for

k*=2 the algorithm can terminate if k=2. If at any point during the search the algorithm finds a solution of

cardinality k=3 it can terminate immediately because it cannot be improved. If it could, it would have

found a solution vector s*(k*=2) on the first pass. A lower bound k*=kLB can occur in certain cases

because it can be shown that for any system of inequations the optimal solution cardinality k* can never

be less than the number of variables in the largest equivalence class of the complementary system A .

This lower bound can be obtained by using the algorithm of Figure 3 to calculate any solution vector s of

the complementary system A . The number of variables in the largest equivalence class of s gives kLB.

1 2 3 4 5 6 7 8

10

12

k

z=386

z=465

s*

s

Figure 8. Equivalence Class Subset algorithm trajectory to an optimal solution s*

Figure 8 shows an example of equivalence class subset algorithm for a system of inequations in n=100

variables whose optimal solution cardinality k=10. As shown by the solid line in Figure 8 the initial

solution s was of cardinality (k=13) but after only 8 iterations an optimal solution s* (k=10) was found.

The dashed line shows that in this case the initial solution s had z=386 zeroes in diagonal blocks while the

optimal solution s* had z=465 zeroes in its diagonal blocks. Note the method progressed through a

sequence of suboptimal solutions before finding s*. Each of the suboptimal solutions contributed to

updating the Z matrix which in turn generated better and better solutions.

9 Complexity and Performance

Using Figure 2 as a model it is seen that solution method for systems of inequations involves finding the

union of two sets (O(n)) and removing a row and column from an nxn matrix (also O(n)). This must be

done (n-k) times which gives an average of E[O(n)*(n-k)] = O(n
2
) operations. The calculation of the

decision function f(A)=max(A
2
) requires squaring a matrix which counts as O(n

3
) operations. This has to

be repeated (n-k) times resulting in a complexity of O(n
4
) for the algorithm in Figure 2 (equation (15)).

)(
4

)2()1(
)(4

22

0

3
nO

nn
in

n

i

=
++

=−∑
=

 (15)

Use of the equivalence class subset algorithm can increase the complexity beyond O(n
4
). For example, if

the number of iterations is O(n) then the resulting complexity would be O(n)*O(n
4
) = O(n

5
) .

The result of tests on the equivalence class subset algorithm for systems of dimension n=100 show a

99.8% success rate for 5000 iterations with a 99.3% success rate after only 500 iterations. A geometric

model can be used to estimate the probability that an optimal solution has been found for the equivalence

class subset algorithm after a certain number (m) of iterations. The probability of finding an optimal

solution after m iterations would then be given to a first order approximation as the solution to P[s*|m] =

.993 = 1-q
m

 with m=500. This gives a value of q=.99 and P[s*|m] ≅ 1 for m=10,000. For n=100 a value of

m=10,000 is O(n
2
) so that it is reasonably certain that an optimal solution s* has been found in a

complexity of O(n
4
)*O(n

2
)=O(n

6
). Unfortunately the geometric model is only an approximation and it is

not clear how accurate the estimate of success rate is for very large numbers of iterations.

0 2 4 6 8 10

0
2

0
4

0
6

0
8

0
1

0
0

polynomial exponent

s
o

lu
ti
o

n
 s

p
a

c
e

 (
%

)

A f(A) = A (ambivalent)

A
2
 f(A) = max(A

2
)

m multiple decision function

ecs equivalence class subset

A

A
2

m
ecs

Figure 9. Algorithm success rate vs. number of computations for n=100

Figure 9 shows the success rate for various methods compared to the complexity of computation for

systems of dimension n=100. The ambivalent decision function f(A)=A has a success rate of about 56%

for O(n
2
) operations. The decision function f(A)=max(A

2
) is of complexity O(n

4
) and has about a 90%

success rate. The multiple decision function (m) represents the combined result (94.6%) in Table 1 for

more than one decision function which was conservatively assigned a complexity of O(n
5
). The

equivalence class subset algorithm (ecs) raises the success rate to approximately 99.8% for complexity

O(n
6
). Preliminary calulations with systems of dimension n=200 show a drop off in success rate to around

99.5%. It is not known how high the success rate can be raised using the equivalence class subset method

or any other polynomial time method. What is known is that the success rate vs. number of iteration curve

is a very long-tailed distribution. The shape of the curve in Figure 9 suggests that it may be possible for

some algorithm to asymptotically approach a success rate of 100% in polynomial time complexity.

10 Summary and Conclusion

Systems of inequations are equivalent to the compatibility problem[Clay,2005] which is one of the best

known and classic examples of an NP-hard/complete problem. The same method used for solving systems

of equations, substitution and elimination of variables, can be used to solve systems of inequations. A

decision function is used to determine which variables to combine. The algorithm can be implemented

with set-theoretical operations such as union and intersection or with modulo and arithmetic operators

used for solving systems of equations. The decision function f(A) = max(A
2
) can be shown to solve a

significant subset of all systems of inequations for arbitrary solution cardinality k and dimension n→∞ .

The equivalence class subset algorithm is an extension of the general solution method based on the

fundamental observation that in general optimal solutions have more block-diagonal zeroes (z) than

suboptimal solutions. This leads to the idea of defining a probability matrix Z which contains for each

pair association xij the average number of zeros for all solution vectors in which xij has appeared. This

probability matrix Z is then used to choose a subset {xij} with the maximum likelihood of generating an

optimal solution vector. The equivalence class subset algorithm calculates an initial solution vector s and

then moves back up the tree of feasible solutions to search for an improved solution based on a subset of

the decisions that were made to reach the initial solution vector. Each time the algorithm finds an

improved solution it further increases the probability of finding an optimal solution since any subset of an

improved solution is more likely to contain only correct decisions. In addition each new matrix A’

generated has a chance of being in the solution space S of at least one decision function even when the

matrix A was not. The principal parameters affecting the performance of the equivalence class subset

algorithm are the number of decision functions, the type of decision functions, the number of iterations

and the method of choosing a subset. The solution method is very general in that it can be applied to any

system of inequations of any solution cardinality k and system dimension n. The success rate of the

equivalence class subset algorithm (99.8% for n=100) suggests that there may exist some algorithm which

asymptotically approaches 100% success rate in polynomial time. The solution method for systems of

inequations can also be used to solve other NP-complete problems[Cook, 2005], [Karp,1972]. This is

possible because any NP-complete problem can be converted to an equivalent system of inequations in

polynomial time. The equivalence class subset algorithm can be used to find a solution which can then be

converted back in polynomial time to a solution for the original problem.

11 References

[1] Clay Mathematics Institute, Millennium Prize Problems, “P vs. NP”,

http://www.claymath.org/millenium/P_vs_NP, 2005.

[2] S. Cook, “The P vs. NP Problem”, Clay Mathematics Institute,

http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf, 2005.

[3] R. M. Karp, “Reducibility Among Combinatorial Problems”, In Complexity of Computer

Computation, pages 85-104. Plenum Press, New York, 1972.

[4] Weisstein, E. W., "NP-Hard Problem." From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/NP-HardProblem.html

[5] Weisstein, E. W., "NP-Complete Problem." From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/NP-CompleteProblem.html

[6] E. Horowitz, S. Sahni, “Fundamentals of Computer Algorithms”, Computer Science Press,

Maryland, 1978.

12 Biographical Information

Dr. Jeffrey L. Duffany is a professor of Electrical and Computer Engineering at the Universidad del

Turabo. Dr. Duffany’s research interests span across a number of areas of communication and

information science including algorithms, chaos theory, network security and wireless communication.

