
gcolor: Graph Coloring

Jeffrey L. Duffany

September 9, 2009

1.0 Introduction

Given a graph G=(V,E) assign a positive integer to each of the vertices in such a
way that no pair of vertices connected by an edge are assigned the same integer
and the number of integers used is a minimum(k*). The graph G can be
represented as an adjacency matrix A of ones and zeros. If A(i,j)=1 then there is
an edge between nodes i and j. If A(i,j)=0 then there is no edge between nodes i
and j. It is assumed that the matrix A is binary and symmetric and represents an
undirected graph. In addition there can be no edge from a node to itself so that
the main diagonal of A is zero. In other words A(i,i)=0 for i=1 to n where n is the
number of vertices in the graph. The matrix A can also be recognized as
representing a system of inequations[1]. The solution can be represented as a
solution vector s=(s1,s2,...sn) where si <= k. If k=k* then s is an optimal solution.

2.0 The ineq Algorithm

The ineq algorithm[2][4] is used to find the solution vector s.

ineq(A)
i,j<-max(A2)
if {i,j} = 0, return(A)
xi<-xi + xj
A<- A - xj

ineq(A)

Figure 1. The ineq algorithm

The algorithm works as follows. The solution vector s (not shown) is initialized to
s=(1,2,...,n). The adjacency matrix A is squared and the maximum value of A2
determined, ignoring any values corresponding to A(i,j)=1 since these vertices
cannot be combined. Out of the set of all (i,j) such that A(i,j)=0 choose an (i,j)
pair corresponding to the maximum value of A2. Update the solution vector s to
reflect the (i,j) pair combination (not shown). Take the ith row of A as a vector xi
and the jth row of A as vector xj and perform the bitwise logical OR operation on
the two vectors and assign the result to vector xi and column i and row i of A.
Remove row j and column j from the matrix A and recursively call ineq(A) on the
reduced A matrix. When there are no more remaining (i,j) pairs then the
algorithm terminates, returning the original matrix A with the rows and columns
permuted into the block diagonal form corresponding to the solution vector s (or
the solution vector s itself).

3.0 Algorithm Performance

It can be shown that the ineq algorithm will find an optimal solution for all bipartite
and complete k-partite systems and any system reasonably close to complete k-
partite. In general there is no way to know that an optimal solution has been
found unless k*=0,1,2 or 3. If ineq returns a solution vector s where max(s)=4
then it is possible that there could be a solution of k=3. However if ineq returns a
solution vector s where max(s)=3 then it is certain that it is an optimal solution.
The ineq algorithm can be made significantly faster by not squaring the A matrix
on each iteration as shown in [5]. It is currently planned to provide the algorithm
for this faster version in a future update.

Many of the instances that are not solved by ineq can be solved by one of the
more powerful variations of ineq. One variation [3] extends the decision function
A2 to a power series of An and uses a gradient search of the coefficients to find
an optimal solution. Another variation[6] uses a gradient search on the number of
zeros in the block diagonal, combining sets of variables to transform the system
into another which is in the region of convergence of the decision function where
it can be solved. It is currently planned to provide the algorithms for these more
powerful versions in a future update to this package.

4.0 Using the gcolor Package

The graph G=(V,E) must first be represented as a binary symmetric matrix A with
all zeros on the main diagonal. For convenience, a function test(n,k) has been
provided where n is the size of the matrix and k is the cardinality of the optimal
solution. The test program picks a random ones density for the A matrix where
the ones density is the number of 1 elements in the A matrix divided by the
maximum number of ones (n2-n). The test(n,k) code can be modified to set this to
some fixed value or to otherwise modify the range of allowed values for the ones
density. Alternatively you can import the A matrix from outside of R or create A
within R using the matrix command. The following example generates a 10x10
test matrix with optimal solution cardinality k*=3 then finds a solution using ineq:

a<-test(10,3)
ineq(a)

[1] 1 2 1 3 2 1 1 1 2 2

The output of the ineq command is the solution vector s of integers
corresponding to the coloring of the vertices of the graph G. The solution vector
will always represent a valid coloring although it may or may not be optimal. In
general the only way to know if the solution is optimal (max(s)=k*) is to create the
test matrix A with a known optimal solution cardinality k* as can be done with the
function test(n,k). If ineq provides a solution vector s such that max(s) = k* then
you know that an optimal solution has been found.

Functions are also provided to import the adjacency (A) matrix from outside of R
in either uncompressed of compressed DIMACS format[7]. The function for
uncompressed DIMACS format is importDIMACSAscii() and the function for
compressed DIMACS format is importDIMACSBin(). A DIMACS format file can
be downloaded from a website such as [7] where the .col file extension is used to
indicate an uncompressed DIMACS file and the .col.b extension is used to
indicate compressed DIMACS. A file can be imported into R as follows:

fpsol21<-importDIMACSAscii("fpsol2.i.1.col")
flat1000_50<-importDIMACSBin("flat1000_50_0.col.b")

depending on whether it is compressed or not. If in either of the above cases the
file name is not specified as a function parameter then a popup window will
appear so that the user can browse the directory structure for the desired file.

5.0 Acknowledgements

The importDIMACSAscii and importDIMACSBin functions were written by
Euripides Rivera Negron who also did all of the work in creating and assembling
all of the files necessary to submit the color package to CRAN.

6.0 References

1. Wikipedia – Inequation page: http://en.wikipedia.org /wiki/Inequation

2. Duffany, J.L. “Systems of Inequations”, 4th LACCEI Conference, Mayaguez,
PR, June 21-23, 2006.

3. Duffany, J.L. “Generalized Decision Function and Gradient Search Technique
for NP-Complete Problems”, XXXII CLEI Conference, Santiago Chile, August
20-23, 2006.

4. Duffany, J.L., “Statistical Characterization of NP-Complete Problems”,
Foundations of Computer Science Conference, World Computer Congress,
Las Vegas, Nevada, July 14-17, 2008.

5. Duffany, Jeffrey, “Optimal Solution of Constraint Satisfaction Problems",
International Conference on Applied Computer Science, Sharm el Sheik,
Egypt, December 29-31, 2008.

6. Duffany, Jeffrey, “Equivalence Class Subset Algorithm”, International

Conference on Computer and Information Technology”, Tokyo, Japan, May
27-29, 2009.

7. http://mat.gsia.cmu.edu/COLOR/instances.html

