

Abstract—An optimal solution for a large number of constraint
satisfaction problems can be found using the technique of
substitution and elimination of variables analogous to the technique
that is used to solve systems of equations. A decision function
f(A)=max(A2) is used to determine which variables to eliminate.
The algorithm can be expressed in six lines and is remarkable in
both its simplicity and its ability to find an optimal solution.
However it is inefficient in that it needs to square the updated A
matrix after each variable elimination. To overcome this inefficiency
the algorithm is analyzed and it is shown that the A matrix only
needs to be squared once at the first step of the algorithm and then
incrementally updated for subsequent steps, resulting in significant
improvement and an algorithm complexity of O(n3).

Keywords—Algorithm, complexity, constraint, np-complete.

I. INTRODUCTION

 uppose there are n objects each of which are incompatible
with some subset of the other n-1 objects. The problem is

to partition all n objects (xi) into a set of k* equivalence
classes such that no object is incompatible with any other
object in its equivalence class and where k* is minimum over
all possible partitionings. The problem is usually stated in
terms of the adjacency matrix (A) of ones and zeros which
summarizes the compatibility of each object (variable xi) with
every other object (variable xj). A one in the (i,j) element of
the A matrix indicates incompatibility between variables xi
and xj while a zero represents compatibility. This problem is
usually referred to as an ILP (Integer Linear Program)[1] and
has the same form as a system of equations Ax=b (Figure 1).

Ax=b systems of equations
Ax ≤ b systems of inequalities
Ax=λx eigenvalue problem
Ax ≠ x systems of inequations

Figure 1. Fundamental Mathematical Problems

Figure 1 lists four fundamental problems of mathematics

all of which involve the simultaneous solution of more than
one equation, inequation[9][10] or inequality. Each of these
problem formulations involve a matrix A which which make
the general statement of the problem very concise.

J. L. Duffany is with the Electrical and Computer Engineering Department,
Universidad del Turabo, Gurabo, PR 00778 USA, (e-mail:
jduffany@suagm.edu).

The first three of the problems formulations in Figure 1 are
quite well known and have been widely studied and analyzed
in the scientific mathematical and engineering literature. The
fourth problem formulation Ax ≠ x (system of inequations)
[9][10] is not nearly as well known as the first three since the
alternative representation of the Integer Linear Program
Ax=b, x integer, is normally used. The motivation for
creating a separate formulation is that the compatibility
problem may be better characterized by using a logical or set-
theoretical formulation as opposed to trying to fit it into an
existing formulation which is inherently arithmetic. The
Ax ≠ x representation requires that addition in matrix
multiplication be interpreted as a logical union and the
≠ symbol be interpreted as the symbol for not being a
member of a set. In other words the value of variable xi is not
equal to that of any member of some subset of the other n-1
variables, that subset selected by values of row i of the A
matrix which equal 1.

One reason for having a separate formulation for
inequations is that there are many subtle differences between
the two. Table 1 shows that a system of inequations usually
has a large number of suboptimal solutions and always has at
least one optimal solution. The number of optimal solutions is
related to how constrained the system is. A system of
inequations that has more than one optimal solution is called
underconstrained. If there is exactly one optimal solution and
the removal of a single constraint increases the number of
optimal solutions then the system is perfectly constrained. If
there is only one optimal solution and there is at least one
constraint whose removal does not increase the number of
optimal solutions then the system is called overconstrained.
A system of equations can have 0, 1 or an infinite number of
solutions. This represents an important difference between
equations and inequations since a system of inequations
always has at least one optimal solution.

II. CONSTRAINT SATISFACTION PROBLEMS

 Finding an optimal solution for a system of inequations is
in general an NP-hard[5][7] problem. Finding an optimal
solution for a system of inequations for solution cardinality
k*=3 is NP-complete[6]. An algorithm that can determine an
optimal solution for a system of inequations can be used to
solve a wide variety of important problems spanning across
many diverse fields from artificial intelligence[12] to
bioinformatics[11] including many problems known as
constraint satisfaction problems [12].

OPTIMAL SOLUTION OF CONSTRAINT
SATISFACTION PROBLEMS

Jeffrey L. Duffany

S

Table 1. Comparison of Equations and Inequations

 Number of Solutions (q)
Equations q=1 (equations=unknowns) q= ∞ (equations<unknowns) q=0 (equations>unknowns)
Inequations q=1 (perfectly constrained) 1 < q < ∞ (underconstrained) q=1 (overconstrained)

Some constraint satisfaction problems explicitly maximize or
minimize an objective function while others do not. An
example of the latter is the n-queens problem[12] where n
queens are placed on an nxn chessboard in such a way that no
two of them are in the same row, column or diagonal. For
this problem any solution that satisfies the constraints is a
valid solution. If any valid solution can be found before all the
possibilities are searched it is known with certainty that the
problem has been solved and the algorithm can terminate at
that point.

Another category is the class of constraint problems that also
maximize or minimize an objective function. In this case it is
generally not possible to know with any certainty if an
optimal solution has been found without checking every
possibility. An example of this type of problem is the system
of inequations[3][10]. The algorithm for solving a system of
inequations can be viewed as a search of the feasible
solutions. Each time a feasible solution vector is generated the
objective function is calculated. A solution vector (s) is a
mapping of each variable xi into an integer si such that 1<=
si <= k while ensuring that si ≠ sj when A[i,j] = 1. The set of
all solution vectors can be represented by a tree with n-k*+1
levels representing all solutions of cardinality k*, k*+1,...n.
The total number of solutions equals the number of nodes in
the decision tree and grows exponentially with n. One way to
find an optimal solution s* is to check all the possibilities.

III. SUBSTITUTION OF VARIABLES

 All feasible solutions to a system of inequations can also
be generated by substitution and elimination of variables in a
manner analogous to finding a solution to a system of
equations. It is also similar to gaussian elimination except
that arithmetic addition is replace by logical OR. Two
variables xi and xj can substitute for one another only if the
inequation xi ≠ xj is not present in the system, in other words
A[i,j]=0. To solve a system of inequations using this
technique two variables xi and xj are chosen and set equal to
one another xi = xj by mapping their constraints onto one
another (logical OR). Since the two variables have been made
equal one can be substituted for the other and one of them can
be eliminated (substitution and elimination of variables).

A decision function f(A) can be used to choose a specific xi

and xj to combine. This decision function f(A) can be
considered a global decision function if it takes into account
every possible combination (i.e., for which A[i,j]=0). Perhaps

the simplest decision function is f(A)=max(A). Since all pairs
of variables that can be combined have A[i,j]=0 the decision
function f(A)=max(A) will combine with equal probability
any legal pair of variables xi and xj, i ≠ j and A[i,j]=0. This
can be called the ambivalent decision function which is
equivalent to choosing i and j at random. This procedure is
repeated recursively and the final solution vector is
determined by the standard method of back substitution.

Another decision function is f(A)=max(A2). This decision

function maximizes the number of shared constraints between
every possible pair of variables that can be combined (i.e.,
where A[i,j]=0). The idea is illustrated by Figure 2 which
considers the block diagonal form of the A matrix which is
also known as a complete k-partite system (any system of
inequations can be derived by removing constraints from
some complete k-partite system). Considering each variable’s
constraints as a row of the A matrix the number of shared
constraints can be calculated as xi * xj (where * represents
the vector product). Performing this operation across all ij
leads to matrix multiplication and the decision function
f(A)=max(A2).

In Figure 2 the maximum value of A2 is 5 and it can be

shown that in this case (as in almost all cases) combining the
pair of variables corresponding to max(A2) leads to an
optimal solution. A simple algorithm for solving systems of
inequations based on the decision function f(A)=max(A2) is
given in Figure (3) as algorithm ineq.

ineq(A)
ij<->max(A2)
if ij={} return A
xi=xi|xj
A=A[-j,-j]
ineq(A)

Figure 3. The ineq algorithm

The ineq algorithm starts with a solution vector s which
has an initial value of s = (1,2,3,...n). The algorithm squares
the adjacency matrix A and finds the maximum value of A2
[i,j] for pairs of variables that can be combined (i.e.,
A[i,j]=0). It then combines variables xi and xj by taking the
constraints that are in xj but not in xi and adding them to xi
(xi=xi|xj) where | = logical OR. Then it updates the solution
vector s[j]=s[i] and eliminates variable xj (i.e., remove row
and column j from A as represented by the line A=A[-j,-j]).
The matrix A is reduced by one in dimension each time a
variable is eliminated.

 The difference with gaussian elimination is that the
algorithm ineq uses logical OR instead of addition and uses a
decision function f(A)=max(A2) to determine[i,j]. Note that
ineq is recursive and stops when there is no longer any
variables to combine. A system of dimension n=100, optimal
solution cardinality k*=3 requires the decision function (for
example f(A) = max(A2)) to make 97 consecutive correct
decisions to find an optimal solution in n-k* (i.e., O(n))
iterations. This would establish the complexity of ineq at
O(n4) since squaring the A matrix is O(n3) and this must be
done O(n) times. However it is shown in the next section that
the A matrix only needs to be squared on the first iteration
and then updated for each iteration thereafter.

Any decision function that can identify two variables in the
same equivalence class with probability=1 will always find an
optimal solution s* using the ineq algorithm. For systems of
n=100 variables the decision function f(A)=max(A2) can
determine two variables in the same equivalence class of an
optimal solution s* with approximately 99.8% accuracy
across the entire system space[3]. As a result tests have shown
[3] the ineq algorithm can directly solve 90% of systems of
inequations of n=100 variables. By using the ineq algorithm
multiple times the success rate can be brought close to
100%[2,3,4]. The number of iterations required depends on
the constraint density[2] and could be of the order of several
hundred for systems of dimension n=100[2].

IV. COMPLEXITY ANALYSIS

The ineq algorithm in Figure 3 involves the calculating the
square of a matrix (O(n3)), finding the maximum (O(n2)) and
the substitution and elimination of variables (O(n)). The
complexity is therefore dominated by the complexity of
squaring the A matrix. This is relatively inefficient since the
elimination of a variable only adds relatively few constraints
to another variable which is a relatively small change to the A
matrix. As a result the complexity if the ineq algorithm has
previously[2,3,4] been estimated at O(n4). However it can be
shown that the overall complexity can be reduced to O(n3) by
updating the A2 matrix instead of performing the full matrix
multiplication at each iteration.

 Representing the new A’ matrix as the old A matrix plus
an incremental matrix ∆A allows A’2 to be represented as in
equation (1):

 A’2 = (A + ∆A)2 = A2 + A*∆A + ∆A*A + (∆A)2
(1)

It is sufficient to show that one of the three terms (for
example A*∆A) can be calculated in O(n2) time complexity
since ∆A*A is just the transpose of A*∆A and calculation of
(∆A)2 is the same as the other two with A replaced by ∆A.
Suppose that only one new constraint was added then ∆A
would be all zeros except for row i and column i each of
which would have a single 1. Calculation of A*∆A copies the
columns of the A matrix that correspond to these two 1’s to
an all zero matrix which is an O(n) operation. In the general
case of combining two variables all constraints that were in
variable j but not in i are added to row and column i in a
matrix of all zeros to create ∆A. To calculate A*∆A the
column vector corresponding to each added constraint is
copied into the appropriate column of A*∆A and the sum of
these column vectors is placed in column i. In a worst case
this requires all of the values of the A2 to be updated resulting
in O(n2) time complexity.

ada<-0
acol<-0
for(qq in added){
acol<-acol+a[,qq]}
ada[,i]<-acol
for(qq in added){
ada[,qq]<-a[,i]}

Figure 4 Calculation of A*∆A matrix

Figure 4 shows code for calculating the A*∆A matrix
where “added” is the vector of added constraints, “acol” is a
column vector, “ada” is A*∆A and qq is an index variable.
∆A*A is just the transpose of A*∆A and (∆A)2 is calculated
the same as A*∆A with A replaced by ∆A. Since the three
matrix additions are O(n2) the computation of A’2 from A2 is
O(n2). A total of O(n) updates could be required to complete
the ineq algorithm. In the general case therefore the
complexity of the ineq algorithm can be established as
O(n)*O(n2) = O(n3).

A =





























0011111

0011111

1100111

1100111

1111000

1111000

1111000

 A2 =





























5533222

5533222

3355222

3355222

2222444

2222444

2222444

Figure 2. Block Diagonal Form of the A Matrix and Corresponding A2 Matrix

IV. OPTIMAL SOLUTION OF CONSTRAINT

SATISFACTION PROBLEMS

The first step is to take the desired constraint satisfaction
problem and convert it into a system of inequations. If the
problem happens to be vertex coloring (i.e., the classic
compatibility problem) then it is already in the required form.
If problem has been classified as NP-complete [8] then there
exists a polynomial time algorithm to convert the given
problem into a system of inequations[1][6]. For the 8 queens
problem the conversion can be done by creating an A matrix
(64x64) with each row representing a square on the
chessboard. The entire matrix is filled with 0’s and then a 1 is
placed in columns corresponding to chessboard squares that
are incompatible with the square represented by that
particular row. The second step would be to use the ineq
algorithm directly or in one of its powerful variations [2,3,4]
to produce a solution vector s which is shown in Figure 5.

1 5 6 4 7 8 2 3

2 7 8 3 1 9 5 4

3 9 4 7 5 6 8 1

4 1 3 8 2 7 9 5

5 8 2 1 9 3 4 7

6 3 9 5 4 2 1 8

7 4 1 2 6 5 3 9

8 2 5 9 3 4 7 6

Figure 5 A Solution to the 8 Queens Problem

Figure 5 represents a vertex coloring of the chessboard
squares where each of the numbers 1 through 9 represents a
different color. It is equivalent to placing 64 queens of 9
different colors on the chessboard in such a way that no two
queens of the same color are attacking each other. In
actuality there are 8 queens of color 3, 4 and 5, 7 queens of
color 1, 2, 7, 8 and 9 and 5 queens of color 6. These numbers
are arranged in such a way that no number is repeated along
any row, column or diagonal. If this were just a vertex
coloring problem the solution vector s is the desired solution
and max(s) is the solution cardinality k. In the case of the n-
queens problem the s vector must be sorted to find the largest
equivalence class to find the solution. For this type of
constraint satisfaction it is possible to recognize immediately
when an optimal solution is found. For other more general
cases the constraint density of the system of inequations can
then be calculated to give an estimate of the probability that
an optimal solution has been found[2,3,4]. The reason for
this, as shown in[2,3,4], is that there are large contiguous
regions of constraint density over which the ineq algorithm
has virtually a 100% success rate. It is a simple matter to
calculate the constraint density for any particular problem.

V. SUMMARY AND CONCLUSIONS

An optimal solution for a large number of constraint

satisfaction problems can be found using the technique of
substitution and elimination of variables analogous to the
technique that is used to solve systems of equations. A
decision function f(A)=max(A2) is used to determine which
variables to eliminate. The resulting algorithm can be
expressed in only six lines of pseudocode and is remarkable
in both its simplicity and its ability to find an optimal
solution. However it is inefficient in that it needs to square
the updated A matrix after each variable elimination. To
overcome this inefficiency the algorithm was analyzed and
the importantant result was established that the matrix A in
the decision function only needs to be squared once at the first
step of the algorithm and then incrementally updated for
subsequent steps, resulting in significant improvement and an
overall algorithm complexity of O(n3). A wide variety of
algorithms (such as backtracking) exist for searching for an
optimal solution for constraint satisfaction problems[12]. The
idea of converting these problems into of a system of
inequations and solving them using substitution and
elimination of variables represents a significant paradigm
shift from the past and is an attempt to attain a more unified
viewpoint across a broad class of important problems in many
fields. Once a problem has been converted into a system of
inequations the constraint density is easily calculated. The
constraint density can be used to estimate the difficulty of the
problem [2] and estimate the probability that an optimal
solution has been found after a given amount of effort. This
unified approach may shed new insight by allowing
comparisons between systems of inequations and other
fundamental problems in mathematics.

REFERENCES

[1] C.H. Papadimitrou and K. Steiglitz, "Combinatorial Optimization:
Algorithms and Complexity", Dover, ISBM 0-486-40258-4, pp. 344.

[2] Duffany, J.L., “Statistical Characterization of NP-Complete Problems”,
Foundations of Computer Science Conference, World Computer Congress,
Las Vegas, Nevada, July 14-17, 2008.

[3] Duffany, J.L. “Systems of Inequations”, 4th LACCEI Conference,
Mayaguez, PR, June 21-23, 2006.

[4] Duffany, J.L. “Generalized Decision Function and Gradient Search
Technique for NP-Complete Problems”, XXXII CLEI Conference,
Santiago Chile, August 20-23, 2006.

[5] E. Horowitz, S. Sahni, “Fundamentals of Computer Algorithms”,
Computer Science Press, Maryland, 1978.

[6] R. M. Karp, “Reducibility Among Combinatorial Problems”, In
Complexity of Computer Computation, pages 85-104. Plenum Press, New
York, 1972.

[7] Weisstein, E. W., "NP-Hard Problem." From MathWorld--A Wolfram
Web Resource. http://mathworld.wolfram.com/NP-HardProblem.html

[8] Weisstein, E. W., "NP-Complete Problem." From MathWorld--A Wolfram
Web Resource: http:// mathworld.wolfram.com/NP-CompleteProblem.html

[9] Weisstein, E. W., "Inequation." From MathWorld--A Wolfram Web
Resource. http:// mathworld.wolfram.com /Inequation.html

[10] Wikipedia – Inequation page: http://en.wikipedia.org /wiki/Inequation
[11] J. Manuch, D.R. Gaur, "Fitting protein chains to cubic lattice is NP-

complete", Journal of Bioinformatics and Computational Biology, Vol.
6, No. 1. (February 2008), pp. 93-106.

[12] S. Russell and P. Norvig, Ärtificial Intelligence, A Modern Approach",
 Chapter 5, Second Edition, 2003, Prentice Hall, ISBN 0-13-790395-2.

