
The Iterative Signature Algorithm

Gábor Csárdi

April 12, 2010

Contents

1 For the impatient

To run the typical ISA work flow with default parameters on your data matrix,
just load the isa2 package and call the isa() function with your matrix as the
single argument. The return value of isa() is a named list, the members rows
and columns contain the biclusters ISA have found. Every bicluster is given by
a pair of columns from rows and columns (i.e. the first columns define the first
bicluster, etc.) and the elements of the biclusters are the non-zero elements in
the columns of rows and columns.

Please continue reading for a less dense tutorial.

2 Introduction

The Iterative Signature Algorithm (ISA) [?, ?, ?] is biclustering method. Its
input is a matrix and its output is a set of biclusters: blocks of the potentially
reordered input matrix, that fulfill some predefined criteria. A biclustering
algorithm typically tries to find blocks that are different from the rest of the
matrix, e.g. the values covered by the bicluster are all above or below the
background.

The ISA is developed to find biclusters (or modules as most of the ISA papers
call them) that have correlated rows and columns. More precisely, the rows in
the bicluster need to be only correlated across the columns of the bicluster and
vice versa.

Fig. ?? shows possibly the simplest example of a (rather artificial) data
matrix with very strong modular structure. It is a 20 × 20 matrix and—after
reordering its rows and columns—it has two correlated blocks, each of size 10×
10.

1

Original matrix Reordered matrix

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1: An artificial data matrix, on the left. On the right the reordered data
matrix with two blocks.

3 How ISA works

Before showing an actual ISA tool chain, a few words about how the algorithm
works are in order.

3.1 ISA iteration

ISA works in an iterative way. For an E (m× n) input matrix it starts from a
seed vector r0, which is typically a sparse 0/1 vector of length m. The non-zero
elements in the seed vector define a set of rows in E. First, the transposed of
E, E′ is multiplied by r0 and the result is thresholded.

The thresholding is an important step of the ISA, without thresholding ISA
would be equivalent to a (not too effective) numerical singular value decom-
position (SVD) algorithm. Currently thresholding is done by calculating the
mean and standard deviation of the vector and keeping only elements that are
further than a given number of standard deviations from the mean. Based on
the direction parameter, this means keeping values that are significantly higher
than the mean (direction=“up”), or keeping the ones that are significantly lower
than the mean (direction=“down”); or keeping both (direction=“updown”).

The thresholded vector c0 is the (column) signature of r0. Then the (row)
signature of c0 is calculated, E is multiplied by c0 and then thresholded to get
r1.

This iteration is performed until it converges, i.e. ri−1 and ri are close, and
ci−1 and ci are also close. The convergence criteria, i.e. what close means, is
by default defined by high Pearson correlation.

The isa.iterate() function performs the ISA iteration from a given set of
seed vectors.

2

It is very possible that the ISA finds the same module more than once;
two or more seed vectors might converge to the same module. The function
isa.unique() eliminates every module from the result of isa.iterate() that
is very similar (in terms of Pearson correlation) to one that was already found
from a different seed.

The isa() function performs the whole ISA workflow, this includes running
isa.iterate() and isa.unique().

It might be also apparent, that the ISA biclusters are soft, i.e. they might
have an overlap in their rows, columns, or both. It is also possible that some rows
and/or columns of the input matrix are not found to be part of any biclusters.
Depending on the stringency parameters in the thresholding (i.e. how far the
values should be from the mean), it might even happen that ISA does not find
any biclusters.

3.2 Parameters

The two main parameters of ISA are the two thresholds (one for the rows and
one for the columns). They basically define the stringency of the modules. If
the row threshold is high, then the modules will have very similar rows. If it is
mild, then modules will be bigger, with less similar rows than in the first case.
The same applies to the column threshold and the columns of the modules.

3.3 Random seeding and smart seeding

By default (i.e. if the isa() function is used) the ISA is performed from random
sparse starting seeds, generated by the generate.seeds() function. This way
the algorithm is completely unsupervised, but also stochastic: it might give
different results for different runs.

It is possible to use non-random seeds as well. If you have some knowledge
about the data or are interested in a particular subset of rows/columns, then
you can feed in your seeds into the isa.iterate() function directly. In this
case the algorithm is deterministic, for the same seed you will always get the
same results. Using smart (i.e. non-random) seeds can be considered as a semi-
supervised approach.

3.4 Normalization

Using in silico data we observed that ISA has the best performance if the input
matrix is normalized (see isa.normalize()). The normalization produces two
matrices: Er and Ec. Er is calculated by transposing E, then centering and
scaling its rows (see the scale() R function). Ec is calculated by centering and
scaling the rows of E. Er is used to calculate the (column) signature of rows
and Ec is used to calculate the (row) signature of the columns.

It is possible to use another normalization. In this case the user is requested
to supply the normalized input data in a named list, including the two matrices
of appropriate dimensions to the isa.iterate() function.

3

The Er entry of the list will be used for calculating the signature of the rows,
Ec will be used for the signature of the columns. If you want to use the same
matrix in both steps, then supply it twice, the first one transposed.

3.5 Row and column scores

In addition to finding biclusters in the input matrix, the ISA also assigns scores
to the rows and columns, separately for each module. The scores are between
minus one and one and they are by definition zero for the rows/columns that are
not included in the module. For the non-zero entries, the further the score of a
row/columns is from zero, the stronger the association between the row/column
and the module (i.e. the other rows/columns of the module). If the sign of
two rows/columns are the same, then they are correlated, if they have opposite
signs, then they are anti-correlated.

3.6 Robustness

As ISA is an unsupervised algorithm, it may very well find some modules, even
if you feed in noise as the input matrix. To avoid these spurious modules
we defined a robustness measure, a single number for a module that measures
how well the rows and the columns are correlated. The robustness score is
a generalization of the first singular value of the matrix. If there would be
no thresholding during the ISA iteration, then the ISA would (almost always)
converge to the leading SVD vector and the robustness score would be the
corresponding singular value.

It is recommended that the user uses isa.filter.robust() to run ISA on
the scrambled input matrix with the same threshold parameters and then drop
every module, which has a robustness score lower than the highest robustness
score among modules found in the scrambled data.

4 A simple work flow

The simplest way to use ISA on your data is by calling the isa() function with
your input matrix as the single argument. This function uses random seeding
and has three optional arguments:

thr.row A numeric vector, the row thresholds to use. By default this is 1, 1.5,
2, 2.5, 3.

thr.col A numeric vector, the column thresholds to use. By default this is 1,
1.5, 2, 2.5, 3.

no.seeds The number of random seed vectors to generate. By default 100 seeds
are generated.

4

Figure 2: Another artificial data matrix with two modules and a lot of noisy
elements.

The isa() function runs the ISA algorithm for all threshold combinations
of the supplied row and column thresholds. For every single run the same set
of random seeds are used.

Let us see an example. We load the isa2 package [?], and generate some in
silico data with the isa.in.silico() function first:

> set.seed(10)

> library(isa2)

> data <- isa.in.silico(200, 200, 2, 50, 50)[[1]]

The function call above generates a data matrix similar to the one in Fig. ??, but
bigger. The first two arguments define the size of the data matrix (200×200), the
third the number of modules (two) and the fourth and fifth give the size of the
modules, both are 50×50 submatrices in this case. By default isa.in.silico()
creates non-overlapping modules with some background noise.

isa.in.silico() returns a list with three elements, we are most interested
in the first now, that is the actual artificial data matrix. The second and third
entries in the list give the correct module memberships of the elements, see the
manual page of isa.in.silico() for the details. Let’s take a look at the input
data, see Fig. ??.

> images(list(data), xlab = "", ylab = "", strip = FALSE)

All we have to do now is calling the isa() function on the data matrix.

> modules <- isa(data)

> names(modules)

[1] "rows" "columns" "seeddata" "rundata"

The isa() function returns a list with four elements. ‘rows’ and ‘columns’
define the modules. The non-zero elements in the first column of both define the

5

●●

●●

●●

0 50 100 150 200

−
1.

0
0.

0
1.

0

sc
or

es
●●

●●

0 50 100 150 200

−
1.

0
0.

0
1.

0

sc
or

es

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

0 50 100 150 200

−
1.

0
0.

0
1.

0

sc
or

es

Figure 3: The row scores of the three modules found in the two-block artificial
data matrix. A score of zero means that the row is not included in the module.
Notice that in the third module the first 50 and the second 50 rows have opposite
score signs, i.e. they are anti-correlated.

first module, the second columns define the second module, etc. The number of
columns in ‘rows’ (and ‘columns’) correspond to the number of modules.

> ncol(modules$rows)

[1] 3

ISA has found 3 modules in the artificial data. This seems a bit surprising,
as we expected only two, so let us take a closer look. We simply plot the row
scores of the individual modules (Fig. ??). The first two modules corresponds
to the two blocks in the input matrix. The third module is the union of them,
with opposite score signs. The isa() function also finds modules containing
anticorrelated rows/columns, as long as the anti-correlation is coordinated. I.e.
in the third module, the first 50 rows always behave in an opposite way compared
to the second 50 rows. This is why they are collected into a single module. The
following code creates Fig. ??.

> layout(cbind(seq(ncol(modules$rows))))

> sapply(seq(ncol(modules$rows)), function(x) {

par(mar = c(3, 5, 1, 1))

plot(modules$rows[, x], ylim = c(-1, 1), ylab = "scores",

xlab = NA, cex.lab = 2, cex.axis = 1.5)

})

The ‘rundata’ entry of the return value of isa() contains information about
the ISA run, all the parameters (with the default values in our case) are included
here. It has the following members:

6

> names(modules$rundata)

[1] "direction" "eps" "cor.limit"
[4] "maxiter" "N" "convergence"
[7] "prenormalize" "hasNA" "corx"
[10] "unique" "oscillation" "rob.perms"

See the documentation of isa() for more about these.
Finally, the ‘seeddata’ entry is a data frame, it contains various information

about the individual modules and the seeds that were used to find them. There
is one row for each module. It has the following columns:

> colnames(modules$seeddata)

[1] "iterations" "oscillation" "thr.row" "thr.col"
[5] "freq" "rob" "rob.limit"

The columns ‘thr.row’ and ‘thr.col’ contain the row and columns thresholds
that were used to find the module, while the ‘rob’ column contains its robustness
score:

> modules$seeddata

iterations oscillation thr.row thr.col freq rob
171 7 0 1.5 1.5 3 84.18955
191 7 0 1.5 1.5 3 84.16510
1 7 0 1.0 1.0 1 112.19460

rob.limit
171 17.35840
191 17.35840
1 22.34714

See the documentation of the isa() function for more information about these
and other fields.

Finally, let us show how to transform the result of the isa() function to
a list of biclusters. Each entry of the list will have two sublists, the first –
named ‘rows’ – will contain the rows indices of the module, the second – named
‘columns’ – the column indices:

> mymodules <- lapply(seq(ncol(modules$rows)), function(x) {

list(rows = which(modules$rows[, x] != 0),

columns = which(modules$columns[, x] !=

0))

})

> length(mymodules)

[1] 3

> mymodules[[1]]$rows

7

[1] 51 52 53 54 55 56 57 58 59 60 61 62 63 64
[15] 65 66 67 68 69 70 71 72 73 74 75 76 77 78
[29] 79 80 81 82 83 84 85 86 87 88 89 90 91 92
[43] 93 94 95 96 97 98 99 100

> mymodules[[1]]$columns

[1] 51 52 53 54 55 56 57 58 59 60 61 62 63 64
[15] 65 66 67 68 69 70 71 72 73 74 75 76 77 78
[29] 79 80 81 82 83 84 85 86 87 88 89 90 91 92
[43] 93 94 95 96 97 98 99 100

5 A detailed work flow

In this section we will perform each step of the ISA analysis individually. This
makes sense only if the user wants to adjust the parameters of some steps.
Otherwise a simple call to the isa() function would do.

Let us create some in-silico data to be analyzed:

> data <- isa.in.silico(200, 100, 10)

This will be a 200 × 100 matrix, with 10 modules. By default “half” of the
matrix is filled with noise, so each module will be a 10 × 5 submatrix. See the
input matrix on Fig. ??.

> images(list(data[[1]]), strip = FALSE, xlab = "",

ylab = "")

5.1 Preparing the data

One ISA iteration consists of two thresholded matrix multiplications. The data
preparation step means producing these two matrices, Er and Ec from the input
matrix, E. The default behavior (i.e. what the isa() function does) is to row-
wise scale and center the transposed of E to get Er; and to row-wise scale and
center E to get Ec. The isa.normalize() function performs the appropriate
scaling and returns Er and Ec in a list:

> normed.data <- isa.normalize(data[[1]])

> names(normed.data)

[1] "Er" "Ec"

> dim(normed.data$Er)

[1] 100 200

> dim(normed.data$Ec)

8

Figure 4: In-silico data with ten non-overlapping modules.

[1] 200 100

Let us do a quick check that the rows of the matrices are indeed centered
and scaled.

> max(abs(rowSums(normed.data$Er)))

[1] 5.096618e-15

> max(abs(rowSums(normed.data$Ec)))

[1] 4.108693e-15

> max(abs(apply(normed.data$Er, 1, sd) - 1))

[1] 1.110223e-16

> max(abs(apply(normed.data$Ec, 1, sd) - 1))

[1] 1.110223e-16

5.2 Running the ISA

To run the ISA, we need to create some starting seeds. The isa() function
uses sparse random seeds, produced by generate.seeds(). We also have the

9

choice of using non-random seeds, e.g. if you have a matrix with gene expression
data measured on many samples you can use “gene” seeds that correspond to
biological pathways; in this case ISA does a biased search to find modules related
to the input pathways. Or, in a case/control experiment one can use seed vectors
that correspond to cases and look for modules that are different in the control
and the case samples.

For now, we will use thousand random seeds, with different sparseness:

> row.seeds <- generate.seeds(length = nrow(data[[1]]),

count = 1000, sparsity = c(2, 5, 10, 100))

Note, that vector giving the sparsity is recycled, thus we will have four kind of
seeds, with 2, 5, 10 and 100 rows; 250 of each kind.

We are ready to run the ISA now. Let us assume that we only want to find
modules that are “above” the background. (In this artificial case we actually
know that there are no modules below the background.) The direction argument
is thus set to "up".

> modules <- isa.iterate(normed.data, row.seeds = row.seeds,

thr.row = 2, thr.col = 2, direction = "up")

Unlike isa(), isa.iterate() does not merge or filter the modules the input
seeds converge to. Consequently, the modules object contains 1000 modules, but
these are not necessarily unique:

> ncol(modules$rows)

[1] 1000

It is also possible that some seeds converge to an all-zero vector, we have 44
such modules:

> sum(apply(modules$rows == 0, 2, all))

[1] 44

The isa.unique() function finds duplicate or very similar modules in a
list returned by isa.iterate() and keeps only a single one of them. It also
eliminates all-zero modules and seeds that did not converge; NA columns in the
‘rows’ and ‘columns’ matrix correspond to non-convegent seeds:

> modules2 <- isa.unique(normed.data, modules, cor.limit = 0.9)

The cor.limit argument specifies the correlation limit above which two modules
are considered to be the same. Let us see how many modules are left:

> ncol(modules2$rows)

[1] 172

10

We still have 172 modules. Let us check whether each real module was find
by the ISA. Remember that isa.in.silico() stores the correct modules in the
second and third entry of its return value.

> found.rows <- cor(data[[2]], modules2$rows !=

0)

> found.cols <- cor(data[[3]], modules2$columns !=

0)

> found <- pmin(found.rows, found.cols)

> apply(found, 1, max)

[1] 1 1 1 1 1 1 1 1 1 1

Out of the ten modules, 10 were correctly identified by the ISA.

5.3 Robustness of biclusters, filtering the results

There are two features that we expect from a good biclustering algorithm. The
first is sensitivity: it is able to find all biclusters in the input data. The second is
specificity: it should not generate spurious biclusters, or in other words biclusters
that are correlated just by chance.

To address this problem, we have developed a robustness measure, a single
scalar number that gives how correlated the rows and columns of a given module
are. This measure is a simple generalization of the singular value decomposition
(SVD) singular value, and can be calculated with the robustness() function:

> rob <- robustness(normed.data, modules2$rows,

modules2$columns)

> summary(rob)

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.852 6.672 7.094 9.092 7.558 28.120

The robustness of the 172 modules varies considerably, from 4.85 to 28.12. For
more insight we create a boxplot for the robustness scores (Fig. ??).

> par(cex.lab = 1.5, cex.axis = 1.5)

> boxplot(rob, ylab = "Robustness")

One can use the robustness measure to filter a list of modules, in the following
way. We permute the input matrix and run the same module finding procedure
that we did for the original matrix. Then we calculate the robustness scores
for both the real and the scrambled modules and eliminate the “real” modules
having a robustness score that is less than the score of at least one scrambled
module. Note, that this filtering can be done only if both sets of modules were
found using the same threshold parameters. The procedure is implemented in
the isa.filter.robust() function:

11

●●●●●●●●●●

●

●●●

●

●●●●●

5
10

20

R
ob

us
tn

es
s

Figure 5: Box-plot for the robustness scores of the modules found by the ISA.
Some modules have a much higher score than the rest.

> modules3 <- isa.filter.robust(data[[1]], normed.data,

modules2, perms = 1, row.seeds = row.seeds)

We used the very same row seeds, as for the original matrix; this is not strictly
required. The perms argument sets the number of permutations to perform.

Note that the ISA run on the scrambled matrix usually takes longer, than
on the real data, because it takes more steps for the ISA to converge.

After the robustness filtering we have 18 modules left. This is still more than
the ten correct modules, so let us take a closer look. First, let us create another
plot with the robustness scores of the remaining modules. isa.filter.robust()
places the robustness scores in the seed data, so we don’t need to calculate them
again. See Fig. ??.

> plot(modules3$seeddata$rob, ylab = "Robustness",

cex.lab = 1.5)

The scatterplot shows that ten modules have in fact higher robustness scores
than the rest. Let us check that these are indeed the ten “real” modules of the
data.

> bestmods <- order(modules3$seeddata$rob, decreasing = TRUE)[1:10]

> mod.cor <- pmin(cor(modules3$rows[, bestmods] !=

0, data[[2]]), cor(modules3$columns[, bestmods] !=

0, data[[3]]))

> apply(mod.cor, 1, max)

[1] 1 1 1 1 1 1 1 1 1 1

> apply(mod.cor, 2, max)

[1] 1 1 1 1 1 1 1 1 1 1

12

● ● ●

●

● ● ●

●
● ●

●

● ●

●

●

●

●

●

5 10 15

26
.5

27
.0

27
.5

28
.0

Index

R
ob

us
tn

es
s

Figure 6: The robustness scores of ISA modules after filtering out some modules
with low robustness. Ten modules have a higher score than the rest.

Indeed, we have found the ten real modules, the ISA is both specific and
sensitive. If one analyzes real data, then it is much more difficult to filter the
modules found by the biclustering algorithm, but the robustness based filtering
still helps getting rid of spurious modules.

Finally, let us take a look at some of the other modules, that were also kept
after the robustness-based filtering. Here we plot five of them, together with
the input matrix.

> othermods <- order(modules3$seeddata$rob)[1:5]

> print(plotModules(modules3, othermods, data = data[[1]]))

It turns out that these are double-modules, each is a union of two real mod-
ules. ISA finds these, since they also have correlated rows and columns, although
the correlation is lower than for the single-modules. The double-modules are
typically found at lower thresholds.

5.4 Visualize the results

Visualizing overlapping biclusters is a challenging task. We show simple methods
that usually visualize a single bicluster at a time. For some of these we will use
the biclust R package [?].

5.4.1 The biclust package

The biclust R package implements several biclustering algorithms in a uni-
fied framework. It uses the class Biclust to store a set of biclusters. The
isa.biclust() function converts ISA modules to a Biclust object. This re-
quires the binarization of the modules, i.e. the ISA scores are lost, they are
converted to zeros and ones:

> library(biclust)

> five.mods <- isa.in.silico(200, 200, 5, 20, 20)

13

Figure 7: The input matrix and five modules with relatively low robustness
scores. As it turns out, each of these modules contains two blocks of the input
matrix.

> modules <- isa(five.mods[[1]], thr.row = 2, thr.col = 2)

> Bc <- isa.biclust(modules)

> Bc

An object of class Biclust

call:
NULL

Number of Clusters found: 5

First 5 Cluster sizes:
BC 1 BC 2 BC 3 BC 4 BC 5

Number of Rows: "20" "20" "20" "20" "20"
Number of Columns: "20" "20" "20" "20" "20"

5.4.2 Image plots

There are some examples in this document that show how to create image plots
for the modules and potentially also the input data. See e.g. Figs ?? and ??.
These plots use the plotModules() function, that directly takes the output
of isa() (and other functions with the same output format: isa.iterate(),
isa.unique(), etc.) In fact plotModules() calls the images() function to do
its job. images() takes a list of matrices, see Fig. ?? for an example.

14

Figure 8: Heatmap plot of the reordered input matrix. The rows and columns
corresponding to the first bicluster are moved to the top-left corner of the matrix.

The drawHeatmap() function of the biclust package can be also used to
draw an image plot. This visualizes a single bicluster on top of the input matrix.
It reorders the rows and columns of the input matrix to move the block of the
bicluster to the top left corner of the input matrix (Fig. ??).

> drawHeatmap(five.mods[[1]], Bc, number = 1, local = FALSE)

5.4.3 Profile plots

The parallelCoordinates() function of the biclust package plots the profile
of the rows (or columns) that are included in a bicluster with a different color.
These plots visualize the difference between the bicluster and the rest of the
matrix, see Fig. ?? for an example.

> parallelCoordinates(five.mods[[1]], Bc, number = 1,

plotBoth = TRUE)

5.4.4 Contrast bar plots

The plotclust() function of the biclust package creates barplots for one or
more biclusters. A single bar is the mean of the columns of the bicluster for a
given row of the bicluster; or the mean of the columns of the background (i.e.
the rest of the input matrix). The bigger the difference between the bars of
the two colors, the better the bicluster. The results of the following code are in
Fig. ??.

> plotclust(Bc, five.mods[[1]], Titel = "")

15

Rows

V
al

ue

1 2 3 4 5 6 7 8 9 11 13 15 17 19
0.

0
1.

0

Columns

V
al

ue

1 2 3 4 5 6 7 8 9 11 13 15 17 19

0.
0

1.
0

Figure 9: Profile plots for the first bicluster found by ISA. In this artificial data
set there is a clear distinction between the background and the rows/columns
of the module.

Cluster 1 Size: 20

0.
0

0.
4

0.
8

Cluster 2 Size: 20

0.
0

0.
4

0.
8

Cluster 3 Size: 20

0.
0

0.
4

0.
8

Cluster 4 Size: 20

0.
0

0.
4

0.
8

Cluster 5 Size: 20

0.
0

0.
4

0.
8

Figure 10: Bar plots show the difference between the biclusters and the rest of
the input matrix, for the first five modules found by ISA.

16

Figure 11: Modular data sets with different levels of noise. The data sets are
generated by adding normally distributed background noise with given variance
to the checkerboard matrix.

6 Features of ISA

In this section we show examples that highlight key features of the ISA: its
resilience to noise and its ability to find overlapping modules.

6.1 Resilience to noise

To test the behavior of ISA with noisy inputs we generate a number of in-silico
data sets with different noise levels (Fig. ??).

> noise <- seq(0.1, 1, by = 0.1)

> data <- lapply(noise, function(x) isa.in.silico(500,

200, 10, noise = x))

> images(lapply(data, "[[", 1), names = as.character(noise),

xlab = "", ylab = "")

Next, we run ISA with the default parameters on all the data sets. This
might take a while.

> modules <- lapply(data, function(x) isa(x[[1]]))

Let us check the sensitivity of ISA, for every real module, we pick one from
the ones ISA has found, the one that is the most correlated to it.

17

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Noise level

S
en

si
tiv

ity

Figure 12: The sensitivity of the ISA in the function of noise. The sensitivity
score is calculated by finding the best (in terms of Pearson correlation) ISA
module for each block in the input matrix. Each boxplot is contains ten points,
one for each module. ISA performs very well, even in the presence of relatively
high noise levels.

> best <- lapply(seq_along(modules), function(i) {

cc <- pmin(cor(modules[[i]]$rows != 0, data[[i]][[2]]),

cor(modules[[i]]$columns != 0, data[[i]][[3]]))

apply(cc, 2, max)

})

> best.mean <- sapply(best, mean)

Let’s create boxplots for the different noise levels. (Fig. ??.)

> boxplot(best, names = noise, xlab = "Noise level",

ylab = "Sensitivity", cex.lab = 1.5)

To test the specificity, we create boxplots for the correlation coefficients of
all modules found by ISA and their closest real module. (Fig. ??.)

> spec <- lapply(seq_along(modules), function(i) {

cc <- pmin(cor(modules[[i]]$rows != 0, data[[i]][[2]]),

cor(modules[[i]]$columns != 0, data[[i]][[3]]))

apply(cc, 1, max)

})

> boxplot(spec, names = noise, xlab = "Noise level",

ylab = "Specificity", cex.lab = 1.5)

18

●●●●●●●●●●

●●

●

●●●●
●
●
●

●●●●●●●
●
●●

●

●

●
●
●
●
●●●
●
●

●
●

●

●

●
●

●

●●

●●

●

●

● ●
●

●

●●
●
●
●●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Noise level

S
pe

ci
fic

ity

Figure 13: Specificity of the ISA modules, in the function of noise. Specificity
was calculated by finding the best – again, by highest Pearson correlation –
matching block in the input matrix for each ISA module. These correlation
coefficients are plotted in a boxplot for each noise level. Specificity of ISA
decreases approximately linearly with the increase of noise.

6.2 Finding overlapping biclusters

ISA biclusters might overlap in their rows, columns, or both. To illustrate this,
we create an artificial data set with two overlapping blocks.

> set.seed(1)

> two.over <- isa.in.silico(100, 100, 2, 40, 40,

overlap.row = 10)

We run ISA on this input matrix, with two threshold parameters, the first
thresholds are very mild, they are both zero. In other words, in each iteration
step all rows/columns are kept in each that have a higher score than the average.
The second set of thresholds are stricter, the scores have to be at least one
standard deviation away from the mean to keep them.

> ov.normed <- isa.normalize(two.over[[1]])

> ov.seeds <- generate.seeds(count = 100, length = 100)

> ov.modules.1 <- isa.iterate(ov.normed, ov.seeds,

convergence = "cor", thr.row = 0, thr.col = 0,

direction = "up")

> ov.modules.1 <- isa.unique(ov.normed, ov.modules.1)

> ov.modules.1 <- isa.filter.robust(two.over[[1]],

ov.normed, ov.modules.1)

> ov.modules.2 <- isa.iterate(ov.normed, ov.seeds,

convergence = "cor", thr.row = 1, thr.col = 1,

19

direction = "up")

> ov.modules.2 <- isa.unique(ov.normed, ov.modules.2)

> ov.modules.2 <- isa.filter.robust(two.over[[1]],

ov.normed, ov.modules.2)

> ncol(ov.modules.1$rows)

[1] 3

> ncol(ov.modules.2$rows)

[1] 3

ISA found 3 modules with the mild thresholds and 3 modules with the strict
ones. Let us plot the original data and the modules found by ISA (Fig. ??).

> no.modules <- ncol(ov.modules.1$rows) + ncol(ov.modules.2$rows)

> plotModules(data = two.over[[1]], list(rows = cbind(ov.modules.1$rows,

ov.modules.2$rows), columns = cbind(ov.modules.1$columns,

ov.modules.2$column)), names = c("Input matrix",

paste("Module", seq_len(no.modules))))

As expected the ISA modules are in general bigger with the mild thresh-
olds. ISA correctly identifies the two overlapping modules and also the union
of them. With the stricter thresholds it finds the non-overlapping parts of the
two modules, plus their overlap as a separate module.

7 More information

For more information about the ISA please see the references at the end of
this paper. The ISA homepage is at http://www.unil.ch/cbg/homepage/
software.html.

For analyzing gene expression data with ISA, we suggest using BioConduc-
tor [?] and the eisa [?] R package.

If you want to run ISA on a computer cluster or a multi-processor machine,
then see the vignette titled “Running ISA in parallel with the snow pacakge”, in
the isa2 package.

8 Session information

The version number of R and packages loaded for generating this vignette were:

� R version 2.11.0 beta (2010-04-11 r51685), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=C, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

20

Figure 14: The input matrix with two overlapping blocks and the ISA modules
for this data set. The first three modules were found at milder threshold pa-
rameters, that is why they are bigger. As you can see for Modules #1 and #2,
at milder thresholds there is a higher probability that ISA will pick up some
incorrect rows/columns.

21

� Base packages: base, datasets, graphics, grDevices, grid, methods, stats,
utils

� Other packages: biclust 0.9.1, colorspace 1.0-1, isa2 0.2.1, lattice 0.18-4,
MASS 7.3-5, Matrix 0.999375-38, vcd 1.2-8

References

[Bergmann et al., 2003] Bergmann, S., Ihmels, J., and Barkai, N. (2003). Iter-
ative signature algorithm for the analysis of large-scale gene expression data.
Phys Rev E Nonlin Soft Matter Phys, page 031902.

[Gentleman, 2004] R. Gentleman, V. J. Carey, D. M. Bates, B.Bolstad, M. Det-
tling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, and others (2004). Bioconductor:
Open software development for computational biology and bioinformatics.
Genome Biology, Vol. 5, R80

[Csárdi, 2009] Csárdi, G. (Apr 1, 2009). isa2: The Iterative Signature Algo-
rithm. R package version 0.1.

[Csárdi, 2009] Csárdi, G. (Sep 15, 2009). eisa: The Iterative Signature Algo-
rithm for Gene Expression Data. R package version 0.1.

[Ihmels, 2002] Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y.,
Barkai, N. (2002). Revealing modular organization in the yeast transcriptional
network. Nat Genet , page 370–7.

[Ihmels, 2004] Ihmels, J., Bergmann, S., Barkai, N. (2004). Defining transcrip-
tion modules using large-scale gene expression data. Bioinformatics, page
1993–2003.

[Kaiser, 2009] Sebastian Kaiser, Rodrigo Santamaria, Roberto Theron, Luis
Quintales and Friedrich Leisch. (2009). biclust: BiCluster Algorithms. R
package version 0.7.2.

22

