
Debugging MCMC Code

Charles J. Geyer

May 3, 2010

1 Introduction

This document discusses debugging Markov chain Monte Carlo code using the
R contributed package mcmc (Version 0.7-5) for examples. It also documents the
debugging output of the functions mcmc and temper.

Debugging MCMC code if the code is taken as a black box is basically impos-
sible. In interesting examples, the only thing one knows about the equilibrium
distribution of an MCMC sampler is what one learns from the samples. This
obviously doesn’t help with testing. If the sampler is buggy, then the only thing
you know about the equilibrium distribution is wrong, but if you don’t know it
is buggy, then you don’t know it is wrong. So you don’t know anything. There
is no way to tell whether random output has the correct distribution when you
don’t know anything about the distribution it is supposed to have.

The secret to debugging MCMC code lies in two principles:

• take the randomness out, and

• expose the innards.

The first slogan means consider the algorithm a deterministic function of the
elementary pseudo-random numbers that are trusted (for example, the outputs
of the R random number generators, which you aren’t responsible for debugging
and are also well tested). The second slogan means output, at least for debugging
purposes, enough intermediate state so that testing is straightforward.

For a Gibbs sampler, this means outputting all of the trusted elementary
pseudo-random numbers used, the state before and after each elementary Gibbs
update, and which update is being done if a random scan is used. Also one
needs to output the initial seeds of the pseudo-random number generator (this
is true for all situations and will not be mentioned again).

For a Metropolis-Hastings sampler, this means outputting all of the trusted
elementary pseudo-random numbers used, the state before and after each ele-
mentary Metropolis-Hastings update, the proposal for that update, the Hastings
ratio for that update, decision (accept or reject) in that update.

For more complicated MCMC samplers, there is more “innards” to “expose”
(see the discussion of the temper function below), but you get the idea. You
can’t output too much debugging information.

1



2 The Metrop Function

The R function metrop in the mcmc package has an argument debug = FALSE
that when TRUE causes extra debugging information to be output. Let niter be
the number of iterations nbatch * blen * nspac, and let d be the dimension
of the state vector. The result of invoking metrop is a list. When debug = TRUE
it has the following additional components

• current, an niter by d matrix of mode "numeric", the state before
iteration i is current[i, ]

• proposal, an niter by d matrix of mode "numeric", the proposal for
iteration i is proposal[i, ]

• z, an niter by d matrix of mode "numeric", the vector of standard normal
random variates used to generate the proposal for iteration i is z[i, ]

• log.green, a vector of length niter and mode "numeric", the logarithm
of the Hastings ratio for each iteration

• u, a vector of length niter and mode "numeric", the Uniform(0, 1) ran-
dom variate compared to the Hastings ratio for each iteration or NA if none
is needed (when the log Hastings ratio is nonnegative)

• debug.accept, a vector of length niter and mode "logical", the decision
for each iteration, accept the proposal (TRUE) or reject it (FALSE)

(The components z and debug.accept were added in version 0.7-3 of the mcmc
package. Before that only the others were output.)

Two components of the list returned by the metrop function always (whether
debug = TRUE or debug = FALSE) are also necessary for debugging. They are

• initial.seed the value of the variable .Random.seed that contains the
seeds of the R random number generator system before invocation of the
metrop function

• final, a vector of length d and mode "numeric", the state after the last
iteration

All of the files in the tests directory of the source for the package (not
installed but found in the source tarball on CRAN) test the metrop function
except those beginning temp, which test the temper function. Since these tests
were written many years ago, are spread out over many files, and are not com-
mented, we will not describe them in detail. Suffice it to say that they check
every aspect of the functioning of the metrop function.

2



3 The Temper Function

The R function temper in the mcmc package has an argument debug = FALSE
that when TRUE causes extra debugging information to be output. Let niter
be the number of iterations nbatch * blen * nspac, let d be the dimension of
the state vector, and let ncomp be the number of components of the tempering
mixture. The result of invoking temper is a list. When debug = TRUE and
parallel = TRUE it has the following additional components

• which, a vector of length niter and mode "logical" the type of update
for each iteration, within component (TRUE) or swap components (FALSE).

• unif.which, a vector of length niter and mode "numeric", the Uniform(0, 1)
random variate used to decide which type of update is done.

• state, an niter by ncomp by d array of mode "numeric", the state before
iteration i is state[i, , ]

• proposal, an niter by d + 1 matrix of mode "numeric", the proposal
for iteration i is proposal[i, ] (explanation below)

• coproposal, an niter by d + 1 matrix of mode "numeric", the proposal
for iteration i is coproposal[i, ] (explanation below)

• log.hastings, a vector of length niter and mode "numeric", the loga-
rithm of the Hastings ratio for each iteration

• unif.hastings, a vector of length niter and mode "numeric", the Uniform(0, 1)
random variate compared to the Hastings ratio for each iteration or NA if
none is needed (when the log Hastings ratio is nonnegative)

• acceptd, a vector of length niter and mode "logical", the decision for
each iteration, accept the proposal (TRUE) or reject it (FALSE)

• norm, an niter by d matrix of mode "numeric", the vector of standard
normal random variates used to generate the proposal for iteration i is
z[i, ] unless none are needed (for swap updates) when it is NA

• unif.choose, an niter by 2 matrix of mode "numeric", the vector of
Uniform(0, 1) random variates used to choose the components to update
in iteration i is unif.choose[i, ]; in a swap update two are used; in a
within-component update only one is used and the second is NA

In a within-component update, one component say j is chosen for update.
The coproposal is the vector passed to the log unnormalized density function,
which is a vector of length d + 1, the first component of which is j and the
rest of which is state[i, j, ] if we are in iteration i. The proposal is a
similar vector, the first component of which is again j and the rest of which is
a multivariate normal random vector centered at state[i, j, ].

3



In a swap update, two components say j1 and j2 are chosen for update.
Strictly, speaking the coproposal is the pair of vectors c(j1, state[i, j1, ])
and c(j2, state[i, j2, ]) and the proposal is these swapped, that is, the
pair of vectors c(j2, state[i, j1, ]) and c(j1, state[i, j2, ]) if we are
in iteration i. Since, however, there is a lot of redundant information here, the
vector c(j1, state[i, j1, ]) is output as coproposal[i, ] and the vector
c(j2, state[i, j2, ]) is output as proposal[i, ].

When debug = TRUE and parallel = FALSE the result of invoking temper
is a list having the following additional components

• which, a vector of length niter and mode "logical" the type of update
for each iteration, within component (TRUE) or jump from one component
to another (FALSE).

• unif.which, a vector of length niter and mode "numeric", the Uniform(0, 1)
random variate used to decide which type of update is done.

• state, an niter by d + 1 matrix of mode "numeric", the state before
iteration i is state[i, ]

• proposal, an niter by d + 1 matrix of mode "numeric", the proposal
for iteration i is proposal[i, ]

• log.hastings, a vector of length niter and mode "numeric", the loga-
rithm of the Hastings ratio for each iteration

• unif.hastings, a vector of length niter and mode "numeric", the Uniform(0, 1)
random variate compared to the Hastings ratio for each iteration or NA if
none is needed (when the log Hastings ratio is nonnegative)

• acceptd, a vector of length niter and mode "logical", the decision for
each iteration, accept the proposal (TRUE) or reject it (FALSE)

• norm, an niter by d matrix of mode "numeric", the vector of standard
normal random variates used to generate the proposal for iteration i is
z[i, ] unless none are needed (for jump updates) when it is NA

• unif.choose, a vector of length niter and mode "numeric", the Uniform(0, 1)
random variates used to choose the component to update in iteration i is
unif.choose[i, ]; in a jump update one is used; in a within-component
update none is used and NA is output

All of the files in the tests directory of the source for the package (not
installed but found in the source tarball on CRAN) beginning temp test the
temper function. They check every aspect of the functioning of the temper
function.

In the file temp-par.R in the tests directory, the following checks are made
according to the comments in that file

1. check decision about within-component or jump/swap

4



2. check proposal and coproposal are actually current state or part thereof

3. check hastings ratio calculated correctly

4. check hastings rejection decided correctly

5. check acceptance carried out or not (according to decision) correctly

6. check within-component proposal

7. check swap proposal

8. check standard normal and uniform random numbers are as purported

9. check batch means

10. check acceptance rates

11. check scale vector

12. check scale matrix

13. check scale list

14. check outfun

In the file temp-ser.R in the tests directory, the all of the same checks are
made according to the comments in that file except for check number 2 above,
which would make no sense because there is no coproposal component in the
serial (parallel = FALSE) case.

5


