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Abstract

For some time, propensity score based methods have been frequently
applied in the analysis of data from observational studies. The propen-
sity score is the conditional probability of a certain treatment or exposure
given patient’s covariates. Propensity score methods are used to elimi-
nate baseline imbalances in covariate distributions between treatment or
exposure groups and permit to estimate marginal effects.

The package nonrandom is a tool for a comprehensive data analysis
using stratification and matching by the propensity score. Several func-
tions are implemented, starting from the selection of the propensity score
model up to estimating propensity score based treatment or exposure ef-
fects. Before estimating the propensity score, relative.effect() permits
to investigate the extent to which a covariate is confounding the treatment
or exposure effect. This measure may support the decision to include a co-
variate in the propensity score model. pscore() estimates the propensity
score and provides all information about the model. Stratification and
matching by the propensity score are implemented in ps.makestrata()

and ps.match(), respectively. To check the balance of covariate dis-
tributions between treatment or exposure groups, ps.balance() tests
the distributions using statistical tests or standardized differences and
dist.plot() allows for a graphical balance check. Finally, propensity
score based estimators for the treatment or exposure effect can be de-
termined by ps.estimate(). It also provides a comparison to regression
based estimates alternatively used.

All functions can be applied separately as well as combined. Addi-
tionally, it is possible to apply all functions repeatedly to decide which
analysis strategy is the most suitable one.

There are two data examples to illustrate the application of nonrandom.
In the first data example, quality of life is investigated in breast cancer
patients in an observational treatment study of the German Breast Cancer
Study Group (GBSG). The second data example deals with lower respi-
ratory tract infections (LRTI) in infants and children in the observational
study Pri.DE (Pediatric Respiratory Infection, Deutschland) in Germany.
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1 Introduction

For some time, propensity score based methods have been frequently applied
in the analysis of data from observational studies. In 1983, Rosenbaum and
Rubin introduced the propensity score as conditional probability of receiving
a certain treatment1 given covariates [1]. In general, the propensity score is
unknown and has to be estimated using an appropriate model. The selection
of the correct propensity score model is often the first obstacle. Lunt et al.[2]
proposed a measure estimating the extent to which a covariate is confounding
the treatment effect. Covariates with a large extent are potential candidates for
the inclusion in the propensity score model.

Propensity score methods are embedded in the framework of causal modeling
dealing with counterfactuals [3]-[5]. Consider a pair of random variables (Y0,
Y1), where Y1 denotes the response of an individual if treated, and Y0 represents
the response of the same individual if not treated. The observed response is
Y = ZY1+(1−Z)Y0, and the expected values of counterfactuals E[Y1] and E[Y0]
can be derived if an identifying assumption called ’strongly ignorable treatment
assignment’ (SITA) holds [1]. This assumption states, that, within subgroups
defined by the propensity score, the observed response of individuals assigned
to treatment Z = 0 has the same distribution as the unobserved response of
individualss assigned to treatment Z = 1, if the latter had been assigned to
treatment Z = 0. The idea of the propensity score was initiated to estimate
average linear treatment effects as E[Y1]−E[Y0] [1]. By now, the idea has been
transferred to estimating the marginal odds ratio of response, i.e., the change
in odds of response, if everybody versus nobody were treated [6]-[8].

In observational studies, covariate distributions differ generally between treat-
ment groups and propensity score methods aim to eliminate such imbalances.
There are several propensity score methods: stratification, matching and co-
variate adjustment by the propensity score. An further approach is the inverse
probability weighting by the propensity score [9]-[11], but it is rarely used. Strat-
ification and matching by the propensity are more popular methods since they
are easy to understand. But matching by the propensity score is applied at most
in medical research [12, 13].

Stratification by the propensity score groups observations such that distributions
of measured covariates are sufficiently balanced in treatment groups within each
stratum [1, 14]. It can be supposed that each stratum mimics a randomized sit-

1In the following, we only use the phrase ’... conditional probability of receiving a certain
treatment’, i.e., we concentrate on the comparison of response in treated and untreated obser-
vations. The comparison of two treatments, e.g.,new and standard therapy are also possible.
The propensity score can be also be the conditional probability of being exposed given co-
variates, respectively, such that the comparison of exposed and unexposed observations is of
interest.
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uation in which distribution of measured covariates are balanced in expectation.
If then the assumption of ’SITA’ holds, stratum-specific parameters can be es-
timated unbiasedly [1]. Those can be summed up using appropriate weights to
estimate the marginal parameter of interest.

If matching by the propensity score is used, one or more untreated observa-
tions are matched to one treated observation or vice versa. Observations within
matched sets have similar propensity scores whereas the similarity is often de-
fined by a caliper, generally used as one-fifth of the standard deviation of the
logit of the estimated propensity score [15]. Although matching by the propen-
sity score has been frequently applied [12, 13], it has been shown that the de-
pendence structure in the total matched sample is often not accounted for the
estimation of the parameter of interest [16]-[18]. Approaches such as general-
ized linear mixed models and generalized estimation equations are appropriate
to analyze data with correlated observations [19]-[23].

In the following, the application of the package nonrandom is demonstrated step
by step introducing all implemented functions. The usage of the function is
illustrated by the exemplary analysis of two data sets. First, there are data on
quality of life in n = 646 breast cancer patients in an observational treatment
study of the German Breast Cancer Study Group (GBSG) [24, 25]. Patients
with mastectomy and lumpectomy, respectively, are compared with each other
regarding the quality of life measured as a linear sum score. The second data
example deals with lower respiratory tract infections (LRTI) in a population of n
= 3.078 infants and children aged less than three years in the observational study
Pri.DE (Pediatric Respiratory Infection, Deutschland) in Germany [26]. Here,
the impact of a current infection with the respiratory syncytial virus (RSV) on
the severity of LRTI is investigated [8].

2 The estimation of the propensity score

The propensity score, i.e., the conditional probability of receiving a certain treat-
ment given observed covariates is generally unknown and has to be estimated
by an appropriate model. The selection of the propensity score model is often a
delicate issue [27]-[31]. A measure describing the extent to which a covariate is
confounding the treatment effect on response is proposed by Lunt et al. [2] and
covariates with a large impact are potential candidates for the propensity score
model. This proposal is implemented in relative.effect(). If an appropri-
ate propensity score model is selected, pscore() estimates the propensity score
based on the selection.
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2.1 relative.effect

An important step is to decide which covariates Xk, k = 1, ...,K should be
included in the propensity score model. The measure describing the extent to
which a covariate Xk is confounding the effect of treatment Z on response Y is
defined as a relative effect (per cent)(

βz,xk
− βz

βz

)
× 100

with the unadjusted treatment effect βz on response Y and the treatment effect
βz,xk

adjusted for covariate Xk. If the response is binary, the relative effect (per
cent) is defined as (

exp{βz,xk
} − exp{βz}

exp{βz}

)
× 100.

Therefor, K+1 regression models for response Y , both unadjusted and adjusted
for covariates Xk, k = 1, ...,K, are fitted using an appropriate generalized lin-
ear regression model with a response function according to the scale of response
(internal use of ’glm’). There are two options fitting a generalized linear regres-
sion model for response. Either use the argument formula to specify a formula,
typically as ’Y ∼ Z +X1 + ...+XK ’,

load(stu1) ## data on quality of life

stu1.effect <-
relative.effect(data = stu1,

formula = pst~therapie+tgr+age)

or specify response, treatment and covariates separately by using the arguments
resp, treat and sel.

load(pride) ## data dealing with LRTI

pride.effect <-
relative.effect(data = pride,

sel = c(2:14), ## covariates
resp = 15, ## response
treat = "PCR_RSV") ## exposure(!)

Independent of the manner of the application of relative.effect(), it yields a
list containing information about the unadjusted treatment effect βz, the treat-
ment effects βz,xk

adjusted separately for the covariates Xk, K = 1, ...,K and
their relative effects. Additionally, the names of treatment, response and se-
lected covariates are given as well as the description of the error distribution
used in the generalized linear regression models.
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stu1.effect$unadj.treat ## unadjusted treatment effect
[1] 1.589436

stu1.effect$adj.treat.cov ## adjusted treatment effects
tgr age

1.7004732 0.7880392

stu1.effect$rel.eff.treat ## relative effects for covariates
tgr age

6.985956 -50.420198

2.2 pscore

If an appropriate propensity score model is selected, pscore() estimates the
propensity score, i.e., the conditional probability of receiving a certain treatment
Z given covariates Xk, k = 1, ...,K, using a logistic regression model

P (Z = 1|X1, ..., XK) =
exp{α0 + α1X1 + ...+ αKXK}

1 + exp{α0 + α1X1 + ...+ αKXK}
.

Applying pscore(), it is possible to specify a name for the variable including
the estimated propensity score (name.pscore). The default is ’pscore’.

## STU1
stu1.ps <- pscore(data = stu1,

formula = therapie~tgr+age)

## PRIDE
pride.ps <- pscore(data = pride,

formula = PCR_RSV~SEX+RSVINF+REGION+
AGE+ELTATOP+EINZ+EXT,

name.pscore = "ps")

The output object is of class ’”pscore”’ and contains a list with information
about the propensity score model.

## STU1
stu1.ps$name.pscore ## name of the estimated propensity
[1] "pscore" ## score added to data

stu1.ps$name.treat ## name of the treatment variable
[1] "therapie"

stu1.ps$formula.pscore ## formula of the propensity
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therapie ~ tgr + age ## score model

##PRIDE
pride.ps$name.pscore ## name of the estimated propensity
[1] "ps" ## score

pride.ps$name.treat
[1] "PCR_RSV"

Furthermore, the complete data set ($data), extended by the estimated propen-
sity score labeled by name.pscore, the estimated individual propensity scores
($pscore) and the treatment variable ($treat) are available.

3 Propensity score methods

Observational studies frequently exhibit imbalances in covariate distributions
between treatment groups. Stratification and matching methods are used to
eliminate these imbalances.

3.1 ps.makestrata - stratification by the propensity score

Stratification by the estimated propensity score groups observations with similar
or identical estimated propensity score. In ps.makestrata(), stratification can
be done in several ways whereas stratification using quintiles of the distribution
of the estimated propensity score yields a 90 per cent reduction of bias [14, 34].

The usage of ps.makestrata() depends on the class of the input object whereas
’”data.frame”’ and ’”pscore”’ (if pscore() is previously used) are permitted.
No specification of the stratification variable (stratified.by) is needed if the
input object is of class ’”pscore”’ (the estimated propensity score stored in
’”object$pscore”’ is automatically sourced), contrary to the case where the input
object is a data frame.

Several options for the argument breaks used to define the strata, are available.
The default is ’NULL’, i.e., the stratification variable is factorized and each
factor corresponds to one stratum:

stu1.strata4 <- ps.makestrata(object = stu1.ps)

stu1.strata4$intervals
[1] "0.601" "0.709" "0.824" "0.883"
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If an integer is given in breaks, the number of strata w.r.t. the stratification
variable is specified:

pride.strata.b5 <- ps.makestrata(object = pride.ps,
breaks = 5,
name.stratum.index = "stratum")

pride.strata.b5$intervals
[1] "[0.0619,0.168]" "(0.168,0.275]" "(0.275,0.382]"
[4] "(0.382,0.488]" "(0.488,0.595]"

The argument name.stratum.index specifies the name of the variable including
the generated stratum indices. If a numeric vector is given or an appropriate
R-function is used, e.g., quantile(), whose values indicate the stratum bounds:

pride.strata5 <- ps.makestrata(object = pride.ps,
breaks = quantile(pride.ps$pscore,

seq(0,1,0.2)))
pride.strata5$intervals
[1] "[0.0624,0.236]" "(0.236,0.306]" "(0.306,0.369]"
[4] "(0.369,0.431]" "(0.431,0.594]"

Depending on the class of the input object, ps.makestrata() returns an object
of class ’”stratified.pscore”’ or ’”stratified.data.frame”’. If the class of the input
object is ’”pscore”’, the output object inherits all values from the input object.
Similar to pscore(), the complete data set ($data) extended by the stratum
indices labeled by name.stratum.index and the name of the stratification vari-
able ($stratified.by) are available.

Furthermore, the individual stratum indices ($stratum.index) generated at
least as well as the corresponding stratum intervals ($intervals) are stored in
the output object.

##STU1
stu1.strata4$name.stratum.index ## default
[1] "stratum.index"

stu1.strata4$stratified.by ## default
[1] "pscore"

## PRIDE
pride.strata5$name.stratum.index
[1] "stratum"

pride.strata5$stratified.by
[1] "ps"
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3.2 ps.match - matching by the propensity score

The most popular propensity score method to cope with covariate imbalances
is matching by the propensity score.

One or more untreated observations will be matched to each treated observation
(or vice versa) according to the estimated propensity score. Matched treated
and untreated observations have similar or identical estimated propensity scores
wheres the similarity is defined by a caliper, often with a maximum width of
one-fifth of the standard deviation of the logit of the estimated propensity score
[15].

Similar to ps.makestrata(), the usage of the function ps.match() depends
both on the classes and on the number of the input objects. Allowed classes are
’”data.frame”’ and ’”pscore”’ (if pscore() is previously used) and one or two
input objects, respectively, are permitted.

No specification of the matching variable (matched.by) and the treatment vari-
able (treat) is needed if the input object is of class ’”pscore”’. The esti-
mated propensity score and the treatment variable stored in ’”object$pscore”’
and ’”object$treat”’ are automatically sourced. In case of one or two data
frames as input objects, both arguments are needed. A second data frame
(object.control) is necessary if the first input object is a data frame (object)
containing only treated or only untreated observations. If the matching vari-
able differs in both data frames given, the matching variable in the second data
frame (control.matched.by) must be specified. Independent of the classes and
the numbers of the input objects, the value of the treatment variable indicating
’treated’ must be given (who.treated). The default is ’1’.

There are some parameters to define the matching procedure: the matching
ratio (ratio) indicating how many observations should be matched, the caliper
size (caliper) and the corresponding scale x, the statement givenTmatchingC
indicating who should be matched to whom (treated to untreated observations
or vice versa) and the statement bestmatch.first indicating whether matching
partners should be taken randomly from the pool of potential matching partners
or those with the most similar estimated propensity score. Furthermore, a
random number can be specified (setseed) to make the matching procedure
reproducible.

As demonstrated in the data example ’pride’, one untreated observation is
matched to each treated observation (ratio =1) and the caliper size is set
to one-fifth of the standard deviation of the logit of the estimated propensity
score (caliper=’logit’, x=0.2). The matching variable is ’ps’ indicating the
estimated propensity score stored in the input object.

pride.match1 <- ps.match(object = pride.ps,
ratio = 1, ## default
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caliper = "logit", ## default
matched.by = "ps",
setSeed = 38902)

In the data example ’stu1’, the matching algorithm is switched such that two
treated observations were matched to each untreated observation because fewer
untreated than treated observations were observed. Furthermore, the caliper
size is set to ’0.5’.

stu1.match2 <- ps.match(object = stu1.ps,
ratio = 2,
caliper = 0.5,
givenTmatchingC = FALSE,
setseed = 39062)

Argument 'givenTmatchingC'=FALSE: Treated elements were matched to
each untreated element.

ps.match() returns an object of class ’”matched.pscore”’, ’”matched.data.frame”’
or ’”matched.data.frames”’ depending on the class(es) of the input object(s)
and on the argument combine.output. The complete data set ($data) and
a data set limited to the matched observations ($data.matched) are avail-
able. Both are extended by column(s) including the matching indices labeled
by name.match.index. Furthermore the individual matching indices gener-
ated at last ($match.index, $name.match.index), the name of the matching
variable ($matched.by) and the matching parameters ($match.parameters)
used at last are stored in the output object. If there are two input objects
and argument combine.output is set to ’TRUE’ (default), the values ’data’,
’data.matched’ and ’match.index’ are data frames and a vector, respectively. If
combine.output is ’FALSE’, these values are lists with entries corresponding
to the input objects. If the class of the input object is ’”pscore”’, the output
object also inherits all values from the input object.

## PRIDE
pride.match1$match.parameters
$caliper
[1] 0.1018815

$ratio
[1] 1

$who.treated
[1] 1

$givenTmatchingC
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[1] TRUE

$bestmatch.first
[1] TRUE

pride.match1$matched.by
[1] "ps"

pride.match1$name.match.index
[1] "match.index"

4 The balance check for covariate distributions

Propensity score methods are used to eliminate imbalances in covariate distribu-
tions between treatment groups. An important, but often neglected issue is to
check those covariate distributions after the balancing procedure (stratification
or matching). Graphical checks, statistical tests and standardized differences
can be used to examine covariate distributions [35]-[37].

4.1 dist.plot - graphical checks

dist.plot() offers to plot the distributions of selected covariates in the treat-
ment groups. There are a couple of arguments to configurate the plots illustrated
by means of both data examples.

The usage of dist.plot() depends on the class of the input object. The ar-
guments treat, stratum.index or match.index have not to be specified if
ps.makestrata() and ps.match() are previously used, respectively. The cor-
responding values stored in the input object are used. This is in contrast to the
case where the input object is a data frame.

If the input object is of class ’”stratified.data.frame”’ or ’”stratified.pscore”’, the
distributions of the selected covariates given in the argument sel are plotted,
automatically separated by treatment and strata. If the class of the input object
is either ’”matched.data.frame”’, ’”matched.data.frames ”’ or ’”matched.pscore”’,
the covariate distributions in the treatment groups are only illustrated in the
matched data. If a comparison to the original data is desired, the argument
compare has to be set to ’TRUE’ and the graphics will be extended.

There are two different plot types which act depending on the type of covari-
ates. The selected covariates are classified in categorical and non-categorical
covariates. Whether a covariate is categorical or not is decided by means of the
argument cat.level. The default is ’10’, i.e., if the covariate has more than
ten different values, it is considered as non-categorical.
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If the argument plot.type is ’1’ (default), bar plots are used to show frequen-
cies for categorical and means for non-categorical covariates (see Figure 1). The
covariate distributions are illustrated by means of histograms if plot.type is
set to ’2’ (see Figure 2). Here, the argument plot.levels specifies the number
of cutpoints needed to define the classes for the histogram if the covariate is
non-categorical. But the classification still depends on the sructure of the co-
variate to be plotted such that the number of classes can differ from the specified
plot.levels. If the covariate is non-categorical, the number of its categories
are used to define the cutpoints.

## Figure 1
pride.plot1 <-

dist.plot(object = pride.strata5,
sel = c("REGION", "AGE"),
plot.type = 1) ## default

pride.plot1$var.cat ## categorical
[1] "REGION" ## covariates

pride.plot1$var.noncat ## non-categorical
[1] "AGE" ## covariates

## Figure 2
pride.plot2 <-

dist.plot(object = pride.match1,
sel = c("AGE"),
plot.type = 2,
compare = TRUE,
legend.title = "RSV infection", ## title of legend
sub.cex = 0.7) ## font size of

## sub titles

pride.plot2$breaks.noncat ## cutpoints of the
[[1]] ## histogram for
[1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ## non-categorical

## covariate

Furthermore, there are three useful arguments. The argument with.legend is
set to ’TRUE’ by default, i.e., a legend is shown. If plot.type is set to 1,
the labels of the categories (categorical covariate) or the labels of the treatment
variable (non-categorical covariate) are presented in the legend. Therefore be
careful to modify the argument when different covariate types are to be plotted
simultaneously. If plot.type is set to ’2’, labels of the treatment variable are
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REGION
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Figure 1: Frequencies of the categorical covariate ’REGION’ (left) and means
of the non-categorical covariate ’AGE’ (right) in the stratified data set ’pride’
are illustrated using standard settings

shown in the legend independent of the covariate type.

## Figure 3 (left)
stu1.plot1 <-

dist.plot(object = stu1.match2,
sel = c("tgr"),
compare = TRUE,
label.match = c("original data","matched sample"))

## Figure 3 (right)
stu1.plot2 <-

dist.plot(object = stu1.match2,
sel = c("age"),
compare = TRUE,
plot.type = 2,
with.legend = FALSE)

The arguments label.stratum and label.match can be changed if the defaults
set to ’”Stratum”’ and ’”c(Original, Matched)”’ are not appropriate. All other
available arguments should be mainly used to modify font sizes, inner and outer
margins of the plot and so on. All values which are plotted are additionally
stored in the output list. The number and the manner of the list entries depend



4 THE BALANCE CHECK FOR COVARIATE DISTRIBUTIONS 13

600 200   0 200

(0,0.5]

(0.5,1]

(1,1.5]

(1.5,2]

(2,2.5]

(2.5,3]

RSV infection

0 1

Matched  sample
Distribution of AGE

600 200   0 200

(0,0.5]

(0.5,1]

(1,1.5]

(1.5,2]

(2,2.5]

(2.5,3]

RSV infection

0 1

Distribution of AGE

Figure 2: The distribution of the non-categorical covariate ’AGE’ in the matched
data set of ’pride’ (left) compared to its distribution in the original data set
’pride’ (right) are shown using histograms

on the type both of the covariates and of the plot. Using plot.type=’1’, the
frequencies for the categorical and the means for the non-categorical covariates
are stored in lists. The length of these lists is related to the number of categorical
and non-categorical covariates.

## Figure 1
pride.plot1$frequency ## frequencies scaled to one for
[[1]] ## categorical covariates
, , index = 1 ## Stratum 1

treat
0 1

1 0.47302905 0.51492537
2 0.32157676 0.38059701
3 0.11825726 0.05223881
4 0.08713693 0.05223881
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Figure 3: The distribution of both categorical covariates ’tgr’ (left) and ’age’
(right) in the matched data set ’stu1’ are illustrated using different plot types

... ## ...

, , index = 5 ## Stratum 5

treat
0 1

1 0.11824324 0.13750000
2 0.25337838 0.20000000
3 0.14527027 0.16562500
4 0.48310811 0.49687500

pride.plot1$mean ## means only for non-categorical
[[1]] ## covariates

1 2 3 4 5
0 2.174609 1.482517 0.9733666 0.6686585 0.4156446
1 2.185500 1.563706 1.0035175 0.5804821 0.3117728

In case of plot.type=’2’, frequencies are stored in lists w.r.t. the lower and
upper value of the treatment variable, respectively, which are indicated by x.
and y. at the beginning of the value name.

## Figure 2
pride.plot2$x.s.noncat ## left side in graphics
[[1]]
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[[1]]$`1` ## original data
[1] 383 554 405 310 225 170

[[1]]$`2` ## matched data
[1] 315 321 178 101 78 38

pride.plot2$y.s.noncat ## right side in graphics
[[1]]
[[1]]$`1` ## original data
[1] 393 261 135 123 67 52

[[1]]$`2` ## matched data
[1] 393 261 135 123 67 52

Furthermore, information about treatment ($treatment), the individual stra-
tum indices ($stratum.index) or matching indices ($match.index) and the
selected covariates ($name.sel, $sel) are also saved in the output list.

4.2 ps.balance - statistical tests and standardized differ-
ences

ps.balance() permits the application of statistical tests or the calculation of
standardized differences to access whether covariate distributions between treat-
ment groups are balanced. The method of standardized differences is preferred
in the literature since they do not depend on the sample size [38]-[40].

Similar to the functions described above, the usage of ps.balance() depends
on the class of the input object. If either ps.makestrata() or ps.match() are
previously used, the arguments treat, stratum.index or match.index are not
needed, contrary to the case if the input object is a data frame.

To apply classical statistical tests on data, i.e., t-test for non-categorical co-
variates and χ2- test for categorical covariates (internal use of t.test() and
chisq.test()), the argument method must be set to ’classical’ (default). The
argument cat.levels specifies whether a covariate is categorical or not (see
dist.plot()). The tests are employed to the data both before and after the
balancing procedure (stratification or matching).

## PRIDE
pride.balance <- ps.balance(object = pride.strata5,

sel = c(2:8),
method = "classical",
alpha = 5)

If the argmuent method is set to ’”stand.diff”’, standardized differences are cal-



4 THE BALANCE CHECK FOR COVARIATE DISTRIBUTIONS 16

culated for each selected covariate before and after the balancing procedure.

## STU1
stu1.balance <- ps.balance(object = stu1.match2,

sel = c("tgr","age"),
method = "stand.diff",
alpha = 20)

The value ’”bal.test”’ of the output object (of the same class as the input ob-
ject) contains comprehensive information about the balance between treatment
groups for each selected covariate. Here, the values ’0’ and ’1’ describe whether
the covariate distribution is ’imbalanced’ and ’balanced’, respectively. In case of
stratified data, the covariate distribution is considered as balanced after stratifi-
cation, if each stratum-specific distribution is balanced. If there is an imbalance
in at least one stratum, the covariate distribution is considered as imbalanced
after stratification.

## STU1
stu1.balance$bal.test$balance.table

tgr age
table.before 0 0 ## 'tgr' are imbalanced before, but balanced
table.after 1 0 ## after matching; 'age' remains imbalanced

stu1.balance$bal.test$balance.table.summary
before: no balance (0) before: balance (1)

after: no balance (0) 1 0
after: balance (1) 1 0

stu1.balance$bal.test$covariates.NA
character(0)

stu1.balance$bal.test$covariates.bal.before
character(0)

stu1.balance$bal.test$covariates.bal.after
[1] "tgr"

## PRIDE
pride.balance$bal.test$balance.table

SEX ETHNO FRUEHG RSVINF HERZ REGION AGE
table.before 0 1 1 0 1 0 0
table.after 1 0 1 NA 1 0 0
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pride.balance$bal.test$balance.table.summary
before: no balance (0) before: balance (1)

after: no balance (0) 2 1
after: balance (1) 1 2

pride.balance$bal.test$covariates.NA
[1] "RSVINF"

pride.balance$bal.test$covariates.bal.before
[1] "ETHNO" "FRUEHG" "HERZ"

pride.balance$bal.test$covariates.bal.after
[1] "SEX" "FRUEHG" "HERZ"

Additionally, the names of covariates for which either the statistical test could
not be applied or standardized differences could not be calculated are saved
($covariates.NA). The names of balanced covariates before and after the bal-
ancing procedure are also stored in the output list ($covariates.bal.before
and $covariates.bal.after).

Depending on the selected method, information about test results or standard-
ized differences is available. If statistical tests are applied, resultant p-values for
each covariate are given as a matrix ($p.value). Here, there is a column for
each covariate and p-values from the tests in the original data can be found in
the first row and those from the tests within the stratified or the matched data
are placed in rows 2, ..., S.

pride.balance$bal.test$p.value ## p-values of tests
SEX ETHNO FRUEHG RSVINF HERZ REGION AGE

[1,] 0.010 0.907 0.413 0.000 0.518 0.000 0.000 ## original data
[2,] 0.296 0.632 0.223 0.647 0.766 0.058 0.830 ## stratum 1
[3,] 0.160 0.003 0.980 0.422 0.642 0.133 0.084 ##
[4,] 0.798 0.169 0.678 0.757 0.484 0.038 0.429 ## ...
[5,] 0.124 0.212 0.724 NA 0.843 0.542 0.002 ##
[6,] 0.960 0.882 0.404 NA 0.523 0.415 0.000 ## stratum 5

pride.balance$bal.test$method ## applied tests
SEX ETHNO FRUEHG RSVINF HERZ REGION AGE

"cat" "cat" "cat" "cat" "cat" "cat" "non-cat"

pride.balance$bal.test$alpha
[1] 5 ## significance level

If standardized differences are calculated, the standardized differences (per cent),
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the means and the standard deviations (SD) in the treatment groups for each
covariate are given in the same manner as in value $p.value.

stu1.balance$bal.test$Means.treat.0
tgr age ## means w.r.t. treatment '0'

[1,] 0.8203593 0.6646707 ## ... before matching
[2,] 0.8203593 0.6646707 ## ... after matching

stu1.balance$bal.test$Means.treat.1
tgr age ## means w.r.t. treatment '1'

[1,] 0.7286013 0.3862213
[2,] 0.8323353 0.5538922

stu1.balance$bal.test$SDs.treat.0
tgr age ## SDs w.r.t. treatment '0'

[1,] 0.3838879 0.4721055
[2,] 0.3838879 0.4721055

stu1.balance$bal.test$SDs.treat.1
tgr age ## SDs w.r.t. treatment '1'

[1,] 0.4446813 0.4868823
[2,] 0.3735682 0.4970871

stu1.balance$bal.test$Standardized.differences
tgr age ## standard differences

[1,] 22.089171 58.06462
[2,] 3.161882 22.85235

stu1.balance$bal.test$method
tgr age

"bin" "bin" ## type of covariate

stu1.balance$bal.test$alpha
[1] 20 ## cutpoint for the decision

## about balance

In value $method, the type of each covariates is stored. The significance level
is also available ($alpha). It has to be interpreted as cutpoint at which the
decision about the balance of a covariate distribution is made if standardized
differences are calculated.

The check for balance of covariate distributions entails the knowledge about
the correctness of the propensity score model. If the propensity score model is
correctly fitted, at least covariates included in propensity score model should be
sufficiently balanced after the stratification or matching. Otherwise re-modeling
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of the propensity score model should be considered.

5 Propensity score based treatment effects

The estimation of the propensity score based treatment effect differs in the
application of the propensity score method. Therefore, the following section is
separated by the propensity score methods which can be applied.

In general, the usage of ps.estimate() depends on the class of the input object.
If ps.makestrata() or ps.match() are previously used, the arguments treat,
stratum.index or match.index are not needed, contrary to the case if the input
object is a data frame.

5.1 Estimator based on stratification by the propensity
score

If stratification is applied in data with continuous response, the marginal treat-
ment effect based on the propensity score is estimated as a weighted sum of
differences of the mean responses in treated and untreated observations over
the propensity score strata. To summarize, two different kinds of weights ws

are possible. Firstly, the weights are equal to the proportion of observations in
each stratum (weights=’rr’) or, secondly, the weights are related to the inverse
variance of the stratum-specific treatment effect (weights=’opt’).

stu1.estimate <-
ps.estimate(object = stu1.strata4,

resp = "pst", ## continuous response
weights = "opt",
regr = c("tgr", "age") ## regression model

In case of stratified data with binary response, both the stratified Mantel-
Haenszel estimator and the estimator based on response rates [6] are used to
estimate a treatment effect as an odds ratio. Both methods estimate different
parameters and therefore they differ in their interpretation of the estimated odds
ratio [8]. Propensity score methods are used to estimate marginal treatment ef-
fects, but only the response rates estimator fulfills the criteria for an estimator
of the marginal odds ratio. It is defined as an odds ratio of marginal response
probabilities, contrary to the stratified Mantel-Haenszel estimator which is a
weighted sum of stratum-specific odds ratios [6, 8]. A marginal odds ratio for
response describes the change in odds of response, if everybody versus nobody
were treated. It is different to the conditional odds ratio, e.g., estimated by lo-
gistic regression (with the assumption of constant individual odds ratios). The
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popular Mantel-Haenszel estimator stratified by the propensity score can fail to
estimate both the indivdiual, conditional and the marginal odds ratio [8].

pride.estimate <-
ps.estimate(object = pride.strata5,

resp = "SEVERE", ## binary response
treat = "PCR_RSV",
family = "binomial",
adj = c("AGE", "EXT", "KRANKSUM"),
regr = SEVERE ~ PCR_RSV + SEX + ETHNO + FRUEHG +

HERZ + ELTATOP + REGION + AGE +
TOBACCO + VOLLSTIL +EXT + EINZ +
KRANKSUM,

weights = "rr")

In addition to the estimation of the unadjusted propensity score based treatment
effect, it is possible to adjust for residual imbalances in strata using argument
adj. Stratum-specific treatment effects are then estimated using generalized
linear models which are the same in each stratum. Furthermore, traditional
regression models can be fitted using argument regr. There are two options
to specify both arguments adj and regr. First, they can be given as formulas,
typically as ’Y∼Z+X1+...+XK ’. Here, response Y and treatment Z must be
the same as arguments resp and treat if given. Another option is to specifiy
only a vector with names or integers related to the covariates in the data for
which the treatment effect on response should be adjusted for in the strata.

The output object contains information about all estimates which are listed
separated by the estimation procedure. Furthermore, the values depend on the
type of response (continuous or binary). Regression based estimates are included
in value $lr.estimation. Here, both the estimated conditional and marginal
treatment effects and their standard errors are given. If the response is binary,
the standard errors are given on the log scale. Information about the regression
model is also available. In case of continuous response, the continuous and the
marginal treatment effects are identical.

## STU1
stu1.estimate$lr.estimation ## regression based treatment effect
$effect
[1] 0.8979454 ## conditional treatment effect

$se
[1] 1.299290 ## standard error of conditional effect

$regr.formula
pst ~ therapie + tgr + age ## regression model used
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The value $ps.estimation includes the crude treatment effect ($crude) and the
estimated propensity score based treatment effects, both unadjusted ($unadj)
and adjusted ($adj) if desired. Additionally, the estimated stratum-specific
treatment effects, estimated standard errors (on the log scale for binary re-
sponse) and the used weights per stratum are given. In case of binary response,
both the estimated stratum-specific odds ratios needed for the stratified Mantel-
Haenszel estimator and the estimated stratum-specific response probabilities
used by the response rates estimator are also stored.

## PRIDE
pride.estimate$ps.estimation ## propensity score based estimates
$crude
$crude$effect ## crude treatment effect via 'Y~Z'
[1] 1.676623

$crude$se ## standard error for the crude
[1] 0.07961634 ## treatment effect

$unadj
$unadj$effect.mh ## stratified Mantel-Haenszel estimator
[1] 1.418535

$unadj$odds.str ## stratum-specific odds ratios
1 2 3 4 5

1.164420 1.147405 1.164530 1.671525 2.166276

$unadj$se.mh ## standard error for the
[1] 0.08234186 ## Mantel-Haenszel estimator

$unadj$effect ## response rates based estimator
[1] 1.361594

$unadj$se ## standard error on log scale for the
[1] 0.08051982 ## response rates based estimator

$unadj$p1 ## estimated marginal response
[1] 0.6303096 ## probabilities for treatment '1'

$unadj$p0 ## estimated marginal response
[1] 0.5559866 ## probabilities for treatment '0'

$unadj$p1.str ## stratum-specific response prob's for treatment '1'
1 2 3 4 5
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0.4776119 0.5686275 0.5828877 0.7130802 0.8093750

$unadj$p0.str ## stratum-specific response prob's for treatment '0'
1 2 3 4 5

0.4398340 0.5346320 0.5454545 0.5978836 0.6621622

$adj
$adj$model ## adjustment within strata
SEVERE ~ PCR_RSV + AGE + EXT + KRANKSUM

$adj$effect.str ## adjusted stratum-specific effects
[1] 1.181630 1.205805 1.111415 1.534873 2.094389

$adj$effect ## adjusted overall propensity score
[1] 1.425658 ## based treatment effect

$adj$se ## standard error for the adjusted
[1] 0.1893357 ## propensity score based estimator

$weights
[1] "rr"

$weights.str ## weights per stratum
[1] 0.2001300 0.1998051 0.2001300 0.1998051 0.2001300

Further values in the output object contain information about the response
($name.resp, $resp), the treatment ($name.treat, $treat) and the stratum
indices ($name.stratum.index, $stratum.index). The output object inherits
all values from the input object as well.

5.2 Estimator based on matching by the propensity score

If matching is applied, the dependency structure of the matched sample can
be accounted for in the data analysis [41]-[43]. Generalized linear mixed mod-
els are appropriate and implemented in lmer (package lme4). It is used in
ps.estimate() for the estimation of treatment effects in data matched by the
propensity score. Therefore, random intercepts for each matching set are mod-
eled.

The data analysis of a matched sample can be done in the same way as for
stratified data. The values of the output object in case of matched data differ
slightly from the those based on the analysis of stratified data. There are nat-
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urally no stratum-specific effect estimates and corresponding weights available,
but only an estimated overall treatment effect and its estimated standard error.
If the response is binary, the standard error are given on the log scale.

## STU1, matched sample
stu1.estimate.match <-

ps.estimate(object = stu1.match2,
resp = "pst")

stu1.estimate.match$ps.estimation ## crude effect, identical to that
$crude ## of analysis of stratified data
$crude$effect
[1] 1.589436

$crude$se
[1] 1.260993

$unadj
$unadj$effect
[1] 0.8732535

$unadj$se
[1] 1.317626

$adj
[1] "No adjustment"

$weights
NULL

$weights.str
NULL

## PRIDE, matched sample
pride.estimate.match <-

ps.estimate(object = pride.match1,
resp = "SEVERE",
family = "binomial")

pride.estimate.match$ps.estimation$unadj
$unadj$effect



REFERENCES 24

[1] 1.378804

$unadj$se
[1] 0.09157813

As above, information about the response ($name.resp, $resp), the treat-
ment ($name.treat, $treat)and the matching indices ($name.match.index,
$match.index) are stored in the output object. The output object also inherits
all values from the input object.
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