
The optimsimplex Package

Sébastien Bihorel

May 11, 2010

optimsimplex is a R port of a module originally developped for Scilab version 5.2.1 by Michael
Baudin (INRIA - DIGITEO). Information about this software can be found at www.scilab.org.
The following documentation as well as the content of the functions .Rd files are adaptations of the
documentation provided with the original Scilab optimsimplex module.

1 Overview

1.1 Description

The goal of this package is to provide a building block for optimization algorithms based on a
simplex. The optimsimplex package may be used in the following optimization methods:

• the simplex method Spendley et al.,

• the method of Nelder and Mead,

• the Box’s algorithm for constrained optimization,

• the multi-dimensional search by Torczon,

• etc ...

This set of commands allows to manage a simplex made of k ≥ n + 1 points in a n-dimensional
space. This component is the building block for a class of direct search optimization methods such
as the Nelder-Mead algorithm or Torczon’s Multi-Dimensionnal Search.

A simplex is designed as a collection of k ≥ n + 1 vertices. Each vertex is made of a point and a
function value at that point.

The simplex can be created with various shapes. It can be configured and quieried at will. The
simplex can also be reflected or shrinked. The simplex gradient can be computed with a order 1
forward formula and with a order 2 centered formula.

The optimsimplex.new function allows to create a simplex. If vertices coordinates are given,
there are registered in the simplex. If a function is provided, it is evaluated at each vertex. Sev-
eral functions allow to create a simplex with special shapes and methods, including axes-by-axes
(optimsimplex.axes), regular (optimsimplex.spendley), randomized bounds simplex with arbi-
trary nbve vertices (optimsimplex.randbounds) and an heuristical small variation around a given
point (optimsimplex.pfeffer).

In the functions provided in this package, simplices and vertices are, depending on the functions
either input or output arguments. The following general principle have been used to manage the
storing of the coordinates of the points.

1

www.scilab.org

• The vertices are stored row by row, while the coordinates are stored column by column. This
implies the following rules.

• The coordinates of a vertex are stored in a row vector, i.e. a 1 x n matrix where n is the
dimension of the space.

• The function values are stored in a column vector, i.e. a nbve x 1 matrix where nbve is the
number of vertices.

1.2 Computation of function value at the given vertices

Most functions in the optimsimplex package accept a fun argument, which corresponds to the
function to be evaluated at the given vertices. The function is expected to have the following input
and output arguments:

myfunction <- function(x, this){
...
return(list(f=f,this=this))

}

where x is a row vector, f is the function value, and this an optional user-defined data passed to
the function. If data is provided, it is passed to the callback function both as an input and output
argument. data may be used if the function uses some additionnal parameters. It is returned as an
output parameter because the function may modify the data while computing the function value.
This feature may be used, for example, to count the number of times that the function has been
called.

2 Examples

2.1 Creating a simplex given vertex coordinates

In the following example, one creates a simplex with known vertices coordinates and queries the new
object. The function values at the vertices are unset.

> coords <- matrix(c(0, 1, 0, 0, 0, 1), ncol = 2)

> tmp <- optimsimplex.new(coords = coords)

> s1 <- tmp$newobj

> s1

$verbose
[1] 0

$x
[,1] [,2]

[1,] 0 0
[2,] 1 0
[3,] 0 1

$n
[1] 2

2

$fv
[,1]

$nbve
[1] 3

attr(,"type")
[1] "T_SIMPLEX"

> optimsimplex.getallx(s1)

[,1] [,2]
[1,] 0 0
[2,] 1 0
[3,] 0 1

> optimsimplex.getn(s1)

[1] 2

> optimsimplex.getnbve(s1)

[1] 3

2.2 Creating a simplex with randomized bounds

In the following example, one creates a simplex with in the 2D domain c(-5, 5)ˆ2, with c(-1.2, 1.0)
as the first vertex. One uses the randomized bounds method to generate a simplex with 5 vertices.
The function takes an additionnal argument this, which counts the number of times the function
is called. After the creation of the simplex, the value of this$nb is 5, which is the expected result
because there is one function call by vertex.

> rosenbrock <- function(x) {

+ y <- 100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2

+ }

> mycostf <- function(x, this) {

+ y <- rosenbrock(x)

+ this$nb <- this$nb + 1

+ return(list(f = y, this = this))

+ }

> mystuff <- list(nb = 0)

> tmp <- optimsimplex.randbounds(x0 = c(-1.2, 1), fun = mycostf,

+ boundsmin = c(-5, -5), boundsmax = c(5, 5), nbve = 5,

+ data = mystuff)

> tmp$newobj

$verbose
[1] 0

3

$x
[,1] [,2]

[1,] -1.2000000 1.000000
[2,] 0.8397690 2.357197
[3,] -3.7707211 3.684707
[4,] 0.1965941 2.775247
[5,] 0.3239338 -2.045633

$n
[1] 2

$fv
[,1]

[1,] 24.2000
[2,] 272.9310
[3,] 11118.4968
[4,] 749.5424
[5,] 462.9504

$nbve
[1] 5

attr(,"type")
[1] "T_SIMPLEX"

> tmp$data

$nb
[1] 5

> cat(sprintf("Function evaluations: %d\n", tmp$data$nb))

Function evaluations: 5

3 Initial simplex strategies

In this section, we analyse the various initial simplex which are provided in this component.
It is known that direct search methods based on simplex designs are very sensitive to the initial

simplex. This is why the current component provides various ways to create such an initial simplex.
The first historical simplex-based algorithm is the one presented in ”Sequential Application of

Simplex Designs in Optimisation and Evolutionary Operation” by W. Spendley, G. R. Hext and F.
R. Himsworth. The ”spendley” simplex creates the regular simplex which is presented in the paper
[9].

The ”randbounds” simplex is due to M.J. Box in ”A New Method of Constrained Optimization
and a Comparison With Other Methods” [7].

Pfeffer’s method is an heuristic which is presented in ”Global Optimization Of Lennard-Jones
Atomic Clusters” by E. Fan [4]. It is due to L. Pfeffer at Stanford and it is used in the fminsearch
function from the neldermead package.

4

4 References

The functions distributed in optimsimplex are also based upon the work from Nelder and Mead [5],
Kelley [3], Han and Neumann [6], Torczon [8], Burmen et al. [1], and Price and al. [2].

[1] A. Burmen and J. Puhan and T. Tuma. Grid Restrained Nelder-Mead Algorithm. Computational
Optimization and Applications, 34(3):359–375, July 2006.

[2] C.J. Price and I.D. Coope and D. Byatt. A Convergent Variant of The Nelder-Mead algorithm.
Journal of Optimization Theory and Applications, 113(1):5–19, April 2002.

[3] C.T. Kelley. Iterative Methods for Optimization. SIAM Frontiers in Applied Mathematics,
Philadelphia, PA, 1999.

[4] E. Fan. Global Optimization Of Lennard-Jones Atomic Clusters. Master’s thesis, McMaster
University, February 2002.

[5] J.A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer Journal,
7(4):308–313, 1965.

[6] Lixing Han and Michael Neumann. Effect of Dimensionality on the Nelder-Mead Simplex Method.
Optimization methods and software, 21(1):1–16, 2006.

[7] M.J. Box. A New Method of Constrained Optimization and a Comparison With Other Methods.
The Computer Journal, 1(8):42–52, 1965.

[8] V.J. Torczon. Multi-Directional Search: A Direct Search Algorithm for Parallel Machines. PhD
thesis, Rice University, Houston, TX, 1989.

[9] W. Spendley and G.R. Hext and F.R. Himsworth. Sequential Application of Simplex Designs in
Optimisation and Evolutionary Operation. Technometrics, 4:441–461, 1962.

5 Network of optimsimplex functions

The network of functions provided in optimsimplex is illustrated in the network map given in the
neldermead package.

6 Help on optimsimplex functions

5

optimsimplex-package R port of the Scilab optimsimplex module

Description

The goal of this package is to provide a building block for optimization algorithms based on a
simplex. The optimsimplex package may be used in the following optimization methods:

• the simplex method of Spendley et al.,

• the method of Nelder and Mead,

• the Box’s algorithm for constrained optimization,

• the multi-dimensional search by Torczon,

• etc ...

Features The following is a list of features currently provided:

• Manage various simplex initializations

– initial simplex given by user,
– initial simplex computed with a length and along the coordinate axes,
– initial regular simplex computed with Spendley et al. formula,
– initial simplex computed by a small perturbation around the initial guess point,
– initial simplex computed from randomized bounds.

• sort the vertices by increasing function values,

• compute the standard deviation of the function values in the simplex,

• compute the simplex gradient with forward or centered differences,

• shrink the simplex toward the best vertex,

• etc...

Details

Package: optimsimplex
Type: Package
Version: 1.0-2
Date: 2010-05-11
License: CeCILL-2
LazyLoad: yes

See vignette(’optimsimplex’,package=’optimsimplex’) for more information.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

6

Function evaluations Computation of Function Value(s)

Description

These functions compute the value of the function at the vertices points stored in the current
simplex object and stored them back into the simplex object. optimsimplex.computefv deter-
mines how many vertices are stored in the simplex object and delegates the calculation of the
function values to optimsimplex.compsomefv.

Usage

optimsimplex.computefv(this = NULL, fun = NULL, data = NULL)
optimsimplex.compsomefv(this = NULL, fun = NULL, indices = NULL, data = NULL)

Arguments

this The current simplex object, containing the nbve x n matrix of vertice coor-
dinates (i.e. x element), where n is the dimension of the space and nbve the
number of vertices.

fun The function to compute at vertices. The function is expected to have the
following input and output arguments:

myfunction <- function(x, this){
...
return(list(f=f,this=this))
}

where x is a row vector and this a user-defined data, i.e. the data argument.

data A user-defined data passed to the function. If data is provided, it is passed
to the callback function both as an input and output argument. data may be
used if the function uses some additionnal parameters. It is returned as an
output parameter because the function may modify the data while computing
the function value. This feature may be used, for example, to count the number
of times that the function has been called.

indices A vector of increasing integers from 1 to nbve.

Value

optimsimplex.computefv and optimsimplex.compsomefv return a list with the following ele-
ments:

this The updated simplex object.

data The updated user-defined data.

7

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex.new

optimsimplex.destroy Erase Simplex Object

Description

This function erases the coordinates of the vertices (x) and the function values (fv) in a simplex
object

Usage

optimsimplex.destroy(this = NULL)

Arguments

this A simplex object.

Value

Return an updated simplex object for which the content of the x and fv elements were set to
NULL.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex.new

8

Get functions Optimsimplex Get Function Class

Description

The functions extract the content to various elements of a simplex object:

optimsimplex.getall Get all the coordinates and the function values of all the vertices.

optimsimplex.getallfv Get all the function values of all the vertices.

optimsimplex.getallx Get all the coordinates of all the vertices.

optimsimplex.getfv Get the function value at a given index.

optimsimplex.getn Get the dimension of the space of the simplex.

optimsimplex.getnbve Get the number of vertices of the simplex.

optimsimplex.getve Get the vertex at a given index in the current simplex.

optimsimplex.getx Get the coordinates of the vertex at a given index in the current simplex.

Usage

optimsimplex.getall(this = NULL)
optimsimplex.getallfv(this = NULL)
optimsimplex.getallx(this = NULL)
optimsimplex.getfv(this = NULL, ive = NULL)
optimsimplex.getn(this = NULL)
optimsimplex.getnbve(this = NULL)
optimsimplex.getve(this = NULL, ive = NULL)
optimsimplex.getx(this = NULL, ive = NULL)

Arguments

this A simplex object.

ive Vertex index.

Value

optimsimplex.getall Return a nbve x n+1 matrix, where n is the dimension of the space,
nbve is the number of vertices and with the following content:

• simplex[k,1] is the function value of the vertex k, with k = 1 to nbve,
• simplex[k,2:(n+1)] is the coordinates of the vertex k, with k = 1 to nbve.

optimsimplex.getallfv Return a row vector of function values, which kˆth element is the
function value for the vertex k, with k = 1 to nbve.

optimsimplex.getallx Return a nbve x n matrix of vertice coordinates; any given vertex is
expected to be stored at row k, with k = 1 to nbve.

optimsimplex.getfv Return a numeric scalar.

optimsimplex.getn Return a numeric scalar.

9

optimsimplex.getnbve Return a numeric scalar.

optimsimplex.getve Return a list with a ’type’ attribute set to ’T VERTEX’ and with the
following elements:

n The dimension of the space of the simplex.
x The coordinates of the vertex at index ive.
fv The value of the function at index ive.

optimsimplex.getx Return a row vector, representing the coordinates of the vertex at index
ive.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex.new

Simplex gradient Simplex Gradient

Description

optimsimplex.gradientfv determines the simplex gradient of the function which is computed
by the secondary functions optimsimplex.gradcenter and optimsimplex.gradforward.

Usage

optimsimplex.gradientfv(this = NULL, fun = NULL, method = "forward",
data = NULL)

optimsimplex.gradcenter(this = NULL, fun = NULL, data = NULL)
optimsimplex.gradforward(this = NULL)

Arguments

this An simplex object

fun The function to compute at vertices. The function is expected to have the
following input and output arguments:

myfunction <- function(x, this){
...
return(list(f=f,this=this))
}

where x is a row vector and this a user-defined data, i.e. the data argument.
method The method used to compute the simplex gradient. Two methods are available:

10

’forward’ and ’centered’. The ’forward’ method uses the current simplex to
compute the gradient (using optimsimplex.dirmat and optimsimplex.deltafv).
The ’centered’ method creates an intermediate simplex and computes the av-
erage.

data A user-defined data passed to the function. If data is provided, it is passed
to the callback function both as an input and output argument. data may be
used if the function uses some additionnal parameters. It is returned as an
output parameter because the function may modify the data while computing
the function value. This feature may be used, for example, to count the number
of times that the function has been called.

Value

optimsimplex.gradientfv returns a list with the following elements:

g A column vector of function gradient (with length this$n).

data The updated user-defined data.

optimsimplex.gradcenter returns a list with the following elements:

g A column vector of function gradient (with length this$n).

data The updated user-defined data.

optimsimplex.gradforward returns a column vector of function gradient (with length this$n).

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex.new, optimsimplex.dirmat, optimsimplex.deltafv

optimsimplex.log Optimsimplex Logging

Description

This function prints a message to screen (or log file).

Usage

optimsimplex.log(this = NULL, msg = NULL)

Arguments

this An simplex object.

msg A message to print.

11

Value

Do not return any value but print msg to screen if the verbose in this is set to 1.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex.new

optimsimplex.new Creates a Simplex Object

Description

optimsimplex.new creates a simplex list object which contains, among other elements, a matrix
of vertices and a vector of function values calculated at those vertices. The object is actually
created by a secondary function based upon the value of the method argument:

NULL -> optimsimplex.coords

’axes’ -> optimsimplex.axes

’pfeffer’ -> optimsimplex.pfeffer

’randbounds’ -> optimsimplex.randbounds

’spendley’ -> optimsimplex.spendley

’oriented’ -> optimsimplex.oriented

Usage

optimsimplex.new(coords = NULL, fun = NULL, data = NULL, method = NULL,
x0 = NULL, len = NULL, deltausual = NULL, deltazero = NULL,
boundsmax = NULL, boundsmin = NULL, nbve = NULL,
simplex0 = NULL)

optimsimplex.coords(coords = NULL, fun = NULL, data = NULL)
optimsimplex.axes(x0 = NULL, fun = NULL, len = NULL, data = NULL)
optimsimplex.pfeffer(x0 = NULL, fun = NULL, deltausual = NULL,

deltazero = NULL, data = NULL)
optimsimplex.randbounds(x0 = NULL, fun = NULL, boundsmin = NULL,

boundsmax = NULL, nbve = NULL, data = NULL)
optimsimplex.spendley(x0 = NULL, fun = NULL, len = NULL, data = NULL)
optimsimplex.oriented(simplex0 = NULL, fun = NULL, data = NULL)

12

Arguments

coords The matrix of point estimate coordinates in the simplex. The coords matrix
is expected to be a nbve x n matrix, where n is the dimension of the space and
nbve is the number of vertices in the simplex, with nbve>= n+1. Only used
if method is set to NULL.

fun The function to compute at vertices. The function is expected to have the
following input and output arguments:

myfunction <- function(x, this){
...
return(list(f=f,this=this))
}

where x is a row vector and this a user-defined data, i.e. the data argument.

data A user-defined data passed to the function. If data is provided, it is passed
to the callback function both as an input and output argument. data may be
used if the function uses some additionnal parameters. It is returned as an
output parameter because the function may modify the data while computing
the function value. This feature may be used, for example, to count the number
of times that the function has been called.

method The method used to create the new optimsimplex object, either ’axes’, ’pfeffer’,
’randbounds’, ’spendley’ or ’oriented’.

x0 The initial point estimates, as a row vector of length n.

len The dimension of the simplex. If length is a value, that unique length is used
in all directions. If length is a vector with n values, each length is used with
the corresponding direction. Only used if method is set to ’axes’ or ’spendley’.

deltausual The absolute delta for non-zero values. Only used if method is set to ’pfeffer’.

deltazero The absolute delta for zero values. Only used if method is set to ’pfeffer’.

boundsmin A vector of minimum bounds. Only used if method is set to ’randbounds’.

boundsmax A vector of maximum bounds. Only used if method is set to ’randbounds’.

nbve The total number of vertices in the simplex. Only used if method is set to
’randbounds’.

simplex0 The initial simplex. Only used if method is set to ’oriented’.

Details

All arguments of optimsimplex.new are optional. If no input is provided, the new simplex
object is empty.

If method is NULL, the new simplex object is created by optimsimplex.coords. If coords is
NULL, the simplex object is empty; otherwise, coords is used as the initial vertice coordinates
in the new simplex.

If method is set to ’axes’, the new simplex object is created by optimsimplex.axes. The initial
vertice coordinates are stored in a nbve x n matrix built as follows:

[,1] | x0[1] x0[n] | | len[1] ... 0 |

13

[,.] | | + | |
[,nbve] | x0[1] ... x0[n] | | 0 ... len[n] |

If method is set to ’pfeffer’, the new simplex object is created by optimsimplex.pfeffer using
the Pfeffer’s method, i.e. a relative delta for non-zero values and an absolute delta for zero
values.

If method is set to ’randbounds’, the new simplex object is created by optimsimplex.randbounds.
The initial vertice coordinates are stored in a nbve x n matrix consisting of the initial point es-
timates (on the first row) and a (nbve-1) x n matrix of randomly sampled numbers between the
specified the bounds. The number of vertices nbve in the simplex is arbitrary.

If method is set to ’spendley’, the new simplex object is created by optimsimplex.spendley
using the Spendely’s method, i.e. a regular simplex made of nbve = n+1 vertices.

If method is set to ’oriented’, the new simplex object is created by optimsimplex.oriented in
sorted order. The new simplex has the same sigma- length of the base simplex, but is ”oriented”
depending on the function value. The created simplex may be used, as Kelley suggests, for a
restart of Nelder-Mead algorithm.

Value

Return a list with the following elements:

newobj A list with a ’type’ attribute set to ’T SIMPLEX’ and with the following elements:

verbose The verbose option, controlling the amount of messages. Set to 0.
x The coordinates of the vertices, with size nbve x n.
n The dimension of the space.
fv The values of the function at given vertices. It is a column matrix of length nbve.
nbve The number of vertices.

data The updated data input argument.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

References

”A Simplex Method for Function Minimization”, Nelder, J. A. and Mead, R. The Computer
Journal, January, 1965, 308-313

”Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation”, W.
Spendley, G. R. Hext, F. R. Himsworth, Technometrics, Vol. 4, No. 4 (Nov., 1962), pp. 441-461,
Section 3.1

”A New Method of Constrained Optimization and a Comparison With Other Methods”, M. J.
Box, The Computer Journal 1965 8(1):42-52, 1965 by British Computer Society

”Detection and Remediation of Stagnation in the Nelder-Mead Algorithm Using a Sufficient
Decrease Condition”, SIAM J. on Optimization, Kelley C.T., 1999

14

”Multi-Directional Search: A Direct Search Algorithm for Parallel Machines”, by E. Boyd, Ken-
neth W. Kennedy, Richard A. Tapia, Virginia Joanne Torczon, Virginia Joanne Torczon, 1989,
Phd Thesis, Rice University

”Grid Restrained Nelder-Mead Algorithm”, Arpad Burmen, Janez Puhan, Tadej Tuma, Compu-
tational Optimization and Applications, Volume 34 , Issue 3 (July 2006), Pages: 359 - 375

”A convergent variant of the Nelder-Mead algorithm”, C. J. Price, I. D. Coope, D. Byatt, Journal
of Optimization Theory and Applications, Volume 113 , Issue 1 (April 2002), Pages: 5 - 19,

”Global Optimization Of Lennard-Jones Atomic Clusters”, Ellen Fan, Thesis, February 26, 2002,
McMaster University

Examples

myfun <- function(x,this){return(list(f=sum(x^2),this=this))}

mat <- matrix(c(0,1,0,0,0,1),ncol=2)

optimsimplex.new()

optimsimplex.new(coords=mat,x0=1:4,fun=myfun)

optimsimplex.new(method='axes',x0=1:4,fun=myfun)
optimsimplex.new(method='pfeffer',x0=1:6,fun=myfun)
opt <- optimsimplex.new(method='randbounds',x0=1:6,boundsmin=rep(0,6),

boundsmax=rep(10,6),fun=myfun)

opt

optimsimplex.new(method='spendley',x0=1:6,fun=myfun,len=10)
optimsimplex.new(method='oriented',simplex=opt$newobj,fun=myfun)

optimsimplex-package R port of the Scilab optimsimplex module

Description

The goal of this package is to provide a building block for optimization algorithms based on a
simplex. The optimsimplex package may be used in the following optimization methods:

• the simplex method of Spendley et al.,

• the method of Nelder and Mead,

• the Box’s algorithm for constrained optimization,

• the multi-dimensional search by Torczon,

• etc ...

Features The following is a list of features currently provided:

• Manage various simplex initializations

– initial simplex given by user,
– initial simplex computed with a length and along the coordinate axes,
– initial regular simplex computed with Spendley et al. formula,

15

– initial simplex computed by a small perturbation around the initial guess point,
– initial simplex computed from randomized bounds.

• sort the vertices by increasing function values,

• compute the standard deviation of the function values in the simplex,

• compute the simplex gradient with forward or centered differences,

• shrink the simplex toward the best vertex,

• etc...

Details

Package: optimsimplex
Type: Package
Version: 1.0-2
Date: 2010-05-11
License: CeCILL-2
LazyLoad: yes

See vignette(’optimsimplex’,package=’optimsimplex’) for more information.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

optimsimplex.print Simplex Formatting and Display

Description

optimsimplex.tostring formats the coordinates and function values in a character vector.

optimsimplex.print displays to screen the content of the current simplex with dimensions,
coordinates and function values. This function calls optimsimplex.tostring to format the
content of the simplex.

Usage

optimsimplex.print(this = NULL)
optimsimplex.tostring(this = NULL)

Arguments

this A simplex object.

16

Value

optimsimplex.tostring returns a vector of character string of length nbve, where nbve is the
number of vertices.

optimsimplex.print does not return any value but print to screen (or log file) the content of
the current simplex.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex.new

Examples

opt <- optimsimplex.new(method='axes',x0=1:5)$newobj
optimsimplex.tostring(opt)

optimsimplex.print(opt)

optimsimplex.reflect Simplex Reflection

Description

This function returns a new simplex by reflection of the current simplex with respect to the first
vertex in the simplex. This move is used in the centered simplex gradient.

Usage

optimsimplex.reflect(this = NULL, fun = NULL, data = NULL)

Arguments

this An simplex object.

fun The function to compute at vertices. The function is expected to have the
following input and output arguments:

myfunction <- function(x, this){
...
return(list(f=f,this=this))
}

where x is a row vector and this a user-defined data, i.e. the data argument.
data A user-defined data passed to the function. If data is provided, it is passed

to the callback function both as an input and output argument. data may be

17

used if the function uses some additionnal parameters. It is returned as an
output parameter because the function may modify the data while computing
the function value. This feature may be used, for example, to count the number
of times that the function has been called.

Value

Return a list with the following elements:

r The reflected simplex object.
data The updated user-defined data.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex.new

Set functions Optimsimplex Set Function Class

Description

The functions assign content to various elements of a simplex object:

optimsimplex.setall Set all the coordinates and the function values of all the vertices.
optimsimplex.setallfv Set all the function values of all the vertices.
optimsimplex.setallx Set all the coordinates of all the vertices.
optimsimplex.setfv Set the function value at a givenindex.
optimsimplex.setn Set the dimension of the space of the simplex.
optimsimplex.setnbve Set the number of vertices of the simplex.
optimsimplex.setve Set the coordinates of the vertex and the function values at a given index

in the current simplex.
optimsimplex.setx Set the coordinates of the vertex at a given index in the current simplex.

Usage

optimsimplex.setall(this = NULL, simplex = NULL)
optimsimplex.setallfv(this = NULL, fv = NULL)
optimsimplex.setallx(this = NULL, x = NULL)
optimsimplex.setfv(this = NULL, ive = NULL, fv = NULL)
optimsimplex.setn(this = NULL, n = NULL)
optimsimplex.setnbve(this = NULL, nbve = NULL)
optimsimplex.setve(this = NULL, ive = NULL, fv = NULL, x = NULL)
optimsimplex.setx(this = NULL, ive = NULL, x = NULL)

18

Arguments

this A simplex object.

simplex The simplex to set. It is expected to be a nbve x n+1 matrix where n is the
dimension of the space, nbve is the number of vertices and with the following
content:

• simplex[k,1] is the function value of the vertex k, with k = 1 to nbve,
• simplex[k,2:(n+1)] is the coordinates of the vertex k, with k = 1 to

nbve.

fv A row vector of function values; fv[k] is expected to be the function value for
the vertex k, with k = 1 to nbve. For optimsimplex.setfv, fv is expected to
be a numerical scalar.

x The nbve x n matrix of vertice coordinates; the vertex is expected to be
stored in x[k,1:n], with k = 1 to nbve. For optimsimplex.setve and
optimsimplex.setx, x is expected to be a row matrix.

ive Vertex index.

n The dimension of the space of the simplex.

nbve The number of vertices of the simplex.

Value

Return a updated simplex object this.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex.new

optimsimplex.shrink Simplex Shrink

Description

This function shrinks the simplex with given coefficient sigma and returns an updated simplex.
The shrink is performed with respect to the first point in the simplex.

Usage

optimsimplex.shrink(this = NULL, fun = NULL, sigma = 0.5, data = NULL)

19

Arguments

this An simplex object

fun The function to compute at vertices. The function is expected to have the
following input and output arguments:

20

myfunction <- function(x, this){
...
return(list(f=f,this=this))
}

where x is a row vector and this a user-defined data, i.e. the data.

sigma The shrinkage coefficient. The default value is 0.5.

data A user-defined data passed to the function. If data is provided, it is passed
to the callback function both as an input and output argument. data may be
used if the function uses some additionnal parameters. It is returned as an
output parameter because the function may modify the data while computing
the function value. This feature may be used, for example, to count the number
of times that the function has been called.

Value

Return a list with the following elements:

this The updated simplex object.

data The updated user-defined data.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimsimplex.new

optimsimplex.utils Optimsimplex Utility Functions

Description

These functions enable various calculations and checks on the current simplex:

optimsimplex.center Compute the center of the current simplex.

optimsimplex.check Check the consistency of the data in the current simplex.

optimsimplex.deltafv Compute the vector of function value differences with respect to the
function value at the first vertex (the lowest).

optimsimplex.deltafvmax Compute the difference of function value between the lowest and
the highest vertices. It is expected that the first vertex (this$x[1,]) is associated with
the smallest function value and that the last vertex (this$x[nbve,]) is associated with
the highest function value.

21

optimsimplex.dirmat Compute the matrix of simplex direction, i.e. the matrix of differences
of vertice coordinates with respect to the first vertex.

optimsimplex.fvmean Compute the mean of the function values in the current simplex.

optimsimplex.fvstdev Compute the standard deviation of the function values in the current
simplex.

optimsimplex.fvvariance Compute the variance of the function values in the current simplex.

optimsimplex.size Determines the size of the simplex.

optimsimplex.sort Sort the simplex by increasing order of function value, so the smallest
function is at the first vertex.

optimsimplex.xbar Compute the center of n vertices, by excluding the vertex with index iexcl.
The default of iexcl is the number of vertices: in that case, if the simplex is sorted in
increasing function value order, the worst vertex is excluded.

Usage

optimsimplex.center(this = NULL)
optimsimplex.check(this = NULL)
optimsimplex.deltafv(this = NULL)
optimsimplex.deltafvmax(this = NULL)
optimsimplex.dirmat(this = NULL)
optimsimplex.fvmean(this = NULL)
optimsimplex.fvstdev(this = NULL)
optimsimplex.fvvariance(this = NULL)
optimsimplex.size(this = NULL, method = NULL)
optimsimplex.sort(this = NULL)
optimsimplex.xbar(this = NULL, iexcl = NULL)

Arguments

this The current simplex.

method The method to use to compute the size of the simplex. The available methods
are the following:

’sigmaplus’ (this is the default) The sigmamplus size is the maximum 2-norm
length of the vector from each vertex to the first vertex. It requires one
loop over the vertices.

’sigmaminus’ The sigmaminus size is the minimum 2-norm length of the
vector from each vertex to the first vertex. It requires one loop over the
vertices.

’Nash’ The ’Nash’ size is the sum of the norm of the norm-1 length of the
vector from the given vertex to the first vertex. It requires one loop over
the vertices.

’diameter’ The diameter is the maximum norm-2 length of all the edges of
the simplex. It requires 2 nested loops over the vertices.

iexcl The index of the vertex to exclude in center computation.

22

Value

optimsimplex.center Return a vector of length nbve, where nbve is the number of vertices in
the current simplex.

optimsimplex.check Return an error message if the dimensions of the various elements of the
current simplex do not match.

optimsimplex.deltafv Return a column vector of length nbve-1.

optimsimplex.deltafvmax Return a numeric scalar.

optimsimplex.dirmat Return a n x n numeric matrix, where n is the dimension of the space
of the simplex.

optimsimplex.fvmean Return a numeric scalar.

optimsimplex.fvstdev Return a numeric scalar.

optimsimplex.fvvariance Return a numeric scalar.

optimsimplex.size Return a numeric scalar.

optimsimplex.sort Return an updated simplex object.

optimsimplex.xbar Return a row vector of length n.

Author(s)

Author of Scilab optimsimplex module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

References

”Compact Numerical Methods For Computers - Linear Algebra and Function Minimization”,
J.C. Nash, 1990, Chapter 14. Direct Search Methods

”Iterative Methods for Optimization”, C.T. Kelley, 1999, Chapter 6., section 6.2

See Also

optimsimplex.new

23

7 CeCILL FREE SOFTWARE LICENSE AGREEMENT

Notice

This Agreement is a Free Software license agreement that is the result
of discussions between its authors in order to ensure compliance with
the two main principles guiding its drafting:

* firstly, compliance with the principles governing the distribution
of Free Software: access to source code, broad rights granted to
users,

* secondly, the election of a governing law, French law, with which
it is conformant, both as regards the law of torts and
intellectual property law, and the protection that it offers to
both authors and holders of the economic rights over software.

The authors of the CeCILL (for Ce[a] C[nrs] I[nria] L[ogiciel] L[ibre])
license are:

Commissariat a l'Energie Atomique - CEA, a public scientific, technical
and industrial research establishment, having its principal place of
business at 25 rue Leblanc, immeuble Le Ponant D, 75015 Paris, France.

Centre National de la Recherche Scientifique - CNRS, a public scientific
and technological establishment, having its principal place of business
at 3 rue Michel-Ange, 75794 Paris cedex 16, France.

Institut National de Recherche en Informatique et en Automatique -
INRIA, a public scientific and technological establishment, having its
principal place of business at Domaine de Voluceau, Rocquencourt, BP
105, 78153 Le Chesnay cedex, France.

Preamble

The purpose of this Free Software license agreement is to grant users
the right to modify and redistribute the software governed by this
license within the framework of an open source distribution model.

The exercising of these rights is conditional upon certain obligations
for users so as to preserve this status for all subsequent redistributions.

In consideration of access to the source code and the rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors only have limited liability.

In this respect, the risks associated with loading, using, modifying
and/or developing or reproducing the software by the user are brought to

24

the user's attention, given its Free Software status, which may make it
complicated to use, with the result that its use is reserved for
developers and experienced professionals having in-depth computer
knowledge. Users are therefore encouraged to load and test the
suitability of the software as regards their requirements in conditions
enabling the security of their systems and/or data to be ensured and,
more generally, to use and operate it in the same conditions of
security. This Agreement may be freely reproduced and published,
provided it is not altered, and that no provisions are either added or
removed herefrom.

This Agreement may apply to any or all software for which the holder of
the economic rights decides to submit the use thereof to its provisions.

Article 1 - DEFINITIONS

For the purpose of this Agreement, when the following expressions
commence with a capital letter, they shall have the following meaning:

Agreement: means this license agreement, and its possible subsequent
versions and annexes.

Software: means the software in its Object Code and/or Source Code form
and, where applicable, its documentation, "as is" when the Licensee
accepts the Agreement.

Initial Software: means the Software in its Source Code and possibly its
Object Code form and, where applicable, its documentation, "as is" when
it is first distributed under the terms and conditions of the Agreement.

Modified Software: means the Software modified by at least one
Contribution.

Source Code: means all the Software's instructions and program lines to
which access is required so as to modify the Software.

Object Code: means the binary files originating from the compilation of
the Source Code.

Holder: means the holder(s) of the economic rights over the Initial
Software.

Licensee: means the Software user(s) having accepted the Agreement.

Contributor: means a Licensee having made at least one Contribution.

Licensor: means the Holder, or any other individual or legal entity, who

25

distributes the Software under the Agreement.

Contribution: means any or all modifications, corrections, translations,
adaptations and/or new functions integrated into the Software by any or
all Contributors, as well as any or all Internal Modules.

Module: means a set of sources files including their documentation that
enables supplementary functions or services in addition to those offered
by the Software.

External Module: means any or all Modules, not derived from the
Software, so that this Module and the Software run in separate address
spaces, with one calling the other when they are run.

Internal Module: means any or all Module, connected to the Software so
that they both execute in the same address space.

GNU GPL: means the GNU General Public License version 2 or any
subsequent version, as published by the Free Software Foundation Inc.

Parties: mean both the Licensee and the Licensor.

These expressions may be used both in singular and plural form.

Article 2 - PURPOSE

The purpose of the Agreement is the grant by the Licensor to the
Licensee of a non-exclusive, transferable and worldwide license for the
Software as set forth in Article 5 hereinafter for the whole term of the
protection granted by the rights over said Software.

Article 3 - ACCEPTANCE

3.1 The Licensee shall be deemed as having accepted the terms and
conditions of this Agreement upon the occurrence of the first of the
following events:

* (i) loading the Software by any or all means, notably, by
downloading from a remote server, or by loading from a physical
medium;

* (ii) the first time the Licensee exercises any of the rights
granted hereunder.

3.2 One copy of the Agreement, containing a notice relating to the
characteristics of the Software, to the limited warranty, and to the
fact that its use is restricted to experienced users has been provided

26

to the Licensee prior to its acceptance as set forth in Article 3.1
hereinabove, and the Licensee hereby acknowledges that it has read and
understood it.

Article 4 - EFFECTIVE DATE AND TERM

4.1 EFFECTIVE DATE

The Agreement shall become effective on the date when it is accepted by
the Licensee as set forth in Article 3.1.

4.2 TERM

The Agreement shall remain in force for the entire legal term of
protection of the economic rights over the Software.

Article 5 - SCOPE OF RIGHTS GRANTED

The Licensor hereby grants to the Licensee, who accepts, the following
rights over the Software for any or all use, and for the term of the
Agreement, on the basis of the terms and conditions set forth hereinafter.

Besides, if the Licensor owns or comes to own one or more patents
protecting all or part of the functions of the Software or of its
components, the Licensor undertakes not to enforce the rights granted by
these patents against successive Licensees using, exploiting or
modifying the Software. If these patents are transferred, the Licensor
undertakes to have the transferees subscribe to the obligations set
forth in this paragraph.

5.1 RIGHT OF USE

The Licensee is authorized to use the Software, without any limitation
as to its fields of application, with it being hereinafter specified
that this comprises:

1. permanent or temporary reproduction of all or part of the Software
by any or all means and in any or all form.

2. loading, displaying, running, or storing the Software on any or
all medium.

3. entitlement to observe, study or test its operation so as to

27

determine the ideas and principles behind any or all constituent
elements of said Software. This shall apply when the Licensee
carries out any or all loading, displaying, running, transmission
or storage operation as regards the Software, that it is entitled
to carry out hereunder.

5.2 ENTITLEMENT TO MAKE CONTRIBUTIONS

The right to make Contributions includes the right to translate, adapt,
arrange, or make any or all modifications to the Software, and the right
to reproduce the resulting software.

The Licensee is authorized to make any or all Contributions to the
Software provided that it includes an explicit notice that it is the
author of said Contribution and indicates the date of the creation thereof.

5.3 RIGHT OF DISTRIBUTION

In particular, the right of distribution includes the right to publish,
transmit and communicate the Software to the general public on any or
all medium, and by any or all means, and the right to market, either in
consideration of a fee, or free of charge, one or more copies of the
Software by any means.

The Licensee is further authorized to distribute copies of the modified
or unmodified Software to third parties according to the terms and
conditions set forth hereinafter.

5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION

The Licensee is authorized to distribute true copies of the Software in
Source Code or Object Code form, provided that said distribution
complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor's
warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the Object Code of the Software is
redistributed, the Licensee allows future Licensees unhindered access to
the full Source Code of the Software by indicating how to access it, it
being understood that the additional cost of acquiring the Source Code
shall not exceed the cost of transferring the data.

28

5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE

When the Licensee makes a Contribution to the Software, the terms and
conditions for the distribution of the resulting Modified Software
become subject to all the provisions of this Agreement.

The Licensee is authorized to distribute the Modified Software, in
source code or object code form, provided that said distribution
complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor's
warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the object code of the Modified
Software is redistributed, the Licensee allows future Licensees
unhindered access to the full source code of the Modified Software by
indicating how to access it, it being understood that the additional
cost of acquiring the source code shall not exceed the cost of
transferring the data.

5.3.3 DISTRIBUTION OF EXTERNAL MODULES

When the Licensee has developed an External Module, the terms and
conditions of this Agreement do not apply to said External Module, that
may be distributed under a separate license agreement.

5.3.4 COMPATIBILITY WITH THE GNU GPL

The Licensee can include a code that is subject to the provisions of one
of the versions of the GNU GPL in the Modified or unmodified Software,
and distribute that entire code under the terms of the same version of
the GNU GPL.

The Licensee can include the Modified or unmodified Software in a code
that is subject to the provisions of one of the versions of the GNU GPL,
and distribute that entire code under the terms of the same version of
the GNU GPL.

Article 6 - INTELLECTUAL PROPERTY

6.1 OVER THE INITIAL SOFTWARE

29

The Holder owns the economic rights over the Initial Software. Any or
all use of the Initial Software is subject to compliance with the terms
and conditions under which the Holder has elected to distribute its work
and no one shall be entitled to modify the terms and conditions for the
distribution of said Initial Software.

The Holder undertakes that the Initial Software will remain ruled at
least by this Agreement, for the duration set forth in Article 4.2.

6.2 OVER THE CONTRIBUTIONS

The Licensee who develops a Contribution is the owner of the
intellectual property rights over this Contribution as defined by
applicable law.

6.3 OVER THE EXTERNAL MODULES

The Licensee who develops an External Module is the owner of the
intellectual property rights over this External Module as defined by
applicable law and is free to choose the type of agreement that shall
govern its distribution.

6.4 JOINT PROVISIONS

The Licensee expressly undertakes:

1. not to remove, or modify, in any manner, the intellectual property
notices attached to the Software;

2. to reproduce said notices, in an identical manner, in the copies
of the Software modified or not.

The Licensee undertakes not to directly or indirectly infringe the
intellectual property rights of the Holder and/or Contributors on the
Software and to take, where applicable, vis-a-vis its staff, any and all
measures required to ensure respect of said intellectual property rights
of the Holder and/or Contributors.

Article 7 - RELATED SERVICES

7.1 Under no circumstances shall the Agreement oblige the Licensor to
provide technical assistance or maintenance services for the Software.

30

However, the Licensor is entitled to offer this type of services. The
terms and conditions of such technical assistance, and/or such
maintenance, shall be set forth in a separate instrument. Only the
Licensor offering said maintenance and/or technical assistance services
shall incur liability therefor.

7.2 Similarly, any Licensor is entitled to offer to its licensees, under
its sole responsibility, a warranty, that shall only be binding upon
itself, for the redistribution of the Software and/or the Modified
Software, under terms and conditions that it is free to decide. Said
warranty, and the financial terms and conditions of its application,
shall be subject of a separate instrument executed between the Licensor
and the Licensee.

Article 8 - LIABILITY

8.1 Subject to the provisions of Article 8.2, the Licensee shall be
entitled to claim compensation for any direct loss it may have suffered
from the Software as a result of a fault on the part of the relevant
Licensor, subject to providing evidence thereof.

8.2 The Licensor's liability is limited to the commitments made under
this Agreement and shall not be incurred as a result of in particular:
(i) loss due the Licensee's total or partial failure to fulfill its
obligations, (ii) direct or consequential loss that is suffered by the
Licensee due to the use or performance of the Software, and (iii) more
generally, any consequential loss. In particular the Parties expressly
agree that any or all pecuniary or business loss (i.e. loss of data,
loss of profits, operating loss, loss of customers or orders,
opportunity cost, any disturbance to business activities) or any or all
legal proceedings instituted against the Licensee by a third party,
shall constitute consequential loss and shall not provide entitlement to
any or all compensation from the Licensor.

Article 9 - WARRANTY

9.1 The Licensee acknowledges that the scientific and technical
state-of-the-art when the Software was distributed did not enable all
possible uses to be tested and verified, nor for the presence of
possible defects to be detected. In this respect, the Licensee's
attention has been drawn to the risks associated with loading, using,
modifying and/or developing and reproducing the Software which are
reserved for experienced users.

The Licensee shall be responsible for verifying, by any or all means,
the suitability of the product for its requirements, its good working

31

order, and for ensuring that it shall not cause damage to either persons
or properties.

9.2 The Licensor hereby represents, in good faith, that it is entitled
to grant all the rights over the Software (including in particular the
rights set forth in Article 5).

9.3 The Licensee acknowledges that the Software is supplied "as is" by
the Licensor without any other express or tacit warranty, other than
that provided for in Article 9.2 and, in particular, without any warranty
as to its commercial value, its secured, safe, innovative or relevant
nature.

Specifically, the Licensor does not warrant that the Software is free
from any error, that it will operate without interruption, that it will
be compatible with the Licensee's own equipment and software
configuration, nor that it will meet the Licensee's requirements.

9.4 The Licensor does not either expressly or tacitly warrant that the
Software does not infringe any third party intellectual property right
relating to a patent, software or any other property right. Therefore,
the Licensor disclaims any and all liability towards the Licensee
arising out of any or all proceedings for infringement that may be
instituted in respect of the use, modification and redistribution of the
Software. Nevertheless, should such proceedings be instituted against
the Licensee, the Licensor shall provide it with technical and legal
assistance for its defense. Such technical and legal assistance shall be
decided on a case-by-case basis between the relevant Licensor and the
Licensee pursuant to a memorandum of understanding. The Licensor
disclaims any and all liability as regards the Licensee's use of the
name of the Software. No warranty is given as regards the existence of
prior rights over the name of the Software or as regards the existence
of a trademark.

Article 10 - TERMINATION

10.1 In the event of a breach by the Licensee of its obligations
hereunder, the Licensor may automatically terminate this Agreement
thirty (30) days after notice has been sent to the Licensee and has
remained ineffective.

10.2 A Licensee whose Agreement is terminated shall no longer be
authorized to use, modify or distribute the Software. However, any
licenses that it may have granted prior to termination of the Agreement
shall remain valid subject to their having been granted in compliance
with the terms and conditions hereof.

32

Article 11 - MISCELLANEOUS

11.1 EXCUSABLE EVENTS

Neither Party shall be liable for any or all delay, or failure to
perform the Agreement, that may be attributable to an event of force
majeure, an act of God or an outside cause, such as defective
functioning or interruptions of the electricity or telecommunications
networks, network paralysis following a virus attack, intervention by
government authorities, natural disasters, water damage, earthquakes,
fire, explosions, strikes and labor unrest, war, etc.

11.2 Any failure by either Party, on one or more occasions, to invoke
one or more of the provisions hereof, shall under no circumstances be
interpreted as being a waiver by the interested Party of its right to
invoke said provision(s) subsequently.

11.3 The Agreement cancels and replaces any or all previous agreements,
whether written or oral, between the Parties and having the same
purpose, and constitutes the entirety of the agreement between said
Parties concerning said purpose. No supplement or modification to the
terms and conditions hereof shall be effective as between the Parties
unless it is made in writing and signed by their duly authorized
representatives.

11.4 In the event that one or more of the provisions hereof were to
conflict with a current or future applicable act or legislative text,
said act or legislative text shall prevail, and the Parties shall make
the necessary amendments so as to comply with said act or legislative
text. All other provisions shall remain effective. Similarly, invalidity
of a provision of the Agreement, for any reason whatsoever, shall not
cause the Agreement as a whole to be invalid.

11.5 LANGUAGE

The Agreement is drafted in both French and English and both versions
are deemed authentic.

Article 12 - NEW VERSIONS OF THE AGREEMENT

12.1 Any person is authorized to duplicate and distribute copies of this
Agreement.

12.2 So as to ensure coherence, the wording of this Agreement is

33

protected and may only be modified by the authors of the License, who
reserve the right to periodically publish updates or new versions of the
Agreement, each with a separate number. These subsequent versions may
address new issues encountered by Free Software.

12.3 Any Software distributed under a given version of the Agreement may
only be subsequently distributed under the same version of the Agreement
or a subsequent version, subject to the provisions of Article 5.3.4.

Article 13 - GOVERNING LAW AND JURISDICTION

13.1 The Agreement is governed by French law. The Parties agree to
endeavor to seek an amicable solution to any disagreements or disputes
that may arise during the performance of the Agreement.

13.2 Failing an amicable solution within two (2) months as from their
occurrence, and unless emergency proceedings are necessary, the
disagreements or disputes shall be referred to the Paris Courts having
jurisdiction, by the more diligent Party.

Version 2.0 dated 2006-09-05.

34

	Overview
	Description
	Computation of function value at the given vertices

	Examples
	Creating a simplex given vertex coordinates
	Creating a simplex with randomized bounds

	Initial simplex strategies
	References
	Network of optimsimplex functions
	Help on optimsimplex functions
	optimsimplex-package
	Function evaluations
	optimsimplex.destroy
	Get functions
	Simplex gradient
	optimsimplex.log
	optimsimplex.new
	optimsimplex-package
	optimsimplex.print
	optimsimplex.reflect
	Set functions
	optimsimplex.shrink
	optimsimplex.utils

	CeCILL FREE SOFTWARE LICENSE AGREEMENT

