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Abstract

We give an overview about our R-package pendensity. Therefore, we briefly discuss the several
options and advantages of our approach. First of all, the univariate density estimation without any
covariate is discussed, followed by the extension to covariate dependencies. Furthermore, the variety of
possibilities of the plot function are discussed. Thereby, we focus on examples of stock prices.

1 Simple Example

For a short introduction, we show two simple examples.

1.1 Example without any covariate

We start directly and load the corresponding R-package

> library(pendensity)

We consider a random sample of size N = 100 from the standard normal distribution. To estimate the
corresponding density, we can easily run the estimation with pendensity().

> set.seed(27)

> y <- rnorm(100)

> test <- pendensity(y ~ 1)

We can plot the estimated density using the corresponding function plot(), see Figure 1.

1.2 Example with covariate

We show a simple example, with sample size N = 400, separated in two groups of equal size N = 200. In
between these groups of normal distributed values, we shift the mean by 0.5 for a constant variance.

> set.seed(27)

> x <- rep(c(0, 1), 200)

> y <- rnorm(400, x * 0.5, 1)

> test2 <- pendensity(y ~ as.factor(x))

Again, we can plot the estimated density using the corresponding function plot(), see Figure 2.
Once we have estimated a density with covariates, we can test for equality of the corresponding densities.

As we can see, the p-value indicates inequality.

> test.equal(test2)

[,1]
2 vs. 1 0
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2 pendensity

We contribute an R-package pendensity for density estimation based on the idea of penalized splines.
Therefore, the main program contains several parameters, which can be varied by user. First, we speak
about the possible global options of pendensity().

2.1 global options of pendensity()

Most of the options are equal, independent if covariates are considered or not.

2.1.1 Density estimation without covariate

Density estimation without covariate(s) is easily done by using pendensity(). We need a formula to
describe the desired results. For the following we define y as the interesting variable. If we want to estimate
the density of y without any covariate, we type pendensity(y∼1). We can change several parameters for
the estimate. Here we mention the important parameter:

no.base: We can change the used number of basis functions, by default this parameter is ’NULL’. Without any
other changes, this results in a base with 41 B-spline bases. We can change this parameter, but we
should not choose it too small, e.g. no.base=10 results in 2 ∗ 10 + 1 = 21 B-spline bases for B-splines
of degree two.

max.iter: The maximal number of iterations should be selected too large or even too small. Depending on the
selected penalty parameter λ, pendensity() needs more or less iterations. The default is 20.

λ0: The default for the penalty parameter is 50000. Sometimes, one may change this value, resulting in
fewer iterations.

q: The order of the used B-splines, default is q = 3

m: the used difference order of the penalty. The default is m=q, that is the order of the used B-splines.

with.border: We run several simulations and sometimes add additional bases at the end of the support of the ob-
served value. This may improve the fit, in particular at the boundary. Usually we set with.border=1
or with.border=2.
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Figure 1: Plot of the estimated density.
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Figure 2: Plot of the estimated densities in Section 1.2.

2.1.2 Density estimation with covariate

If we want to estimate a density with covariate, only the formula in pendensity() changes. Keep in mind,
only factorial covariates are used, indicating the corresponding groups. First we consider an example with
one covariate x for the response y. So, we type pendensity(y∼x) (x has to be a factor, otherwise the
call has to be pendensity(y as.factor(x)). Of course, we can also estimate densities with two or more
covariates. Therefore we add the different factorial covariates with ’+’ in the call, e.g. pendensity(y∼x+z).

2.2 plot.pendensity()

Having done an estimation without covariate, we can easily plot the density with plot(). Using this
function of plot, we can determine several parameters. At first, we can choose between the usual plot and
lattice. Secondly, we can get three different type of plots. Now, we highlight the main options.

latt: TRUE/FALSE indicates if lattice should be used.

plot.val: 1 indicates the normal density plot, 2 indicates the distribution function of the observation values
and 3 indicates the analytic distribution function.

val: We can calculate the corresponding density at unobserved points. Therefore, we set a vector of y, at
which the estimated density is calculated

confi: TRUE/FALSE, if the confidence intervals should be plotted or not

By default, the title of each plot contains the final number of knots ’K’, the corresponding Akaike
Information Criteria (AIC) and the optimal λ. We can change this with the known option of the generic
function plot(), using main=... . Additionally, we can add text below the plot, using sub=... .
Moreover, we can use xlab and ylab.

2.3 test.equal()

For each estimated pendensity object dependent on some covariate we can test for equality of the densities.
Therefore, we can easily use the test.equal() function and get an output with the corresponding p-
value(s). See the corresponding example in Section 1.2.

If one estimates a density with covariate indicating more than two groups, we compare the densities
pairwise. Therefore, we present the following example
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> x <- c(rep(0, 50), rep(1, 100), rep(2, 100))

> y <- rnorm(250, x, 1)

> x <- as.factor(x)

> test3 <- pendensity(y ~ x)

> test.equal(test3)

[,1]
3 vs. 2 0
3 vs. 1 0
2 vs. 1 0

2.4 Calculate density values

In many applications one is interested to calculate the density in unobserved values. To do this, we can
use the plot() function using the argument val. We consider the example from Section 1.1 and Section
1.2. If we want to get the density value in a given set of points, we type just plot(obj,val=...). This
function is only available for densities plot.val=1, not for the distribution. We get the values for each
group separately. Additionally, the corresponding values of the standard deviation are listed.

For the example in Section 1.1 we get

> points <- c(1, -0.5, 0, 0.5, 1)

> plot(test, val = points)

$y
[1] 1.0 -0.5 0.0 0.5 1.0

$fy
[,1] [,2] [,3] [,4] [,5]

[1,] 0.2494086 0.3225361 0.3629941 0.3331572 0.2494086

$sd.down.y.val
[1] 0.2034252 0.2754246 0.3094312 0.2828216 0.2034252

K= 41, AIC= 375.97, λ=139963.2
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Figure 3: Plot of the estimated densities of example in Section 2.3.
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$sd.up.y.val
[1] 0.2953921 0.3696476 0.4165570 0.3834927 0.2953921

For the example in Section 1.2 we get

> points <- c(1, -0.5, 0, 0.5, 1)

> plot(test2, val = points)

$y
[1] 1.0 -0.5 0.0 0.5 1.0

$fy
$fy$baseline
[1] 0.2254301 0.3336584 0.3571322 0.3134388 0.2254301

$fy$`as.factor(x)=1`
[1] 0.3640085 0.2244045 0.3404441 0.3992445 0.3640085

$sd.down.y.val
$sd.down.y.val$baseline
[1] 0.1939494 0.2978627 0.3173781 0.2778318 0.1939494

$sd.down.y.val$`as.factor(x)=1`
[1] 0.3234061 0.1883559 0.3063653 0.3588498 0.3234061

$sd.up.y.val
$sd.up.y.val$baseline
[1] 0.2569108 0.3694542 0.3968862 0.3490457 0.2569108

$sd.up.y.val$`as.factor(x)=1`
[1] 0.4046109 0.2604532 0.3745229 0.4396391 0.4046109

3 Stock Examples

For a more detailed overview of our package pendensity, we consider the attached data of the daily final
values of German stocks Deutsche Bank AG und Lufthansa AG from 2000 to 2008. We give some density
examples and corresponding comments.

3.1 Allianz 2006

We are interested to look at the density of the German stock Allianz in 2006. Therefore, we build differences
of first order and estimate the density.

> data(Allianz)

> form <- "%d.%m.%y"

> time.Allianz <- strptime(Allianz[, 1], form)

> data.Allianz <- Allianz[which(time.Allianz$year == 106), 2]

> d.Allianz <- diff(data.Allianz)

> density.Allianz <- pendensity(d.Allianz ~ 1)

This density is estimated with the default settings of pendensity(). Now, we like to highlight the
different options to plot densities. We can also use lattice to create plots, see Figure 4.
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3.2 Allianz 2006 and 2007

We are interested to look at the density of the german stock Allianz in 2006 and 2007. Therefore, we build
differences of first order of the stock values and estimate the density depending on covariate. Again, we
can plot this estimate. We show the result in Figure 5, also for the lattice output.

> data.Allianz <- Allianz[which(time.Allianz$year == 106 | time.Allianz$year ==

+ 107), 2]

> d.Allianz <- diff(data.Allianz)

> density.Allianz2 <- pendensity(d.Allianz ~ as.factor(time.Allianz$year))

Checking for equality of the estimated densities is done with
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Figure 4: Plot of the estimated density of Allianz 2006.
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Figure 5: Plot of the estimated densities of Allianz in 2006 and 2007.
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> test.equal(density.Allianz2)

[,1]
2 vs. 1 0.012

4 Number of knots

As mentioned in many famous papers, the number of knots has not to be too small for penalized spline
smoothing. A good rule is to select 20 up to 40 knots.If one chooses more knots, the results do not change,
due to the used penalization concept. Here, we show a short example for a sample y from standard normal
distribution of size N = 400.

> set.seed(27)

> y <- rnorm(400)

> density1 <- pendensity(y ~ 1, no.base = 10)

> density2 <- pendensity(y ~ 1, no.base = 15)

> density3 <- pendensity(y ~ 1, no.base = 20)

> density4 <- pendensity(y ~ 1, no.base = 25)

For comparison, we plot these densities in Figure 6. We see easily, that there is no change in between
these figures, while the penalty increases with the size of the base. The AIC values are more or less equal,
the very small differences are numerical noises. By default, pendensity() estimates the densities with 41
B-spline bases.
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Figure 6: Plot of a sample y for different number of knots.
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