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Abstract

This introduction to the R package rgenoud is a modified version of Mebane and Sekhon
(2009), published in the Journal of Statistical Software. That version of the introduction
contains higher resolution figures.

Genoud is an R that combines evolutionary search algorithms with derivative-based
(Newton or quasi-Newton) methods to solve difficult optimization problems. Genoud may
also be used for optimization problems for which derivatives do not exist. Genoud solves
problems that are nonlinear or perhaps even discontinuous in the parameters of the func-
tion to be optimized. When the function to be optimized (for example, a log-likelihood)
is nonlinear in the model’s parameters, the function will generally not be globally concave
and may have irregularities such as saddlepoints or discontinuities. Optimization methods
that rely on derivatives of the objective function may be unable to find any optimum at
all. Multiple local optima may exist, so that there is no guarantee that a derivative-based
method will converge to the global optimum. On the other hand, algorithms that do not
use derivative information (such as pure genetic algorithms) are for many problems need-
lessly poor at local hill climbing. Most statistical problems are regular in a neighborhood
of the solution. Therefore, for some portion of the search space, derivative information is
useful. The function supports parallel processing on multiple CPUs on a single machine
or a cluster of computers.

Keywords:˜genetic algorithm, evolutionary program, optimization, parallel computing, R.

1. Introduction

We developed the R package rgenoud to solve difficult optimization problems such as often
arise when estimating nonlinear statistical models or solving complicated nonlinear, non-
smooth and even discontinuous functions.1 Optimization difficulties often arise when the
objective function (for instance, the log-likelihood) is a nonlinear function of the parameters.
In such cases the function to be optimized is usually not globally concave. An objective func-
tion that is not globally concave may have multiple local optima, saddle points, boundary
solutions or discontinuities. While the objective function for a statistical model is often con-
cave in a neighborhood of the optimal solution, that neighborhood is often a small proportion
of the parameter space of potential interest, and outside that neighborhood the function may
be irregular. In such cases, methods of optimization that depend entirely on derivatives can

1The rgenoud software package is available from the Comprehensive R (R Development Core Team 2009)
Archive Network at http://CRAN.R-project.org/package=rgenoud.

http://CRAN.R-project.org/package=rgenoud
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be unreliable and often are virtually unusable. Newton-Raphson and quasi-Newton methods
are among the commonly used optimization methods that rely completely on derivatives.
Such methods work well when the function to be optimized is regular and smooth over the
domain of parameter values that is of interest, but otherwise the methods often fail (Gill,
Murray, and Wright 1981). Even in models where such methods can be expected to work
most of the time, resampling techniques such as the bootstrap (Efron and Tibshirani 1994)
can generate resamples in which derivative-based optimization algorithms encounter severe
difficulties. This is unfortunate because the methods most frequently used for optimization
in problems of statistical estimation are entirely based on derivatives.

The rgenoud package has been used by wide variety of users and developers. Nine R packages
currently rely upon rgenoud: anchors (analyzing survey data with anchoring vignettes, Wand
and King 2009; Wand, King, and Lau 2008; King and Wand 2007); boolean (boolean binary
response models, Braumoeller 2003; Braumoeller, Goodrich, and Kline 2005); BARD (au-
tomated redistricting, Altman and McDonald 2009); FAiR (factor analysis, Goodrich 2009);
PKfit (data analysis in pharmacokinetics, Lee and Lee 2009); Matching (propensity score and
multivariate matching, Sekhon 2009a,b); ivivc (in vitro-in vivo correlation modeling, Lee and
Lee 2008); multinomRob (robust multinomial models, Mebane and Sekhon 2007, 2004); and
Synth (synthetic control group method for comparative case studies, Abadie and Gardeazabal
2003; Diamond and Hainmueller 2008).

We present in Section 3 an example using benchmark functions taken from Yao, Liu, and Lin
(1999), followed by an example motivated by the multinomRob package. The benchmark suite
includes functions that are high-dimensional, discontinuous or that have many local optima.
The multinomRob package robustly estimates overdispersed multinomial regression models
and uses rgenoud to solve a least quartile difference (LQD) generalized S-estimator (Mebane
and Sekhon 2004). The LQD is not a smooth function of the regression model parameters.
The function is continuous, but the parameter space is finely partitioned by nondifferentiable
boundaries.

In another paper in this volume, the Matching package and its use of rgenoud are described
in detail (Sekhon 2009a). Matching provides functions for multivariate and propensity score
matching and for finding optimal covariate balance based on a genetic search algorithm im-
plemented in rgenoud. The search over optimal matches is discontinuous so no derivatives are
used.2 The search also involves lexical optimization which is a unique feature implemented
in rgenoud.3

The rgenoud package implements an updated and extended version of the C program GENOUD

(Mebane and Sekhon 1997) described in (Sekhon and Mebane 1998). The many improvements
include among other things the interface with R, which includes the ability to optimize func-
tions written in R, options to optimize both floating point and integer-valued parameters, the
ability to optimize loss functions which return multiple fitness values (lexical optimization),
the ability to call genoud recursively, the ability to have the optimizer evaluate fits only for
new parameter values, and the ability to use multiple computers, CPUs or cores to perform

2The BFGS option of genoud is set to FALSE, and the ninth operator which depends on derivatives is not
used.

3Lexical optimization is useful when there are multiple fitness criteria; the parameters are chosen so as to
maximize fitness values in lexical order—i.e., the second fit criterion is only considered if the parameters have
the same fit for the first. See the lexical option and Sekhon (2009a) for details. All of genoud’s options are
described in the R help file for the function.
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parallel computations.

The rgenoud program combines an evolutionary algorithm with a quasi-Newton method. The
quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Gill et˜al.
1981, 119) implemented in R’s optim function. When the BFGS is being used, our program
offers the option of using either rgenoud’s built-in numerical derivatives (which are based
on code taken from Gill et˜al. 1981, 337–344) or user-supplied analytical derivatives.4 Our
program can also work without the BFGS, in which case no derivatives are needed and the
optimizer will work even when the function is discontinuous. The primary benefit from using
derivatives is that the algorithm will then quickly find a local optimum when a current set
of trial solution parameter values is in a smooth neighborhood of the local optimum point.
Appropriate use of the BFGS can make the algorithm converge to the global optimum much
more quickly. But premature or excessive use of the BFGS can prevent convergence to the
global optimum.5 As always, it is hazardous to rely on an optimizer’s default settings. Our
program does not eliminate the need for judgment, testing and patience.

As Gill, Murray and Wright observe, “there is no guaranteed strategy that will resolve every
difficulty” (1981, 285). In this article, we very briefly review the theory of random search
algorithms that supports the assertion that rgenoud has a high probability of finding the
global optimum when such exists. And we present three examples of how to use the genoud

function: to optimize a simple but fiendish scalar Normal mixture model; to minimize a suite
of benchmark functions that have previously been used to test evolutionary programming
optimization algorithms; and to optimize a version of the only intermittently differentiable
LQD estimator. Additional details on both the theory and performance of genoud can be
found in our article that describes GENOUD (Sekhon and Mebane 1998).

2. Background on Genetic Optimization

An evolutionary algorithm (EA) uses a collection of heuristic rules to modify a population
of trial solutions in such a way that each generation of trial values tends to be, on average,
better than its predecessor. The measure for whether one trial solution is better than another
is the trial solution’s fitness value. In statistical applications, the fitness is a function of the
summary statistic being optimized (e.g., the log-likelihood). rgenoud works for cases in which
a solution is a vector of floating-point or integer numbers that serve as the parameters of a
function to be optimized. The search for a solution proceeds via a set of heuristic rules, or
operators, each of which acts on one or more trial solutions from the current population to
produce one or more trial solutions to be included in the new population. EAs do not require
derivatives to exist or the function to be continuous in order find the global optimum.

The EA in rgenoud is fundamentally a genetic algorithm (GA) in which the code-strings
are vectors of numbers rather than bit strings, and the GA operators take special forms
tuned for the floating-point or integer vector representation. A GA uses a set of randomized
genetic operators to evolve a finite population of finite code-strings over a series of generations
(Holland 1975; Goldberg 1989; Grefenstette and Baker 1989). The operators used in GA
implementations vary (Davis 1991; Filho and Alippi 1994), but in an analytical sense the

4User supplied derivatives may be provides via the gr option.
5The user can control whether genoud uses the BFGS at all (via the BFGS option), and if operators that use

the BFGS are used (via the P9 option), how often they are used.
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basic set of operators can be defined as reproduction, mutation, crossover and inversion. The
variation in these operators across different GA implementations reflects the variety of codes
best suited for different applications. Reproduction entails selecting a code-string with a
probability that increases with the code-string’s fitness value. Crossover and inversion use
pairs or larger sets of the selected code-strings to create new code-strings. Mutation randomly
changes the values of elements of a single selected code-string.

Used in suitable combinations, the genetic operators tend to improve average fitness of each
successive generation, though there is no guarantee that average fitness will improve between
every pair of successive generations. Average fitness may well decline. But theorems exist to
prove that parts of the trial solutions that have above average fitness values in the current
population are sampled at an exponential rate for inclusion in the subsequent population
(Holland 1975, 139–140). Each generation’s population contains a biased sample of code-
strings, so that a substring’s performance in that population is a biased estimate of its average
performance over all possible populations (De˜Jong 1993; Grefenstette 1993).

The long-run properties of a GA may be understood by thinking of the GA as a Markov chain.
A state of the chain is a code-string population of the size used in the GA. For code-strings
of finite length and GA populations of finite size, the state space is finite. If such a GA uses
random reproduction and random mutation, all states always have a positive probability of
occurring. A finite GA with random reproduction and mutation is therefore approximately
a finite and irreducible Markov chain.6 An irreducible, finite Markov chain converges at an
exponential rate to a unique stationary distribution (Billingsley 1986, 128). This means that
the probability that each population occurs rapidly converges to a constant, positive value.
Nix and Vose (1992; Vose 1993) use a Markov chain model to show that in a GA where
the probability that each code-string is selected to reproduce is proportional to its observed
fitness, the stationary distribution strongly emphasizes populations that contain code-strings
that have high fitness values. They show that asymptotic in the population size—i.e., in
the limit for a series of GAs with successively larger populations—populations that have
suboptimal average fitness have probabilities approaching zero in the stationary distribution,
while the probability for the population that has optimal average fitness approaches one. If
k > 1 populations have optimal average fitness, then in the limiting stationary distribution
the probability for each approaches 1/k.

The theoretical results of Nix and Vose imply that a GA’s success as an optimizer depends on
having a sufficiently large population of code-strings. If the GA population is not sufficiently
large, then the Markov chain that the GA approximately implements is converging to a
stationary distribution in which the probabilities of optimal and suboptimal states are not
sharply distinguished. Suboptimal populations can be as likely to occur as optimal ones. If
the stationary distribution is not favorable, the run time in terms of generations needed to
produce an optimal code-string will be excessive. For all but trivially small state spaces, an
unfavorable stationary distribution can easily imply an expected running time in the millions
of generations. But if the stationary distribution strongly emphasizes optimal populations,
relatively few generations may be needed to find an optimal code-string. In general, the

6Feller (1970, 372–419) and Billingsley (1986, 107–142) review the relevant properties of Markov chains.
The randomness in an actual GA depends on the performance of pseudorandom number generators. This
and the limitations of floating point arithmetic mean it is not literally true that an actual GA has a positive
probability of reaching any state from any other state, and some states may in fact not be reachable from a
given set of initial conditions.
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probability of producing an optimum in a fixed number of generations tends to increase with
the GA population size.

The evolutionary algorithm in rgenoud uses nine operators that are listed in Table˜1. The
operators extend and modify a set of operators used in GENOCOP (Michalewicz, Swaminathan,
and Logan 1993; Michalewicz 1992). The operators are numbered using syntax matching
that used to refer to them by rgenoud. The cloning operator simply makes copies of the
best trial solution in the current generation (independent of this operator, rgenoud always
retains one instance of the best trial solution). The uniform mutation, boundary mutation and
non-uniform mutation operators act on a single trial solution. Uniform mutation changes one
parameter in the trial solution to a random value uniformly distributed on the domain specified
for the parameter. Boundary mutation replaces one parameter with one of the bounds of its
domain. Non-uniform mutation shrinks one parameter toward one of the bounds, with the
amount of shrinkage decreasing as the generation count approaches the specified maximum
number of generations. Whole non-uniform mutation does non-uniform mutation for all the
parameters in the trial solution. Heuristic crossover uses two trial solutions to produce a
new trial solution located along a vector that starts at one trial solution and points away
from the other one. Polytope crossover (inspired by simplex search, Gill et˜al. 1981, 94–95)
computes a trial solution that is a convex combination of as many trial solutions as there are
parameters. Simple crossover computes two trial solutions from two input trial solutions by
swapping parameter values between the solutions after splitting the solutions at a randomly
selected point. This operator can be especially effective if the ordering of the parameters in
each trial solution is consequential. Local-minimum crossover computes a new trial solution
in two steps: first it does a preset number of BFGS iterations starting from the input trial
solution; then it computes a convex combination of the input solutions and the BFGS iterate.

3. Examples

The only function in the rgenoud package is genoud. The interface of this function is similar
to that of the optim function in R. But the function has many additional arguments that
control the behavior of the evolutionary algorithm.

3.1. Asymmetric Double Claw:

Our first example, which we also studied in Sekhon and Mebane (1998), is a normal mixture
called the Asymmetric Double Claw (ADC). We plot the function in Figure˜1. Mathematically,
this mixture is defined as

fADC =
∑1

m=0
46
100N

(
2m− 1, 23

)
+
∑3

m=1
1

300N
(−m

2 , 1
100

)
+
∑3

m=1
7

300N
(
m
2 ,

7
100

)
, (1)

where N is the normal density.

The asymmetric double claw is difficult to maximize because there are many local solutions.
There are five local maxima in Figure 1. Standard derivative-based optimizers would simply
climb up the hill closest to the starting value.

To optimize this normal mixture we must first create a function for it

> claw <- function(xx) {

+ x <- xx[1]
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P1 Cloning. Copy Xt into the next generation, Xt+1.

P2 Uniform Mutation. At random choose i ∈ N. Select a value x̃i ∼ U(xi, xi). Set Xi = x̃i.

P3 Boundary Mutation. At random choose i ∈ N. Set either Xi = xi or Xi = xi, with
probability 1/2 of using each value.

P4 Non-uniform Mutation. At random choose i ∈ N. Compute p = (1 − t/T )Bu, where t
is the current generation number, T is the maximum number of generations, B > 0 is a
tuning parameter and u ∼ U(0, 1). Set either Xi = (1−p)xi+pxi or Xi = (1−p)xi+pxi,
with probability 1/2 of using each value.

P5 Polytope Crossover. Using m = max(2, n) vectors x from the current population and
m random numbers pj ∈ (0, 1) such that

∑m
j=1 pj = 1, set X =

∑m
j=1 pjxj .

P6 Simple Crossover. Choose a single integer i from N. Using two parameter vectors, x
and y, set Xi = pxi + (1 − p)yi and Yi = pyi + (1 − p)xi, where p ∈ (0, 1) is a fixed
number.

P7 Whole Non-uniform Mutation. Do non-uniform mutation for all the elements of X.

P8 Heuristic Crossover. Choose p ∼ U(0, 1). Using two parameter vectors, x and y,
compute z = p(x−y)+x. If z satisfies all constraints, use it. Otherwise choose another
p value and repeat. Set z equal to the better of x and y if a satisfactory mixed z is not
found by a preset number of attempts. In this fashion produce two z vectors.

P9 Local-minimum Crossover. Choose p ∼ U(0, 1). Starting with x, run BFGS optimiza-
tion up to a preset number of iterations to produce x̃. Compute z = px̃ + (1 − p)x.
If z satisfies boundary constraints, use it. Otherwise shrink p by setting p = p/2 and
recompute z. If a satisfactory z is not found by a preset number of attempts, return x.
This operators is extremely computationally intensive, use sparingly.

Notation:

X =
[
X1, . . . , Xn

]
is the vector of n parameters Xi. xi is the lower bound and xi is the

upper bound on values for Xi. xi is the current value of Xi, and x is the current value of X.
N = {1, . . . , n}. p ∼ U(0, 1) means that p is drawn from the uniform distribution on the
[0, 1] interval.

Table 1: ‘genoud’ Operators. Adapted from Sekhon and Mebane (1998).
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Figure 1: Normal Mixture: Asymmetric Double Claw
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+ y <- (0.46 * (dnorm(x, -1, 2/3) + dnorm(x, 1, 2/3)) + (1/300) *

+ (dnorm(x, -0.5, 0.01) + dnorm(x, -1, 0.01) + dnorm(x,

+ -1.5, 0.01)) + (7/300) * (dnorm(x, 0.5, 0.07) + dnorm(x,

+ 1, 0.07) + dnorm(x, 1.5, 0.07)))

+ return(y)

+ }

And we now make a call to rgenoud using this function:

> library("rgenoud")

> claw1 <- genoud(claw, nvars = 1, max = TRUE, pop.size = 3000)

The first argument of genoud is the function to be optimized. The first argument of that
function must be the vector of parameters over which optimizing is to occur. Generally, the
function should return a scalar result.7 The second argument of genoud in this example
(nvars) is the number of variables the function to be optimized takes. The third argument,
max=TRUE, tells genoud to maximize the function instead of its default behavior which is to
minimize.

The fourth option pop.size controls the most important part of the evolutionary algorithm,
the population size. This is the number of individuals genoud uses to solve the optimization

7The function to be optimized may return a vector if one wishes to do lexical optimization. Please see the
lexical option to genoud.
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problem. As noted in the theoretical discussion, the theorems related to evolutionary algo-
rithms are asymptotic in the population size so larger is generally better but obviously takes
longer. The maximum solution of the double claw density is reliably found by genoud even
using the default value of pop.size=1000. Reliability does increase as the pop.size is made
larger. Unfortunately, because of the stochastic nature of the algorithm, it is impossible to
generally answer the question of what is the best population size to use.

Other options determine the maximum number of generations the evolutionary algorithm com-
putes. These options are max.generations, wait.generations and hard.generation.limit.
The specified termination point also affects how some of the operators perform: the two non-
uniform mutation operators introduce smaller ranges of variation in the trial solutions as the
generation count approaches the specified max.generations value. There are many more
options that can be used to fine-tune the behavior of the algorithm.

The output printed by genoud is controlled by a print.level argument. The default value,
print.level=2, produces relatively verbose output that gives extensive information about
the set of operators being used and the progress of the optimization. Normally R conventions
would suggest setting the default to be print.level=0, which would suppress output to the
screen, but because genoud runs may take a long time, it can be important for the user to
receive some feedback to see the program has not died and to be able to see where the program
got stuck if it eventually fails to make adequate progress.

The output printed by the preceding invocation of genoud, which uses the default value for a
print.level argument, is as follows.

Fri Feb 9 19:33:42 2007

Domains:

-1.000000e+01 <= X1 <= 1.000000e+01

Data Type: Floating Point

Operators (code number, name, population)

(1) Cloning........................... 372

(2) Uniform Mutation.................. 375

(3) Boundary Mutation................. 375

(4) Non-Uniform Mutation.............. 375

(5) Polytope Crossover................ 375

(6) Simple Crossover.................. 376

(7) Whole Non-Uniform Mutation........ 375

(8) Heuristic Crossover............... 376

(9) Local-Minimum Crossover........... 0

HARD Maximum Number of Generations: 100

Maximum Nonchanging Generations: 10

Population size : 3000

Convergence Tolerance: 1.000000e-03

Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.

Checking Gradients before Stopping.

Using Out of Bounds Individuals.
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Maximization Problem.

GENERATION: 0 (initializing the population)

Fitness value... 4.112017e-01

mean............ 4.990165e-02

variance........ 9.708147e-03

#unique......... 3000, #Total UniqueCount: 3000

var 1:

best............ 9.966758e-01

mean............ 3.453097e-02

variance........ 3.373681e+01

GENERATION: 1

Fitness value... 4.113123e-01

mean............ 2.237095e-01

variance........ 2.566140e-02

#unique......... 1858, #Total UniqueCount: 4858

var 1:

best............ 9.995043e-01

mean............ 4.615946e-01

variance........ 7.447887e+00

[...]

GENERATION: 10

Fitness value... 4.113123e-01

mean............ 2.953888e-01

variance........ 2.590842e-02

#unique......... 1831, #Total UniqueCount: 21708

var 1:

best............ 9.995033e-01

mean............ 8.403935e-01

variance........ 5.363241e+00

GENERATION: 11

Fitness value... 4.113123e-01

mean............ 2.908561e-01

variance........ 2.733896e-02

#unique......... 1835, #Total UniqueCount: 23543

var 1:

best............ 9.995033e-01

mean............ 8.084638e-01

variance........ 6.007372e+00

'wait.generations' limit reached.

No significant improvement in 10 generations.
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Solution Fitness Value: 4.113123e-01

Parameters at the Solution (parameter, gradient):

X[ 1] : 9.995033e-01 G[ 1] : -6.343841e-09

Solution Found Generation 1

Number of Generations Run 11

Fri Feb 9 19:33:45 2007

Total run time : 0 hours 0 minutes and 3 seconds

After printing the date and time of the run, the program prints the domain of values it is
allowing for each parameter of the function being optimized. In this case the default domain
values are being used. Naturally it is important to specify domains wide enough to include the
solution. In practice with highly nonlinear functions it is often better to specify domains that
are relatively wide than to have domains that narrowly and perhaps even correctly bound the
solution. This surprising behavior reflects the fact with a highly nonlinear function, a point
that is close to the solution in the sense of simple numerical proximity may not be all that
close in the sense of there being a short feasible path to get to the solution.

Next the program prints the Data Type. This indicates whether the parameters of the function
to be optimized are being treated as floating point numbers or integers. For more information
about this, see the data.type.int argument.

The program then displays the number of operators being used, followed by the values that
describe the other characteristics set for this particular run: the maximum number of genera-
tions, the population size and the tolerance value to be used to determine when the parameter
values will be deemed to have converged.

The output then reports whether BFGS optimization will be applied to the best trial solution
produced by the operators in each generation. For problems that are smooth and concave in
a neighborhood of the global optimum, using the BFGS in this way can help genoud quickly
converge once the best trial solution is in the correct neighborhood. This run of genoud will
also compute the gradient at the best trial solution before stopping. In fact this gradient
checking is used as a convergence check. The algorithm will not start counting its final
set of generations (the wait.generations) until each element of the gradient is smaller in
magnitude than the convergence tolerance. Gradients are never used and BFGS optimization
is not used when the parameters of the function to be optimized are integers.

The next message describes how strictly genoud is enforcing the boundary constraints speci-
fied by the domain values. By default (boundary.enforcement=0), the trial solutions are
allowed to wander freely outside the boundaries. The boundaries are used only to de-
fine domains for those operators that use the boundary information. Other settings of the
boundary.enforcement argument induce either more stringent or completely strict enforce-
ment of the boundary constraints. Notice that the boundary constraints apply to the param-
eters one at a time. To enforce constraints that are defined by more complicated functional or
data-dependent relationships, one can include an appropriate penalty function as part of the
definition of the function to be optimized, letting that function define an extremely high (if
minimizing) or low (if maximizing) value to be returned if the desired conditions are violated.
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After reporting whether it is solving a minimization or a maximization problem, genoud

reports summary statistics that describe the distribution of the fitness value and the parameter
values across the trial solutions at the end of each generation. In the default case where
genoud is keeping track of all the distinct solutions considered over the whole course of the
optimizing run, these generational reports also include a report of the number of unique trial
solutions in the current population and the number of unique solutions ever considered. The
benefit of keeping track of the solutions is to avoid repeatedly evaluating the function being
optimized for the identical set of parameter values. This can be an important efficiency when
function evaluations are expensive, as they can be in statistical applications where the data
are extensive. This tracking behavior is controlled by the MemoryMatrix argument.

Upon convergence, or when the hard maximum generation limit is reached, the program
prints the fitness value at the best trial solution and that solution’s parameter values. In this
case the solution was found after one generation. While the Asymmetric Double Claw might
present a difficult challenge for a gradient-based optimizer that uses only local hill climbing,
it is an almost trivially simple problem for genoud.

3.2. Benchmark Functions:

The second example is a suite of 23 benchmark nonlinear functions used in Yao et˜al. (1999)
to study a pair of evolutionary programming optimization algorithms. Function definitions
are in Table˜2. Because it includes a random component and so lacks a reproducible minimum
value, we ignore the function numbered function 7 in their sequence.8 Implementations of
these functions are available in the supplemental R file provided with this article.9 These R
definitions include the values of the constants used in functions 14, 15 and 19 through 23. The
function argument domains are restricted to the specific domains used by Yao et˜al. (1999)
via bounds that are stated in the list named testbounds in the supplemental file.

As Yao et˜al. (1999) describe, optimizing each of functions 1–13 presents a high-dimensional
problem. These functions each have n = 30 free parameters. Functions 1–5 are unimodal,
with function 5 being a 30-dimensional version of the banana-shaped Rosenbrock function.
Function 6 is a step function. Function 6 has one minimum value that occurs when all
arguments are in the interval xi ∈ [0, .5), and the function is discontinuous. Functions 8–
13 are multimodal, defined such that the number of local minima increases exponentially
with the number of arguments. Yao et˜al. (1999, 84) describe these functions as among “the
most difficult class of problems for many optimization algorithms (including [evolutionary
programming]).” Functions 14–23, which have between two and six free parameters each,
each have only a few local minima. Nonetheless the evolutionary programming algorithms
considered by Yao et˜al. (1999) have trouble optimizing functions 21–23. Although Yao et˜al.
(1999, 85) state that each of these functions has a minimum value of −10, over 50 replications
the two algorithms they consider achieve solutions averaging between −5.52 and −9.10 (Yao

8The omitted function is
∑n

i=1 ix
4
i + U(0, 1), where U(0, 1) is a uniformly distributed random variable on

the unit interval that takes a new value whenever the function is evaluated. This stochastic aspect means that
even given the set of parameters that minimize the nonstochastic component

∑n
i=1 ix

4
i , i.e., xi = 0, the value

of the function virtually never attains the minimum possible value of zero. An optimizer that evaluated the
function at xi = 0 would not in general obtain a function value smaller than the function value obtained for a
wide range of different parameter values. Hence we do not consider this function to be a good test for function
optimization algorithms.

9This supplemental file is available at http://sekhon.berkeley.edu/rgenoud/func23.R.

http://sekhon.berkeley.edu/rgenoud/func23.R
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func. definition n minimuma

1
∑n

i=1 x
2
i 30 0

2
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 0

3
∑n

i=1(
∑i

j=1 xj)
2 30 0

4 maxi{|xi|, 1 ≤ i ≤ n} 30 0

5
∑n−1

i=1 [100(xi+1 − x2i )2 + (xi − 1)2], 30 0
6

∑n
i=1(bxi + 0.5c)2 30 0

7
∑n

i=1 ix
4
i + U(0, 1) 30 0

8
∑n

i=1−xi sin(
√
|xi|) 30 −12569.5

9
∑n

i=1[x
2
i − 10 cos(2πxi) + 10] 30 0

10 −20 exp
(
−0.2

√
n−1

∑n
i=1 x

2
i

)
− exp(n−1

∑n
i=1 cos 2πxi) + 20 + e 30 0

11 (1/1000)
∑n

i=1 x
2
i −

∏n
i=1 cos

(
xi/
√
i
)

+ 1 30 0

12 n−1π
{

10 sin2(πy1) +
∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2
}

+
∑n

i=1 u(xi, 10, 100, 4), 30 0

yi = 1 + (xi + 1)/4, u(xi, a, k,m) =


k(xi − a)m, xi > a,

0, −a ≤ xi ≤ a,
k(−xi − a)m, xi < −a,

13
{

sin2(3πx1) +
∑n−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)]
}
/10

+(xn − 1)[1 + sin2(2πxn)]/10 +
∑n

i=1 u(xi, 5, 100, 4) 30 0

14
{

1/500 +
∑25

j=1 1/
[
j +

∑2
i=1(xi − aij)6

]}−1
2 1

15
∑11

i=1[ai − x1(b2i + bix2)/(b
2
i + bix3 + x4)]

2 4 0.0003075
16 4x21 − 2.1x41 + x61/3 + x1x2 − 4x22 + 4x42 2 −1.0316285
17 [x2 − 5.1x21/(4π

2) + 5x1/π − 6]2 + 10[1− 1/(8π)] cos(x1) + 10 2 0.398
18 [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]

×[30 + (2x1 − 3x2)
2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)] 2 3

19 −
∑4

i=1 ci exp
[
−
∑4

j=1 aij(xi − pij)2
]

4 −3.86

20 −
∑4

i=1 ci exp
[
−
∑6

j=1 aij(xi − pij)2
]

6 −3.32

21
∑5

i=1[(x− ai)′(x− ai) + ci]
−1 4 −10

22
∑7

i=1[(x− ai)′(x− ai) + ci]
−1 4 −10

23
∑10

i=1[(x− ai)′(x− ai) + ci]
−1 4 −10

Notes: aMinimum function value within specified bounds as given by Yao et˜al. (1999, 85).

Table 2: 23 Benchmark Functions
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et˜al. 1999, 88, Table˜IV).

We use these benchmark functions to illustrate not only how effective genoud can be with a
range of difficult problems, but also to emphasize an important aspect of how one should think
about trying to tune the optimizer’s performance. Theory regarding genetic algorithms sug-
gests that optimal solutions are more likely to appear as both the population size of candidate
solutions and the number of generations increase. In genoud two arguments determine the
number of generations. One is max.generations: if hard.generation.limit=TRUE, then the
value specified for max.generations is a binding upper limit. The other is wait.generations,
which determines when the algorithm terminates if hard.generation.limit=FALSE. But even
if hard.generation.limit=TRUE, then wait.generations determines for how many gener-
ations the algorithm continues once the best parameter vector and the value of the function
being optimized appear to have settled down. The fact that the current best solution is not
changing should not be treated as decisive, because this solution may be merely a local op-
timum or a saddlepoint. If the population size is sufficient, the algorithm tends to build a
population of trial solutions that contain parameters in neighborhoods of all the competitive
local optima in the domain defined by the parameter boundaries. Even while the current best
solution is stable, the algorithm is improving the solutions near other local optima. So having
a higher wait.generations value never worsens the algorithm’s efficacy.

Increasing max.generations may or may not in itself improve optimization. The value of
max.generations sets the value of T used in the mutation operators—operators 4 and 7 in
Table˜1. These mutation operators perform random search near a trial solution that has been
selected for mutation only when the current generation count is an appreciable fraction of
T . So increasing max.generations without changing wait.generations increases the period
during which random search is occurring over a wider domain. For multimodal functions such
a wider search may be helpful, but sometimes failing to search more densely near the current
trial solutions is not good.

We use genoud to minimize the 23 functions using two values for pop.size (5000 and 10000)
and two values for max.generations (30 and 100). Following Yao et˜al. (1999), we repli-
cate each optimization 50 times. The following code describes the computations. The list
testfuncs, vector testNparms and list testbounds are defined in the supplemental R file.
The vector gradcheck is true for all elements except the one corresponding to function 6.10

> sizeset <- c(5000, 10000)

> genset <- c(30, 100)

> nreps <- 50

> gsarray <- array(NA, dim = c(length(sizeset), length(genset),

+ 23, nreps))

> for (gsize in sizeset) {

+ for (ngens in genset) {

+ for (i in 1:23) {

+ for (j in 1:nreps) {

+ gsarray[as.character(gsize), as.character(ngens),

+ i, j] <- genoud(testfuncs[[i]], nvars = testNparms[i],

+ pop.size = gsize, max.gen = ngens, hard.gen = TRUE,

+ Domains = testbounds[[i]], solution.tol = 1e-06,

10Also gradcheck[7]==FALSE.
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+ boundary = 1, gradient.check = gradcheck[i],

+ print = 0)$value

+ }

+ }

+ }

+ }

Using genoud to minimize the benchmark functions produces excellent results, at least when
the pop.size and max.generations arguments are sufficiently large. Table˜3 reports the
mean function values for each configuration of the arguments. These values may be com-
pared both to the true function minima given by Yao et˜al. (1999) (see the rightmost column
in Table˜2) and to the average minimum function values Yao et˜al. (1999) report for their
“fast” evolutionary programming (FEP) algorithm, which appear in the last column of Ta-
ble˜3. The genoud averages for the max.gen=100 configurations equal or are close to the true
minima for all the functions except function 13. One can reasonably argue that the average
solutions for function 5 are not as close to zero as might be desired: these averages are close
to 10−7, while the averages for other functions that have a true minimum of zero are 10−15

or smaller. And the averages for functions 6, 12 and 15 in the pop.size=5000 case are off.
The effect of increasing pop.size is apparent with respect to both those three functions and
also functions 13 and 20–23: the average minima are smaller with pop.size=10000 than with
pop.size=5000. Except for functions 6 and 12 in the pop.size=5000 case and function 13,
all the genoud solution averages for max.gen=100 are either slightly or substantially better
than the corresponding FEP solution averages.

The results in Table˜3 clearly illustrate the potential consequences of not allowing genoud to
run for a sufficient number of generations. While some of the genoud solutions for max.gen=30
have competitive means, several of the means are not good at all.

The effect of increasing pop.size are even more clearly apparent in Table˜4, which reports the
standard deviations of the respective minima across the 50 replications. With the exceptions
of functions 6, 12, 13, 15 and 21 with pop.size=5000, the genoud solutions for max.gen=100
vary much less than the corresponding FEP solutions. For those functions and also for
functions 20, 22 and 23, the max.gen=100 solutions with pop.size=10000 vary noticeably
less than the solutions with pop.size=5000.

3.3. A Logistic Least Quartile Difference Estimator:

Our third example is a version of the LQD estimator used in multinomRob. Using the R
function IQR to compute the interquartile range, the function to be minimized may be defined
as follows.11

> LQDxmpl <- function(b) {

+ logistic <- function(x) {

+ 1/(1 + exp(-x))

+ }

11The LQD problem solved in multinomRob is somewhat different. There the problem is to minimize the(
hK
2

)
order statistic of the set of absolute differences among the standardized residuals, where hK is a function

of the sample size and the number of unknown regression model coefficients (Mebane and Sekhon 2004). The
problem considered in the current example is simpler but exhibits similar estimation difficulties.
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genoud

pop.size=5000a pop.size=10000a

func. max=30 max=100 max=30 max=100 FEPb

1 1.453e-32 1.658e-32 2.416e-32 6.134e-32 5.7e-4
2 6.55e-16 7.212e-16 9.652e-16 1.043e-15 8.1e-3
3 4.633e-18 3.918e-18 3.787e-18 4.032e-18 1.6e-2
4 6.203e-17 6.542e-17 9.453e-17 7.85e-17 0.3
5 0.07973 5.887e-08 8.133e-08 8.917e-08 5.06
6 18.58 0.08 9.38 0 0
8 -12569.49 -12569.49 -12569.49 -12569.49 -12554.5
9 2.786 0 0.9353 0 4.6e-2
10 2.849 3.997e-15 2.199 3.997e-15 1.8e-2
11 7.994e-17 7.105e-17 9.548e-17 6.439e-17 1.6e-2
12 5.371e-19 0.004147 0.002073 1.178e-19 9.2e-6
13 0.02095 0.006543 0.006629 0.003011 1.6e-4
14 0.998 0.998 0.998 0.998 1.22
15 0.0003441 0.0004746 0.0003807 0.0003807 5.0e-4
16 -1.0316285 -1.0316285 -1.0316285 -1.0316285 -1.03
17 0.3979 0.3979 0.3979 0.3979 0.398
18 3 3 3 3 3.02
19 -3.863 -3.863 -3.863 -3.863 -3.86
20 -3.274 -3.277 -3.279 -3.286 -3.27
21 -9.85 -9.444 -9.95 -10.05 -5.52
22 -9.771 -10.09 -10.19 -10.3 -5.52
23 -10.1 -9.997 -10.32 -10.21 -6.57

Note: bAverage minimum function values (over 50 replications) obtained using genoud.
aMean best function values (over 50 replications) reported for the ”fast” evolutionary
programming algorithm, from Yao et˜al. (1999, 85 and 88, Tables II–IV).

Table 3: Mean Values of 22 Optimized Functions
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genoud

pop.size=5000a pop.size=10000a

func. max=30 max=100 max=30 max=100 FEPb

1 9.997e-32 7.059e-32 9.562e-32 2.1e-31 1.3e-4
2 1.668e-15 1.621e-15 2.116e-15 2.102e-15 7.7e-4
3 4.568e-18 3.342e-18 4.38e-18 5.136e-18 1.4e-2
4 1.793e-16 1.758e-16 2.055e-16 2.002e-16 0.5
5 0.5638 4.921e-08 5.573e-08 4.955e-08 5.87
6 5.65 0.274 3.528 0 0
8 3.749e-10 1.071e-12 8.948e-09 6.365e-13 52.6
9 1.864 0 1.179 0 1.2e-2
10 0.7146 0 0.702 0 2.1e-3
11 1.209e-16 1.582e-16 1.289e-16 8.713e-17 2.2e-2
12 2.336e-18 0.02052 0.01466 7.423e-19 3.6e-6
13 0.03427 0.006867 0.006903 0.001508 7.3e-5
14 5.638e-12 8.894e-11 1.029e-12 4.35e-12 0.56
15 0.0001813 0.0003546 0.000251 0.0002509 3.2e-4
16 1.315e-14 9.751e-15 1.233e-14 1.054e-14 4.9e-7
17 5.422e-15 5.51e-15 4.925e-15 1.392e-14 1.5e-7
18 1.509e-13 3.477e-14 6.18e-14 2.907e-14 0.11
19 7.349e-15 1.521e-15 1.344e-14 7.255e-15 1.4e-5
20 0.05884 0.0583 0.05765 0.05504 5.9e-2
21 1.212 1.776 1.005 0.7145 1.59
22 1.937 1.269 1.052 0.7459 2.12
23 1.479 1.636 1.066 1.29 3.14

Note: aStandard deviation of the minimum function values (over 50 replications) obtained
using genoud. bStandard deviation of the best function values (over 50 replications)
reported for the ”fast” evolutionary programming algorithm, from Yao et˜al. (1999, 85 and
88, Tables II–IV).

Table 4: Standard Deviations of Values of 22 Optimized Functions
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+ sIQR <- function(y, yhat, n) {

+ IQR((y - yhat)/sqrt(yhat * (n - yhat)), na.rm = TRUE)

+ }

+ sIQR(y, m * logistic(x %*% b), m)

+ }

For this example we define LQDxmpl after we compute the simulated data, so the data vector
y, matrix x and scalar m are in scope to evaluate to have the values we simulate:

> m <- 100

> x <- cbind(1, rnorm(1000), rnorm(1000))

> b1 <- c(0.5, 1, -1)

> b2 <- c(0, -1, 1)

> y <- rbinom(1000, m, logistic(c(x[1:900, ] %*% b1, x[901:1000,

+ ] %*% b2)))

The data simulate substantial contamination. The first 900 observations are generated by one
binomial regression model while the last 100 observations come from a very different model.

Presuming we are interested in the model that generated the bulk of the data, ignoring the
contamination in a generalized linear model with the binomial family produces very poor
results:

> summary(glm1 <- glm(cbind(y, m - y) ~ x[, 2] + x[, 3], family = "binomial"))

Call:

glm(formula = cbind(y, m - y) ~ x[, 2] + x[, 3], family = "binomial")

Deviance Residuals:

Min 1Q Median 3Q Max

-22.9168 -1.1693 0.3975 1.5895 24.6439

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.439492 0.007097 61.93 <2e-16 ***

x[, 2] 0.679847 0.007985 85.14 <2e-16 ***

x[, 3] -0.716963 0.007852 -91.31 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Of course, if we knew which observations to omit the results would be much better:

> suby <- y[1:900]

> subx <- x[1:900, ]

> summary(glm2 <- glm(cbind(suby, m - suby) ~ subx[, 2] + subx[,

+ 3], family = "binomial"))

Call:

glm(formula = cbind(suby, m - suby) ~ subx[, 2] + subx[, 3],



18 rgenoud: Genetic Optimization Using Derivatives in R

family = "binomial")

Deviance Residuals:

Min 1Q Median 3Q Max

-3.21478 -0.71699 0.03528 0.67867 2.88314

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.501880 0.008036 62.46 <2e-16 ***

subx[, 2] 1.003592 0.009779 102.63 <2e-16 ***

subx[, 3] -0.984295 0.009437 -104.30 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

But in practical applications it is unknown apriori which observations should be treated as
outliers.

As the definition of LQDxmpl indicates, the LQD is based on minimizing the interquartile range
(IQR) of the standardized residuals. Because the quartiles correspond to different data points
for different values of the regression coefficients, the fitness function is not smooth, which is
to say it is not everywhere differentiable. In general, at every point in the parameter space
where the identity of the first or third quartile point changes, the function is not differentiable.
Figure˜2 illustrates this. A higher resolution version of this figure is available in Mebane and
Sekhon (2009)—also see http://sekhon.berkeley.edu/papers/rgenoudJSS.pdf.

The IQR clearly has a minimum in the vicinity of the coefficient values used to generate most
of the data. But contour plots for the numerically evaluated partial derivative with respect
to the second coefficient parameter testify to the function’s local irregularity. The function
we use to evaluate this numerical derivative is defined as follows.

> dLQDxmpl <- function(b) {

+ eps <- 1e-10

+ logistic <- function(x) {

+ 1/(1 + exp(-x))

+ }

+ sIQR <- function(y, yhat, n) {

+ IQR((y - yhat)/sqrt(yhat * (n - yhat)), na.rm = TRUE)

+ }

+ dsIQR <- vector()

+ for (i in 1:length(b)) {

+ beps <- b

+ beps[i] <- b[i] + eps

+ dsIQR <- c(dsIQR, (sIQR(y, m * logistic(x %*% beps),

+ m) - sIQR(y, m * logistic(x %*% b), m))/eps)

+ }

+ return(dsIQR)

+ }

Setting the intercept equal to 0.5, the code to generate the plotted values is

http://sekhon.berkeley.edu/papers/rgenoudJSS.pdf


Walter R. Mebane, Jr., Jasjeet S. Sekhon 19

> blen <- 3

> lenbseq <- length(bseq <- seq(-2, 2, length = 200))

> bseq3 <- seq(-1.2, -0.9, length = 200)

> bseq2 <- seq(0.89, 1.1, length = 200)

> IQRarr <- IQRarrA <- array(NA, dim = c((1 + blen), lenbseq, lenbseq))

> dimnames(IQRarrA) <- list(NULL, as.character(bseq), as.character(bseq))

> dimnames(IQRarr) <- list(NULL, as.character(bseq2), as.character(bseq3))

> for (i in 1:lenbseq) {

+ for (j in 1:lenbseq) {

+ IQRarrA[1, i, j] <- LQDxmpl(c(0.5, bseq[i], bseq[j]))

+ IQRarrA[-1, i, j] <- dLQDxmpl(c(0.5, bseq[i], bseq[j]))

+ IQRarr[1, i, j] <- LQDxmpl(c(0.5, bseq2[i], bseq3[j]))

+ IQRarr[-1, i, j] <- dLQDxmpl(c(0.5, bseq2[i], bseq3[j]))

+ }

+ }

The following code produces the plots:

> par(mfrow = c(2, 2), lwd = 0.1)

> contour(bseq, bseq, IQRarrA[1, , ], main = "IQR", xlab = "b[2]",

+ ylab = "b[3]")

> contour(bseq, bseq, IQRarrA[3, , ], main = "partial derivative w/r/t b[2]",

+ xlab = "b[2]", ylab = "b[3]")

> loc2 <- (150:160) - 5

> loc3 <- (40:50) + 5

> contour(bseq[loc2], bseq[loc3], IQRarrA[3, loc2, loc3], main = "partial derivative w/r/t b[2]",

+ xlab = "b[2]", ylab = "b[3]")

> contour(bseq2, bseq3, IQRarr[3, , ], main = "partial derivative w/r/t b[2]",

+ xlab = "b[2]", ylab = "b[3]")

If the IQR function were smooth, we would see clearly separated, slightly curved contour lines,
reflecting the nonlinearity of the logistic function, but there is nothing like that. Instead,
looking over the domain [−2, 2]2 for the second and third regression coefficient parameters,
with 200 points evaluated along each axis (the upper right plot), there is a splotchy cloud.
This reflects the fact that the derivative changes sign very frequently over the domain: of the
40,000 points at which the derivative is evaluated, it is positive at 12,460 points and negative
at 27,540 points.

The LQD fitness function is not appreciably smoother close to the true values. The bottom two
plots show the partial derivatives with respect to the second coefficient parameter evaluated
over the domain [.89, 1.1] × [−1.2,−.9]. The bottom left plot evaluates the derivatives at 11
points along each axis while the bottom right plot uses 200 points along each axis. In the left
plot it is easier to see the intricacy of the partitioning of the parameter space as the identity
of the first or third quartile point changes. The bottom right plot shows the intricacy in
fact replicates at the finer grain of the more detailed evaluations (to see this it is probably
necessary to magnify the plot while viewing online the Journal of Statistical Software version
of this documentation).12 Within this smaller domain the sign of the derivative changes even

12Please see Mebane and Sekhon (2009) or http://sekhon.berkeley.edu/papers/rgenoudJSS.pdf.

http://sekhon.berkeley.edu/papers/rgenoudJSS.pdf
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Figure 2: Contour Plots of the LQD Fitness Function and of its Partial Derivatives

more frequently than it does over the domain [−2, 2]2: the derivative is positive at 18,098
points and negative at 21,902 points.

While the LQD fitness function may be differentiable in a neighborhood of the global solution,
that neighborhood, if it exists, is clearly not very big. As likely is that the global solution
is located at a point where the function is not differentiable. Hence a numerically evaluated
gradient is not meaningful for evaluating whether the solution has been found. At the true
solution, numerical gradient values may differ substantially from zero.

To use the LQD to estimate the binomial regression model parameters we use the following
call to genoud. Because gradient information is of questionable relevance for this problem, we
turn off the termination condition that the gradient at the solution be smaller than the value
specified for the solution.tolerance argument. We retain the default setting BFGS=TRUE

because, in principle, gradient-driven optimization may help in each of the many differentiable
neighborhoods, even if it is useless across the nondifferentiable boundaries. Our experience
optimizing the LQD (Mebane and Sekhon 2004) shows that using the BFGS in this way
improves performance, even though the gradient is not useful for evaluating whether the
solution has been found.
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> LQD1 <- genoud(LQDxmpl, nvars = 3, max = FALSE, pop.size = 2000,

+ max.generations = 300, wait.generations = 100, gradient.check = FALSE,

+ print = 1)

This invocation of the LQDxmpl function matches the behavior of multinomRob in that it
produces an estimate for the intercept parameter along with the other coefficients. In a
linear regression context, the interquartile range statistic contains no information about the
intercept, so the LQD is not an estimator for that parameter. With a binomial regression
model there is some information about the intercept due to the nonlinearity of the logistic

function. The LQD estimate for the intercept should nonetheless be expected not to be very
good.

Results from the preceding estimation are as follows.

Tue Aug 7 02:27:08 2007

Domains:

-1.000000e+01 <= X1 <= 1.000000e+01

-1.000000e+01 <= X2 <= 1.000000e+01

-1.000000e+01 <= X3 <= 1.000000e+01

[...]

HARD Maximum Number of Generations: 300

Maximum Nonchanging Generations: 100

Population size : 2000

Convergence Tolerance: 1.000000e-06

Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.

Not Checking Gradients before Stopping.

Using Out of Bounds Individuals.

Minimization Problem.

Generation# Solution Value

0 4.951849e-01

56 1.298922e-01

57 1.298891e-01

59 1.298848e-01

60 1.298820e-01

61 1.298793e-01

62 1.298768e-01

63 1.298744e-01

'wait.generations' limit reached.

No significant improvement in 100 generations.
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Solution Fitness Value: 1.298743e-01

Parameters at the Solution (parameter, gradient):

X[ 1] : 8.130357e-02 G[ 1] : 9.616492e-03

X[ 2] : 8.889485e-01 G[ 2] : -1.167897e-01

X[ 3] : -9.327966e-01 G[ 3] : -3.090130e-02

Solution Found Generation 63

Number of Generations Run 164

Tue Aug 7 02:31:09 2007

Total run time : 0 hours 4 minutes and 1 seconds

Recall that the gradient is not reliably informative at the solution. To check whether this
solution is believable, we might try reestimating the model using a larger population and
larger specified number of generations:

> LQD1 <- genoud(LQDxmpl, nvars = 3, max = FALSE, pop.size = 10000,

+ max.generations = 1000, wait.generations = 300, gradient.check = FALSE,

+ print = 1)

At the price of a greatly increased running time (from four minutes up to one hour 53 minutes),
the results are better than the first run (even though the summary measure of fit is slightly
worse):

Minimization Problem.

Generation# Solution Value

0 2.238865e-01

2 1.301149e-01

3 1.300544e-01

4 1.300482e-01

6 1.300375e-01

7 1.300343e-01

8 1.300323e-01

134 1.299662e-01

135 1.299099e-01

136 1.298867e-01

137 1.298843e-01

138 1.298822e-01

139 1.298791e-01

141 1.298774e-01

'wait.generations' limit reached.
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No significant improvement in 300 generations.

Solution Fitness Value: 1.298770e-01

Parameters at the Solution (parameter, gradient):

X[ 1] : 2.013748e-01 G[ 1] : -7.394125e-02

X[ 2] : 9.526390e-01 G[ 2] : 7.807607e-02

X[ 3] : -9.642458e-01 G[ 3] : 3.834052e-02

Solution Found Generation 141

Number of Generations Run 442

Tue Aug 7 05:16:37 2007

Total run time : 1 hours 53 minutes and 45 seconds

This example demonstrates a key difficulty that arises when optimizing irregular functions
in the absence of gradients. It is difficult to assess when or whether an optimum has been
found. The estimated coefficient values are close to the ones used to generate most of the data,
except as expected the estimate for the intercept is not good. The estimates are better than
if we had ignored the possibility of contamination. But whether these are the best possible
estimates is not clear. If we were to use an even larger population and specify that an even
greater number of generations be run, perhaps a better solution would be found.

Even for less irregular problems convergence is difficult to determine. Nonlinear optimizers
often report false convergence, and users should not simply trust whatever convergence criteria
an optimizer uses. McCullough and Vinod (2003) offer four criteria for verifying the solution
of a nonlinear solver. These criteria are meaningful only for problems that meet regularity
conditions at the solution, notably differentiability, and as such are not useful for the LQD
example offered above. The four criteria are: (1) making sure the gradients are zero; (2)
inspecting the solution path (i.e., the trace) to make sure it follows the expected rate of
convergence; (3) evaluating the Hessian to make sure it is well-conditioned;13 and (4) profiling
the likelihood to ascertain if a quadratic approximation is adequate. One may need to take
the results from genoud and pass them to optim to conduct some of these diagnostic tests
such as to profile the likelihood. It is also good practice to use more than one optimizer to
verify the solution (Stokes 2004).

Note that genoud uses its own random number seeds and internal pseudorandom number
generators to insure backward compatibility with the original C version of the software and to
make cluster behavior more predictable. These seeds are set by the unif.seed and int.seed

options. The R set.seed command is ignored by genoud.

4. Conclusion

13Following an exchange with Drukker and Wiggins (2004), McCullough and Vinod (2004a) modify their
third suggestion to note that determining if the Hessian is well-conditioned in part depends on how the data
are scaled. That is, a Hessian that appears to be ill-conditioned may be made well-conditioned by rescaling.
So if an Hessian appears to be ill-conditioned, McCullough and Vinod (2004a) recommend that the analyst
attempt to determine if rescaling the data can result in a well-conditioned Hessian.
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The genoud function provides many more options than can be reviewed in this brief paper.
These options are described in the R help file. The most important option influencing how
well the evolutionary algorithm works is the pop.size argument. This argument controls the
population size—i.e., it is the number of individuals genoud uses to solve the optimization
problem. As noted above, the theorems proving that genetic algorithms find good solutions are
asymptotic in both population size and the number of generations. It is therefore important
that the pop.size value not be small. On the other hand, computational time is finite
so obvious trade-offs must be made. As the LQD example illustrates, a larger population
size is not necessarily demonstrably better. The most important options to ensure that a
good solution is found, aside from pop.size, are wait.generations, max.generations and
hard.generation.limit.

Many statistical models have objective functions that are nonlinear functions of the param-
eters, and optimizing such functions is tricky business (Altman, Gill, and McDonald 2003).
Optimization difficulties often arise even for problems that are generally considered to be sim-
ple. For a cautionary tale on how optimization can be a difficult task even for such problems
see Stokes’ (2004) effort to replicate a probit model estimated by Maddala (1992, pp. 335). A
recent controversy over estimating a nonlinear model estimated by maximum likelihood offers
another cautionary tale (Drukker and Wiggins 2004; McCullough and Vinod 2003, 2004b,a;
Shachar and Nalebuff 2004). End users are generally surprised to learn that such optimiza-
tion issues can arise, and that results can substantially vary across optimizers and software
implementations.

The rgenoud package provides a powerful and flexible global optimizer. When compared
with traditional derivative-based optimization methods, rgenoud performs well (Sekhon and
Mebane 1998). Optimization of irregular functions is, however, as much of an art as science.
And an optimizer cannot be used without thought even for simple surfaces, let alone spaces
that require a genetic algorithm. We hope that the availability of a scalable global optimizer
will allow users to work with difficult functions more effectively.
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