
A tutorial for the sendplot R package

Lori A. Shepherd, John A. Kirchgraber Jr., and Daniel P. Gaile

January 8, 2010

Statistical Genetics and Genomics Research Group
Department of Biostatistics, University at Buffalo

New York State Center of Excellence in Bioinformatics and Life Sciences

las65@buffalo.edu

Contents

1 Introduction 2

2 xy.send: scatter-plot wrapper 4
2.1 specifying the plot call . 4
2.2 specifying the interactive points, tool-tip content, and incorpo-

rating hyperlinks . 6
2.3 specifying the image.size and spot radius 6
2.4 creating the xy.send example output 7
2.5 summary of code used to generate the sendxy example 7

3 imagesend: image wrapper 9
3.1 specifying the plot call . 9
3.2 specifying the interactive points, tool-tip content, and hyperlinks 10
3.3 specifying the image.size and spot radius 12
3.4 creating the imagesend example output 12
3.5 summary of code used to generate imagesend example 12

4 heatmap.send: heatmap wrapper 15
4.1 specifying the plot call . 16
4.2 specifying the interactive points,tool-tip content, and hyperlinks 16
4.3 specifying the image.size and spot radius 18
4.4 creating the heatmap.send example output 18
4.5 summary of code used to generate the heatmap.send example . . 20

1

5 Interactive Layout of Plots 21
5.1 initSplot: Initializing the ’Splot’ Object 21

5.1.1 specifying the plot call . 22
5.1.2 Setting the device . 29
5.1.3 Returning and Saving Splot Object 31
5.1.4 Running initSplot . 31

5.2 First Look at Data: Static plot 31
5.3 makeImap: Adding Interactive Tool-tip Regions 31

5.3.1 specifying the interactive points 32
5.3.2 specifying tool-tip data 33
5.3.3 altering tool-tip display 35
5.3.4 Generated objects and Files 36
5.3.5 Comments on automap feature and helpful hints 36
5.3.6 Examples of makeImap 37

5.4 makeSplot: Making the Plot . 50
5.5 Extra Functions . 52

5.5.1 addDefault: Add Default Tool-tip Region 52
5.5.2 removeImap: Removing Interactive Regions 54

6 closing remarks 55

1 Introduction

The functions in the sendplot library allow R users to generate interactive plots
with tool-tip content. A pair of files are created : a Portable Network Graph-
ics (PNG) file which is a bitmap image [or Joint Photographic Experts Group
(JPEG)] and an HTML file which contains embedded Javascript code for dy-
namically generating tool-tips. When opened with a supported browser, the
HTML file displays the PNG [JPEG] image and the user is able to mouse over
and view tool-tip windows for user specified image locations. The information
that appears in the tool-tip windows is user specified and highly customizable.
The tool-tip functionality is provided by code from the wz tooltip.js Javascript
library (Zorn 2007) which is embedded in the HTML output.

There are three main functions of the ’sendplot’ library: initSplot, makeImap,
and makeSplot. They allow for the generation of a layout containing any num-
ber of interactive or decorative (non-interactive) plots. The library also contains
three convenient wrapper functions: xy.send, imagesend, and heatmap.send.
Brief descriptions of the six functions are as follows:

� xy.send : this function produces an interactive xy plot without any deco-
rative plots (i.e., just a single scatter-plot).

� imagesend : this function produces an interactive image plot without any
decorative plots (i.e., just a single image plot).

2

� heatmap.send : this function is a wrapper for the R stats package heatmap.
This will create an interactive heatmap image. NOTE: The majority of
the code for this function is verbatim from the R package stats heatmap
function. This function was designed to work as a wrapper to utilize the
same functionality and plotting as the heatmap function with sendplot’s
interactive functionality.

� initSplot : this function creates an object of the type ’Splot’ which holds
all information to generate a static layout of plots.

� makeImap : this function adds image mapping information to the Splot
object to allow for figure interactivity.

� makeSplot : this function produces an interactive (or static) layout of
plots.

The creation of interactive plots with tool-tip content requires the develop-
ment of the following components:

1. The static plot image. The library supports the following: a simple xy-plot
(xy.send), a simple image plot (imagesend), a heatmap with decorative
dendrograms (heatmap.send), or a flexible layout of plots (makeSplot).
The functions in the sendplot library allow for the full complement of
graphical bells and whistles which are available in R (e.g., custom axes,
inclusion of legends, math symbols, etc.).

2. The plotted point to pixel mapping. The sendplot functions output an
HTML file and a PNG image. The HTML file contains an image map
which identifies the interactive regions of the PNG image (i.e., the regions
for which a tool-tip will appear). The image map requires a mapping of the
plotted point coordinates as specified in the R plotting calls that generated
them to the corresponding pixel location on the final PNG image. The
sendplot functions build this map by identifying the upper-left and lower-
right locations in the original plotting coordinate system and in the final
pixel coordinate system.

3. The tool-tip content lists. The sendplot functions allow users to specify
x-specific, y-specific, and point specific (e.g., xy-specific) information to
be displayed in the tool-tip.

Important Note: The sendplot library utilizes one system requirements:
libtiff. The libtiff application is utilized by the required dependent package
rtiff. This is used for comparing tiff images. The libtiff application is free for
download at www.libtiff.org. Users may need system administrative privledges
to install new applications on their computer; If this is the case, see your own
IT department for assistance in installing.

3

The remainder of this document will provide detailed tutorials for the use of
the functions: xy.send, imagesend, heatmap.send, and the other main sendplot
functions. All sections assume library has been loaded:

> library(sendplot)

A temporary direct will also be used to store all output files created:

> direct = paste(tempdir(), "/", sep = "")

> direct

[1] "/tmp/RtmpdjW3EO/"

Note: This directory may be changed to the users preference. Simply set
direct to the path of the desired directory.

Important Note: The sendplot output has been tested on Firefox and
Internet Explorer browsers. Internet Explorer users may need to modify their
preferences to allow blocked content, as Internet Explorer may initially block
the scripts from running. A warning message normally appears towards the top
of the browser; if the user click on this warning it will give an option to allow
blocked content.

2 xy.send: scatter-plot wrapper

The xy.send function creates a single interactive scatter-plot. The following is
an example function call:

xy.send(plot.call,
x.pos,y.pos,
plot.extras = NA,
mai.mat=NA, mai.prc=FALSE,
xy.labels=NA,
image.size="800x1100",
spot.radius = 5,
fname.root="Splot",dir="./",
window.size = "800x1100",...)

2.1 specifying the plot call

The plot.call argument is a character string containing the call for the desired
scatter-plot. For example, consider the mtcars datasets provided to R users
through the dataset package: the desired scatter-plot is gross horsepower vs
miles per gallon.

4

Figure 1: scatter-plot using the mtcars dataset

The following example plot.call argument will generate the plot in figure 1.

plot.call=c("plot(x.pos,y.pos,xlab='gross horsepower',
ylab='miles per gallon',axes=F,pch=mtcars$cyl,
col=mtcars$am+1,cex=0.875,
main='Motor Trend Car Road Tests');axis(1)")

Notice that the call is a character string that will be evaluated as multiple
function calls separated by a semicolon. Arguments of type character within
these calls are specified with a single quotation rather than the double quota-
tions used originally, or vice versa (see xlab argument). Any variables used in
arguments (x.pos,y.pos in our example) should be in local memory before run-
ning the xy.send function call.

plot.extras is a list that contains additional expressions or plot calls. Each
element of the list is a character string to be evaluated as R functions. This can
be used to add plotting features such as axes, legends, etc.

The following adds an axis line and a legend to the example plot.

plot.extras=c("axis(2);
legend(200,25,pch=rep(c(4,6,8),2),

col=c(rep(1,3),rep(2,3)),
legend=paste(rep(c(4,6,8),2),'cylinders,',
c('automatic','manual')[c(rep(1,3),rep(2,3))]),

cex=0.875)")

5

Margins for the figure may be controlled through the mai.mat and mai.prc
arguments. The mai.mat argument is a matrix n x 4 where n is the number of
figures; for this wrapper mai.mat is a 1x4 matrix. The four columns represent
the bottom, left, top, and right margins respectively. These values are passed
into R’s par(mai=) function. If mai.mat’s values are a percentage of the original
margins, mai.prc should be tripped to TRUE, if the values are values to be used
for the margins then mai.prc is FALSE.

2.2 specifying the interactive points, tool-tip content, and
incorporating hyperlinks

The x.pos and y.pos arguments are the x and y coordinates of desired interactive
points. This allows the user to decide if all points, a subset of points, or if any
additional hidden/phantom points are interactive. In the example, all points
will be interactive.

y.pos=mtcars$mpg
x.pos=mtcars$hp

The argument xy.labels control what is displayed in the interactive window
when the user hovers the mouse over plot points.

xy.labels = data.frame(name=rownames(mtcars),mtcars=mtcars)

Note: the function assumes the data.frame rows are in the same order as
they appear in the x.pos (y.pos) argument.

The additional arguments that may be passed into xy.send are any other
parameters of the makeImap function. This includes asLinks and xy.links to
add hyperlinks to tool-tip or to make the points themselves hyperlinks, as well
as arguments for tool-tip display. See section 5.3 for more details on makeImap.

2.3 specifying the image.size and spot radius

The image.size determines the device width and height.
The spot.radius argument controls how large an area will be active when the

mouse is scrolled over. If the user selects a larger region, some spot locations
may overlap and be lost. The interactive application is very sensitive if the user
selects a low region. The users’ discretion is best used here given that the figure
size, plot scale and number of data points will also play a role in determining a
good spot.radius.

6

Figure 2: interactive scatter-plot using the mtcars dataset opened in Firefox web
browser. Notice the tool-tip display box that appears for the specified point

2.4 creating the xy.send example output

The xy.send function will use dir and fname.root to generate file names for the
image (png or jpeg) and the html file. The following will create the files for the
given example:

xy.send(plot.call=plot.call,
y.pos=y.pos,x.pos=x.pos,
xy.labels = xy.labels,
plot.extras=plot.extras,
image.size="800x600",
fname.root="exPlotXY",
dir=direct,
font.size=18)

2.5 summary of code used to generate the sendxy example

The following is a summary of all code run to make the above example:

7

library("sendplot")

y.pos=mtcars$mpg
x.pos=mtcars$hp

plot.call=c("plot(x.pos,y.pos,xlab='gross horsepower',
ylab='miles per gallon',axes=F,pch=mtcars$cyl,
col=mtcars$am+1,cex=0.875,
main='Motor Trend Car Road Tests');axis(1)")

plot.extras=c("axis(2);
legend(200,25,pch=rep(c(4,6,8),2),

col=c(rep(1,3),rep(2,3)),
legend=paste(rep(c(4,6,8),2),'cylinders,',
c('automatic','manual')[c(rep(1,3),rep(2,3))]),

cex=0.875)")

xy.labels = data.frame(name=rownames(mtcars),mtcars=mtcars)

xy.send(plot.call=plot.call,
y.pos=y.pos,x.pos=x.pos,
xy.labels = xy.labels,
plot.extras=plot.extras,
image.size="800x600",
fname.root="exPlotXY",
dir=direct,
font.size=18)

And there you have it, an interactive scatter-plot!

8

3 imagesend: image wrapper

The imagesend function creates a single interactive image. The following is an
example function call:

imagesend(plot.call,
x.pos, y.pos,
xy.type,
plot.extras = NA,
mai.mat=NA, mai.prc=FALSE,
xy.labels=NA,
image.size="800x1100",
spot.radius = 5,
fname.root="Splot",
dir="./",
window.size = "800x1100",...)

For the most part the arguments for imagesend are consistent with those for
xy.send.

3.1 specifying the plot call

As with the xy.send function, the plot.call argument is a character string con-
taining the call for the desired image plot. Consider the following example data
from the mtcars dataset:

carsX = as.matrix(mtcars)
carsX <- sweep(carsX, 2, colMeans(carsX, na.rm = T))

sx <- apply(carsX, 2, sd, na.rm = T)
carsX <- sweep(carsX, 2, sx, "/")

x = 1:dim(carsX)[2]
y = 1:dim(carsX)[1]
z = t(carsX)

The following constructs a plot.call argument for figure 3.

plot.call = "image(x=x,y=y, z=z,
axes = FALSE, xlab = '', ylab = '');

axis(1,1:dim(carsX)[2],
labels=colnames(carsX),

9

Figure 3: heatmap image using the mtcars dataset

las = 2, line = -0.5, tick = 0,cex.axis =1);
axis(4,1:dim(carsX)[1],

labels=rownames(carsX),
las = 2, line = -0.5, tick = 0,cex.axis =.8)"

Notice how the call is a character string that will be evaluated as multiple
function calls separated by a semicolon. Arguments of type character within
these calls are specified with a single quotation rather than the double quota-
tions used originally, or vice versa. Any variables used in arguments (x,y,z in our
example) should be in local memory before running the imagesend function call.

The mai.mat and mai.prc arguments function the same as in the xy.send
function; see section 2.1. The following sets the margins for the image.

mai.mat = matrix(c(1,.2,.2,1.5), ncol=4)
mai.prc = FALSE

3.2 specifying the interactive points, tool-tip content, and
hyperlinks

The x.pos and y.pos arguments are the x and y values to be used for interactive
regions; generally these will be the same as the x and y arguments of the image
call. x and y may be the locations of the grid lines at which the values of z corre-
spond or the midpoints of the regions of the image. xy.type will determine how

10

x.pos and y.pos are treated: options include image.midpoint, image.boundaries,
and image.box among others. For complete listing of xy.type options see section
5.3. The additional arguments in the imagesend function call refer to any other
arguments to be passed into the makeImap function; see section 5.3 for more
details. This includes but is not limited to the x.labels, y.labels, xy.links, y.link,
x.links, and arguments for controlling the tool-tip window display.

As with the xy.send function, the arguments x.labels, y.labels, and xy.labels
control what is displayed in the interactive window when the user hovers the
mouse over designated points. The arguments x.labels and y.labels refer to data
that is specific to the x and y values respectively. x.labels and y.labels are
data.frames of the dimension n by m, where n is equal to the length of x or y
respectively. Each row is specific to a certain x or y value and each column is
a unique variable or characteristic of x or y respectively. The first row of the
data frames should contain column headers; these names will be used as dis-
play names in the interactive window that appears. The xy.labels argument is
a little different because it governs data specific to both x and y locations. The
function argument xy.labels is a list of matrices; each matrix is of the dimen-
sion n by m, where n is equal to the length of y and m is equal to the length of x.

Consider the mtcars example dataset:

xy.labels=list(value=round(carsX,3))

x.labels=data.frame(
label=colnames(carsX),
description=c("Miles/(US) gallon",

"Number of cylinders",
"Displacement (cu.in.)",
"Gross horsepower",
"Rear axle ratio",
"Weight (lb/1000)",
"1/4 mile time",
"V/S",
"Transmission (0 = automatic, 1 = manual)",
"Number of forward gears",
"Number of carburetors")

)

Note: The function assumes the data.frame rows are in the same order as
they appear in the x.pos argument (or y.pos argument if y.labels).

As with the xy.send function, any of the hyperlink may be included through
the asLinks, x.links, y.links, or xy.links arguments. The x.link, y.links and
xy.links behave the same as x.labels, y.labels, and xy.labels respectively; they
however, contain complete web addresses as character strings. For an image,

11

asLinks has several acceptable forms. It may be a matrix or data frame of the
dimensions n by m, where n is equal to the length of y and m is equal to the
length of x. asLinks may also be a vector of length equal to length of x times
length of y, thus a vector version of the fore-mentioned matrix or data frame.
These options may be useful when xy specific hyperlinks are desired (similar
to an xy.lbls argument). asLinks may also be a vector of length equal to the
length of x or y, indicating x, or y, specific hyperlinks. If asLinks is of length x,
the vector will be repeated length of y so that every similar x value will be the
same hyperlink, and vice versa for y. If asLinks is of length one and is not NA,
the value will be repeated for every grid location. NA represent a point that is
not a hyperlink. Every asLink entry should be a character string for a complete
web address or NA. Additional arguments for the makeImap function may be
utilized. For more information and examples see section 5.3

3.3 specifying the image.size and spot radius

The image.size and spot.radius argument for imagesend are the same as in
xy.send. Please refer to section 2.3.

3.4 creating the imagesend example output

The imagesend function will use dir and fname.root to generate file names for
the image (png or jpeg) and the html file. The following will create the files for
the given example:

imagesend(plot.call=plot.call,
y.pos=y,x.pos=x,
mai.mat=mai.mat, mai.prc=mai.prc,
xy.type="image.midpoints",
x.labels=x.labels,
xy.labels = xy.labels,
image.size="800x600",
dir=direct,
fname.root="exPlotImage",
font.size=18)

3.5 summary of code used to generate imagesend example

The following is a summary of all code run to make the above example:

library("sendplot")

carsX = as.matrix(mtcars)

12

Figure 4: interactive heatmap image using the mtcars dataset, viewed using the
Firefox web browser. Notice the tool-tip displayed for the identified region.

13

carsX <- sweep(carsX, 2, colMeans(carsX, na.rm = T))
sx <- apply(carsX, 2, sd, na.rm = T)
carsX <- sweep(carsX, 2, sx, "/")

x = 1:dim(carsX)[2] ; y = 1:dim(carsX)[1] ; z = t(carsX)

plot.call = "image(x=x,y=y, z=z,
axes = FALSE, xlab = '', ylab = '');

axis(1,1:dim(carsX)[2],
labels=colnames(carsX),
las = 2, line = -0.5, tick = 0,cex.axis =1);

axis(4,1:dim(carsX)[1],
labels=rownames(carsX),
las = 2, line = -0.5, tick = 0,cex.axis =.8)"

mai.mat = matrix(c(1,.2,.2,1.5), ncol=4)
mai.prc = FALSE

xy.labels=list(value=round(carsX,3))

x.labels=data.frame(
label=colnames(carsX),
description=c("Miles/(US) gallon","Number of cylinders",

"Displacement (cu.in.)",
"Gross horsepower",
"Rear axle ratio",
"Weight (lb/1000)",
"1/4 mile time",
"V/S",
"Transmission (0 = automatic, 1 = manual)",
"Number of forward gears",
"Number of carburetors")

)

imagesend(plot.call=plot.call,
y.pos=y,x.pos=x,
mai.mat=mai.mat, mai.prc=mai.prc,
xy.type="image.midpoints",
x.labels=x.labels,
xy.labels = xy.labels,
image.size="800x600",
fname.root="exPlotImage",
dir=direct,
font.size=18)

And there you have it, an interactive image!

14

4 heatmap.send: heatmap wrapper

The heatmap.send function creates a interactive heatmap image in the style
of the R stats package heatmap function. This is a wrapper connecting the
heatmap function of the R stats package with sendplot. The majority of the
code for this function is verbatim from the R package stats heatmap function.
This function was designed to work as a wrapper to utilize the same functionality
and plotting as the heatmap function with sendplot’s interactive functionality.
Authors of heatmap code used in our code: Andy Liaw, original; R. Gentleman,
M. Maechler, W. Huber,revisions. The following is an example function call:

heatmap.send(x,
Rowv = NULL,
Colv = if (symm) "Rowv" else NULL,
distfun = dist,
hclustfun = hclust,
reorderfun = function(d,w) reorder(d, w),
add.expr,
symm = FALSE,
revC = identical(Colv,"Rowv"),
scale = c("row", "column", "none"),
na.rm = TRUE,
margins = c(5, 5),
ColSideColors,
RowSideColors,
cexRow = 0.2 + 1/log10(nr),
cexCol = 0.2 + 1/log10(nc),
labRow = NULL,
labCol = NULL,
main = NULL,
xlab = NULL,
ylab = NULL,
keep.dendro = FALSE,
verbose = getOption("verbose"),
x.labels=NA,y.labels=NA,
xy.labels=NA,x.links=NA,
y.links=NA,xy.links=NA,
asLinks=NA, x.images=NA,
y.images=NA, xy.images=NA,
spot.radius=5,
source.plot=NA,
image.size="800x1100",
fname.root="test",dir="./",
header="v2",window.size = "800x1100",
...)

15

Note: Most of the arguments in this function are arguments for the stats
package function heatmap. The reader is referred to heatmap documentation
for additional information regarding arguments which are common to both func-
tions..

4.1 specifying the plot call

The function heatmap.send differs from the previous functions, xy.send and
imagesend, in that there is no plot.call argument. The heatmap function in the
R stats package takes in a matrix of values, x, and makes a corresponding image.
The mtcars example from the datasets package will be use to create figure 5:

x = as.matrix(mtcars)

4.2 specifying the interactive points,tool-tip content, and
hyperlinks

As with the xy.send function, the arguments x.labels, y.labels, and xy.labels
control what is displayed in the interactive window when the user hovers the
mouse over plot points. The arguments x.labels and y.labels refer to data that is
specific to the x and y values respectively. x.labels and y.labels are data.frames.
x.labels is of the dimension n by m where n is equal to the width of the argument
x. y.labels is of the dimension n by m where n is equal to the length of the
argument x. Each row is specific to a certain x or y value and each column is
a unique variable or characteristic of x or y respectively. The first row of the
data frames should contain column headers; these names will be used as display
names in the interactive window that appears. xy.labels refers to data that is
specific to both x and y location. The function argument xy.labels is a list of
matrices; each matrix should be of the same dimensions as x.

xy.labels=list(value=x)

x.labels=data.frame(
label=colnames(x),
description=c("Miles/(US) gallon","Number of cylinders",

"Displacement (cu.in.)",
"Gross horsepower",
"Rear axle ratio",
"Weight (lb/1000)",
"1/4 mile time",
"V/S",
"Transmission (0 = automatic, 1 = manual)",
"Number of forward gears",
"Number of carburetors")

16

Figure 5: heatmap image using the mtcars dataset utilizing R’s heatmap func-
tion

17

)

Note: The function assumes the data.frame rows are in the same order as
they appear in the x argument.

As with the send.image function, asLinks is used to make grid locations hy-
perlinks. Also, the arguments x.links, y.links, and xy.links are used to display
hyperlinks in the interactive window. The x.images, y.images, and xy.images ar-
guments are used to display images in the interactive window. Other additional
arguments for the makeImap function may be utilized. Please refer to section
5.3.

The heatmap function allows for a few different options including color-coded
bars for x and y samples, as well as clustering. The following code creates a
schema of colors for samples.

color bars for samples
rc = rainbow(nrow(x), start=0, end=.3)
cc = rainbow(ncol(x), start=0, end=.3)

4.3 specifying the image.size and spot radius

The image.size and spot.radius argument for heatmap.send are the same as in
xy.send. Please refer to section 2.3.

4.4 creating the heatmap.send example output

The heatmap.send function will use dir and fname.root to generate file names
for the image (png or jpeg) and the html file. The following will create the files
for the given example:

heatmap.send(x, scale="column",
xy.labels = xy.labels,
x.labels=x.labels,
RowSideColors = rc,
ColSideColors = cc,
margin=c(5,10),
xlab = "specification variables",
ylab= "Car Models",
main = "mtcars data",
fname.root="exHeat",
dir=direct,
font.size=18,image.size="600x900")

18

Figure 6: interactive heatmap image using the mtcars dataset utilizing R’s
heatmap function. Notice the tool-tip displayed for the identified region

19

4.5 summary of code used to generate the heatmap.send
example

The following is a summary of all code run to make the above example:

library("sendplot")

x = as.matrix(mtcars)
rc = rainbow(nrow(x), start=0, end=.3)
cc = rainbow(ncol(x), start=0, end=.3)

xy.labels=list(value=x)

x.labels=data.frame(
label=colnames(x),
description=c("Miles/(US) gallon","Number of cylinders",

"Displacement (cu.in.)",
"Gross horsepower",
"Rear axle ratio",
"Weight (lb/1000)",
"1/4 mile time",
"V/S",
"Transmission (0 = automatic, 1 = manual)",
"Number of forward gears",
"Number of carburetors")

)

heatmap.send(x, scale="column",
xy.labels = xy.labels,
x.labels=x.labels,
RowSideColors = rc,
ColSideColors = cc,
margin=c(5,10),
xlab = "specification variables",
ylab= "Car Models",
main = "mtcars data",
fname.root="exHeat",
dir=direct,
font.size=18,image.size="600x900")

And there you have it, an interactive heatmap!

20

5 Interactive Layout of Plots

There are three main functions for creating an interactive layout of plots. These
functions are:

initSplot: initializes a ’splot’ object

makeImap: adds tool-tip data to ’splot’ object

makeSplot: uses ’splot’ object to create static display and interactive HTML

This section will look at each of these functions in more detail as well as two
other functions: addDefault and removeImap.

5.1 initSplot: Initializing the ’Splot’ Object

The initSplot function creates a sendplot ’Splot’ object. This object holds all
information needed to generate a static layout of plots. The following is an
example function call:

initSplot(mat,
plot.calls,
Iflag=NA, figTypes=NA,
mai.mat=NA, mai.prc=FALSE,
plot.extras = NA,
source.plot=NA,image.size="800x1100",
pointsize=12, res=NA,
ps.paper="letter",ps.width=8,ps.height=11,
returnVl=T,
saveFlag=F,saveName="Splot.RData")

We provide the code below to generate the interactive plot displayed in Fig-
ure 7. The plot is does not constitute a practical use example, rather it serves
to illustrates many of the capabilities sendplot has to offer.

21

5.1.1 specifying the plot call

This section will define the following initSplot arguments:

mat: numeric matrix governing plot layout

plot.calls: character vector of desired plot calls

Iflag: numeric vector indicating which plots have interactive data

figTypes: character vector of the figures’ plot type E.g. ’scatterplot’,’image’,’heatmap’,’tiling’

mai.mat: numeric matrix indicating plot margins

mai.prc: logical indicating if mai.mat is a percentage of default settings

plt.extras: character vector of additional plotting

The first argument of initSplot, mat, is a numeric matrix that is passed into
the R graphics package function layout. The example will be a layout with four
figures.

mat = matrix(c(rep(c(rep(4,8),rep(0,5)),2),
rep(c(rep(1,8),rep(3,5)),6),
rep(c(rep(2,8),rep(3,5)),4)),
byrow=T, ncol=13)

This results in the following matrix:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 4 4 4 4 4 4 4 4 0 0 0 0 0
[2,] 4 4 4 4 4 4 4 4 0 0 0 0 0
[3,] 1 1 1 1 1 1 1 1 3 3 3 3 3
[4,] 1 1 1 1 1 1 1 1 3 3 3 3 3
[5,] 1 1 1 1 1 1 1 1 3 3 3 3 3
[6,] 1 1 1 1 1 1 1 1 3 3 3 3 3
[7,] 1 1 1 1 1 1 1 1 3 3 3 3 3
[8,] 1 1 1 1 1 1 1 1 3 3 3 3 3
[9,] 2 2 2 2 2 2 2 2 3 3 3 3 3
[10,] 2 2 2 2 2 2 2 2 3 3 3 3 3
[11,] 2 2 2 2 2 2 2 2 3 3 3 3 3
[12,] 2 2 2 2 2 2 2 2 3 3 3 3 3

Note: In layout, zero acts as a region in which no graph is displayed, a
buffer. Notice the use of zero to allow the width of the first and fourth plot to
line up in the example.

22

Figure 7: Layout of multiple figures

23

Figure 8: box display of layout

24

Figure 9: plot 1 of the layout is a boxplot

Figure 8 displays a box version of the above layout.

The plot.calls argument is a character vector containing the desired plot
calls for all graphs. The order of the plot.calls should correspond to the desired
plotting region in the layout. The plot calls argument for the example is of
length four:

plot.calls = c(
"boxplot(count ~ spray, data = InsectSprays, col = 'lightgray')",

"plot(1:3,1:3, col='blue', xlab='', ylab=''); points(1:2, 2:3, col='red')",

"image(1:2,1:3, z=matrix(myX,ncol=3,nrow=2), xlab='', ylab='')",

"plot(cos, xlim = c(-pi,3*pi), n = 1001, col = 'blue', xlab='', ylab='')")

The first plot call (given figure 9) creates a boxplot that looks like:

boxplot(count ~ spray, data = InsectSprays, col = 'lightgray')

25

Figure 10: plot 2 of the layout is a scatterplot

The second plot call (given figure 10) creates a scatterplot of three blue
points in a diagonal and two red points in a parallel diagonal.

plot(1:3,1:3, col='blue', xlab='', ylab=''); points(1:2, 2:3, col='red')

The third plot call, given by:

image(1:2,1:3, z=matrix(myX,ncol=3,nrow=2), xlab='', ylab='')

creates a 2x3 image seen in figure 11.

The last plot.call, given by:

plot(cos, xlim = c(-pi,3*pi), n = 1001, col = 'blue', xlab='', ylab='')

creates a cosine curve seen in figure 12.

Note: Axis and additional plotting such as rectangles have not yet been
plotted. Additional expressions, such as these, can be evaluated on the plots
through this argument or the sendplot argument plot.extras, which will be dis-
cussed in detail later in this section.

26

Figure 11: plot 3 of the layout is an image

Figure 12: plot 4 of the layout is a curve

27

Arguments of type character within any of the character strings are specified
with a single quotation rather than the double quotations used originally, or vice
versa (see second string’s leaflab argument). Any variables used in plot calls
should be in local memory before running the sendplot function. The following
code initializes variables needed for above plot calls:

myX = c(-1,-10,1,10,-5,0)

The arguments Iflag and figType indicate features about each figure. Iflag,
short for interactive flag, is a logical vector of length equal to the maximum
value in mat. This tells the function which of the figures are going to have tool-
tip functionality. This will get automatically updated when interactive tool-tip
mappings are assigned to a figure (through makeImap). The function loops over
all figures designated as interactive to make a complete image map for tool-tip
functionality. figType indicates what type of graph is displayed, e.g. scatter-
plot, image, heatmap, tiled (feature coming soon). This, therefore is a character
vector also of length equal to the maximum value in mat. Currently, this vector
is not used but is implemented in the design in preparation for a tiled heatmap
setting.

The initSplot arguments mai.mat and mai.prc control the margins for each
plot in the display. The mai.mat argument is a numeric n x 4 matrix, where n
is the length of plot calls. Each row of mai.mat is passed into the R graphics
package function par specifying mai. The four columns represent the margins:
bottom, left, top, and right respectively. The first row corresponds to the mar-
gins for layout designates ’1’, the second row to layout designates ’2’ and so
forth. If the numeric values in the mai.mat represent a percentage of the de-
fault margins, the argument mai.prc=TRUE. The following sets up margins for
Figure 7.

mai.mat = matrix(.5,ncol=4,nrow=4)
mai.prc = FALSE

Note: If figure margins are too large, an error will occur when plotting. Er-
ror messages such a ’Error figure margins too large’ can sometimes be eliminated
by decreasing the values in mai.mat.

plot.extras contains additional expressions or plot calls for each displayed
plot. plot.extras is a list which contains sub-lists corresponding to each plot in
plot.calls. Each of these sub-lists is a list of character strings to be evaluated as R
functions. Additional rectangular regions are added to the first plot, a polygon
is added to the second plot, and titles are added to the third and fourth plots.
This is achieved with the following:

plot.extras=list(
figure1= "rect(xleft=c(3,1), ytop=c(25,5),xright=c(4,2),ybottom=c(20,0));

title(main='A', cex=3)",

28

figure2=list(c("polygon(x=c(2,2.5,3,2.5), y=c(1,2.5,1,1.5))"),
c("title(main='B', cex=3)")),

figure3 ="title(main='C', cex=3)",
figure4="title(main='D', cex=3)")

Arguments of type character within any of the character strings are specified
with a single quotation rather than the double quotations used originally, or vice
versa (see main argument).

Looking at the second plot’s sub-list, there are two additional calls: one to
add a title and another to make a title.

[[1]]
[1] "polygon(x=c(2,2.5,3,2.5), y=c(1,2.5,1,1.5))"

[[2]]
[1] "title(main='B', cex=3)"

Note: Alternatively, some of the plot.extras argument could have been in-
cluded in the original plot.calls argument. The original character string can
contain multiple calls separated by a semicolon. The same technique can be
used for the plot.extras argument. For example, the first plot.extras argument
is the following:

"rect(xleft=c(3,1), ytop=c(25,5),xright=c(4,2),
ybottom=c(20,0));title(main='A', cex=3)"

Notice how there are two separate calls: one to make the rectangles and one
to add a title. If we look back at the second plot call, this technique is already
used:

"plot(1:3,1:3, col='blue', xlab='', ylab=''); points(1:2, 2:3, col='red')"

The plot.extras arguments for the second plot (given above) could have been
added to the plot.calls argument resulting in the following:

"plot(1:3,1:3, col='blue', xlab='', ylab=''); points(1:2, 2:3, col='red');
polygon(x=c(2,2.5,3,2.5), y=c(1,2.5,1,1.5));title(main='B', cex=3)"

5.1.2 Setting the device

This section will define the following initSplot arguments:

source.plot: Determines which device is used; may be NA, ”ps”, ”png”,”jpeg”,
or ”tiff”

29

image.size: character indicating device size value. If source.plot is ”png”,”jpeg”,
or ”tiff” , the argument is parsed and the dimensions are passed into the
R grDevices package function png (or jpeg) as the width and height ar-
guments. If source.plot is ”ps”, image.size is passed as part of a system
convert command converting the postscript to the .png. The original im-
age is resized to this dimension expanding condensed images or vice versa.

pointsize: pointsize of image. passed into device call

res: resolution of image, passed into device call if source.plot is ”png” or ”jpeg”

ps.paper: postscript paper argument if source.plot is ”ps”

ps.width: postscript width argument (only used if ps.paper=”special”)

ps.height: postscript height argument (only used if ps.paper=”special”)

The source.plot argument controls what file formats are created. The inter-
active html file requires either a .png file or a .jpeg. The arugment may be a
character vector of any combination of the four values. If ”png” or ”jpeg” are
not specified or if NA, source.plot will default to make a ”png”.

If the source.plot argument is set to ”png”,”jpeg”, or ”tiff”, the width and
height arguments for the device are determined by image.size. The image.size
argument is a character that, in this case, is parsed on the letter ”x” to re-
trieve the width and height in pixels. The default image.size value is a standard
800 by 1100 (See below). The initSplot argument res may also be given if the
source.plot is ”png” or ”jpeg”. This is passed into the png and jpeg functions as
the res argument, representing the nominal resolution in dpi.

The example uses the standard 800 x 1100 size:

image.size="800x1100"

If the source.plot argument is set to ”ps” then a postscript file is generated
and then converted (using the ’convert’ command in linux or a user specified
application in windows) to the PNG format. When converting, the postscript
will be resized to image.size. The ps.paper, ps.width, and ps.height arguments
specify the dimensions of the postscript output. If the ps.paper argument is set
to a recognized format such as “letter” or “a4”, then the ps.width and ps.height
arguments are ignored. If the ps.paper argument is set to “special” then the
postscript dimensions are governed by ps.height and ps.width.

The initSplot argument pointsize is passed into the device function (ps, png,
jpeg) as its pointsize argument. This is the default pointsize of plotting text.

30

5.1.3 Returning and Saving Splot Object

There are three arguments involved in returning or saving the Splot object. If
returnVl, a logical, is TRUE the object will be returned. If saveFlag, also a
logical, is TRUE, the object will be saved to a file. The file name used will
be the argument saveName, by default ”Splot.RData” in the current working
directory.

5.1.4 Running initSplot

The following call will generate the Splot object for the given example:

Splot = initSplot(mat=mat, plot.calls=plot.calls,
mai.mat=mai.mat,
plot.extras=plot.extras)

Now that the Splot object is created, interactive regions for tool-tip func-
tionality may be added to the plot.

5.2 First Look at Data: Static plot

A brief note: it is possible to make a static version of the layout of figures
created with the initSplot function call. The makeSplot function, which will be
discussed in detail in section 5.4, may be run at any time on the Splot object. If
makeImap has not been utilized yet, or if makeSplot is run with the argument
makeInteractive as FALSE, then a static layout of plots is generated.

Splot = makeSplot(Splot, fname.root="FirstLookEx", dir=direct,
makeInteractive=FALSE, returnObj=TRUE)

This may be handy to verify the figure is generated to preference before
adding interactive data, or to test if the interactive data is added to the plot
correctly. If the user is using R plotting functions that generate some output
object, the output will also be saved to the Splot object. This may be useful
for finding information or indices for tool-tip regions.

5.3 makeImap: Adding Interactive Tool-tip Regions

The Splot object has been created. Now lets add to tool-tip functionality. The
makeImap function may be run any number of times. This function adds data
that will be included in the tool-tip display of the HTML. The following is an
example function call:

makeImap(Splot, x.pos, y.pos,
figure=1,
xy.type=NA,
x.right.pos=NA, y.bottom.pos=NA,

31

spot.radius = 5,
x.labels=NA,y.labels=NA,xy.labels=NA,
x.links=NA, y.links=NA,xy.links=NA,
asLinks=NA, x.images=NA,
y.images=NA,xy.images=NA,sep.chr=":",
font.type="Helvetica",font.color="black",
font.size="12",bg.color='#D6E3F6',
fname.root="Splot",dir="./",
automap.method="mode",bb.clr=NA,bb.cex=2,
returnVl=T,saveFlag=F,saveName="Splot.RData",
cleanDir=T)

5.3.1 specifying the interactive points

This section will define the following makeImap arguments:

figure: numeric value of which figure to add interactive data

xy.type: the region type. Acceptable types are points, image.midpoints, im-
age.boundaries, image.box, circle, rect, or polygon

x.pos: x axis position of interactive region; the left x axis position if xy.type is
rect

y.pos: y axis position of interactive region; the top y axis position if xy.type is
rect

x.right.pos: If xy.type is rect, the right x axis position. If other xy.type, this
argument is not utilized

y.bottom.pos: If xy.type is rect, the bottom y axis position. If other xy.type,
this argument is not utilized

spot.radius: The radius of the interactive points in pixels. This is utilized when
xy.type is circle or points.

The makeImap function works on one figure at a time. It is necessary then
to specify the figure (using the ’figure’ argument) for a particular run. This
should be a numeric value in the range of 1:maximum number of figures in the
layout. The number will correspond to the region in mat; see section 5.1 or
figure 8.

The user must specify the region[s] type and location[s] of the interactive
tool-tip functionality. The makeImap function xy.type is the argument for the
region type. Currently supported xy.types are points, image.midpoints, im-
age.boundaries, image.box, circle, rect, and polygon. Points, image.midpoints,
image.boundaries and circles result in an HTML circle image area. image.box
and rect result in an HTML rect area. Polygon results in a HTML poly area.
The xy.type argument is important in determining correct mappings between

32

the region location[s] in the R plots and pixel mappings. For HTML circle
regions created through xy.type circle or points, the x and y coordinates of
the center[s] of the circle[s] should be given in the makeImap arguments x.pos
and y.pos, as well as the spot radius to use in the argument spot.radius. The
xy.types image.midpoints and image.boundaries are special as it is assumed that
the points are referring to regions within an R image (heatmap) plot. The value
image.midpoints assumes that the x.pos and y.pos coordinate locations corre-
spond to the middle of the grid lines of an image. The value image.boundaries
assumes the x.pos and y.pos coordinate locations are the designated grid lines of
an image. When image.boundaries is used, the function will calculate the mid-
points to use for interactive locations. To clarify, the x.pos and y.pos contain
matching x,y point coordinates. The first circle is (x[1], (y[1]), the second (x[2],
y[2]), and so forth. The spot.radius argument is utilized for image.midpoints
and image.boundaries as well as circle and points. The spot.radius may be a
single value that will be used for all points, or it may be a numeric vector of
length equal to the total number of interactive circle regions.

There are two xy.type options to create rectangular HTML regions: im-
age.box and rect. When xy.type is rect, x.pos and y.pos have a slightly dif-
ferent meaning. The x.pos and y.pos are not simply the x and y coordi-
nates; they are the left most x coordinate and top y coordinate for the rect-
angular region[s]. Two additional makeImap arguments are used, x.right.pos
and y.bottom.pos, to give the right most x coordinate and bottom y coordi-
nate of the rectangular region[s]. For example, the first box would have the
following vertices: (x.pos[1], y.bottom.pos[1])(x.pos[1], y.pos[1])(x.right.pos[1],
y.pos[1])(x.right.pos[1], y.bottom.pos[1]). The type image.box, as the name sug-
gests, assumes the coordinates are referring to an image. Only the x.pos and
y.pos arguments are used, not x.right.pos or y.bottom.pos, and it is assumed
they are the locations of grid lines of an image (just like image.boundaries).

Adding a polygon region is also a little different. Only one polygon figure
may be added at a time. The x.pos and y.pos therefore hold the x and y coor-
dinates of all vertices in the polygon. If the polygon does not close, i.e. the first
and last vertices are the same, the starting coordinates will be added.

It is important to note that the interactive regions are independently deter-
mined from the plots displayed. It is therefore possible to make an entire data
set interactive, any subset of data interactive, or to have hidden interactive
regions.

5.3.2 specifying tool-tip data

Now that the interactive regions have been identified, data can be attached to re-
gions to display in tool-tip. The following makeImap arguments hold data,links,
and images:

x.labels: data frame of n x m which contains values relating to the x.pos.

33

y.labels: data frame of n x m which contains values relating to the y.pos.

xy.labels: list of matrices. All matrices should be of n x m. point (x.pos and
y.pos) specific

x.links: data frame of n x m which contains web addresses for links relating to
the x.pos

y.links: data frame of n x m which contains web addresses for links relating to
the y.pos

xy.links: list of matrices. All matrices should be of n x m which contain com-
plete web address for point (x.pos and y.pos) specific links

asLinks: character vector which contains complete web address for points that
should be treated as hyperlinks

x.images: data frame of n x m which contains paths to images relating to the
x.pos

y.images: data frame of n x m which contains paths to images relating to the
y.pos

xy.images: list of matrices. All matrices should be of n x m which contain paths
for point (x.pos and y.pos) specific images

In general, as the names suggest, x.labels, y.labels and xy.labels hold data,
the corresponding link arguments hold web address links, and corresponding
image arguments hold paths to images. The dimensions of the matrices depend
on the xy.type: points, circle, image.midpoints, image.boundaries, image.box,
rect, and poly. x.labels,x.links, and x.images hold data specific to the x set of
points or x.axis, just as y.labels,y.links, and y.images is y specific data. The
xy.labels, xy.links, and xy.images arguments hold data xy specific. Let’s begin
by looking at the lengths and dimensions of these arguments when xy.type is
circle,points, or rect. It this case, since x.pos and y.pos refer to the same point
location, x.labels, y.labels, and xy.labels (and x-,y-,xy- links) are essentially the
same. These matrices should be of length n by m where n is equal to the length
of x.pos (or y.pos) and m is the number of columns represent data to be included
in the tool-tip.

The distinction between the x.labels, y.labels, and xy.labels arguments (and
respective links) can be seen when the xy.type is image.midpoints, image.boundaries,
or image.box. Images may have an unequal number of x.pos and y.pos values.
x.labels and x.links refer to data specific to the image x-axis, or the locations
in x.pos. There are some slight differences when using image.midpoints over
image.boundaries or image.box. When xy.type is image.midpoints, x.labels and
x.links are n by m matrices where n is equal to the length of x.pos and the
columns represent data to be included in the tool-tip. Similarly, y.labels and
y.links refer to data specific to the image y-axis and are n by m matrices where

34

n is equal to the length of y.pos. The xy.labels and xy.links arguments contain
data that is specific to both x.pos and y.pos. These arguments are lists of ma-
trices n by m where n is equal to the length of y.pos and m is equal to the length
of x.pos. When image.boundaries or image.box is used as xy.type, instead of
the length of x.pos or y.pos, they become the length of x.pos minus one and the
length of y.pos minus one.

The last xy.type is poly. Adding polygons are different from the other types
in that only one may be added at a time. All data.frames or matrices are there-
fore 1 by n: one object with n desired descriptive data.

The argument asLinks contains web addresses that will be linked to the
interactive region directly (i.e. when you left click hovered over the region it
will redirect you to this site) or NAs that represent no hyperlink for a region.
When xy.type is circle, point, or rect the length of asLinks may be the length of
x.pos (or y.pos) or 1. If the length of asLinks is 1, that value will be repeated
for every region of the dataset. The order in asLinks should be the same as
the order of x.pos (or y.pos). When xy.type is referring to an image, there
are a few other options for asLinks. The argument may be of length equal to
the x.pos (x specifics links) which will be repeated for every point with the
corresponding x.pos; similarly it may be of length y.pos for y.specific links that
will be repeated. asLinks may also be of length one. A matrix or data.frame
that would correspond to the image regions may also be used as asLinks. A
vector of length equal to the length of x.pos by the length of y.pos may also be
used. In this case the order should correspond to the order that would occur
if the matrix was converted into a vector. Note: If the x.pos and y.pos are
boundaries of grid-lines instead of the midpoints, the above description should
be the length of x.pos minus one and the length of y.pos minus one instead of
the lengths of x.pos and y.pos. Again, when xy.type is a poly, asLinks will also
be a single entry of either a complete web address or NA. Note: Hyperlinks
and Images only display properly when the header=v2 or header=v3. See later
section for details on header.

5.3.3 altering tool-tip display

The following features can be changed in the tool-tip display window: font style,
font color, font size, and background color. The function arguments that handle
these features are:

font.type: character indicating the name of the font to use. There are currently
three supported font types: Arial, Helvetica and sans-serif

font.color: character giving the name or in the format of ’#——’ of the desired
font color

font.size: numeric indicating the size of the font

35

bg.color: character indicating the name or in the format of ’#——’ of the
desired background color

sep.chr: character or character vector indicating the separation character in
tool tip that distinguishes value title from value.

These options are given so the user has more control over how information is
displayed. The tool-tip window size will automatically readjust to fit the data
desired with the given size.

5.3.4 Generated objects and Files

The following arguments are involved in creating and saving objects and files:

fname.root: character, base name to use for file[s] created

dir: character, directory path for where the file[s] should be created

returnVl: logical, indicates if the Splot object should be returned with updated
information

saveFlag: logical, indicates if the Splot object should be saved as a file

saveName: character, full name (including directory path if desired), to save
Splot object if saveFlag is TRUE

cleanDir: logical, indicates if the intermediate files created for internal use only
should be deleted

In the automatic mapping portion of this function, .png and .tif files are
created. The fname.root argument gives the base name for all these files to
ensure that previously generated files are not accidentally overwritten. The dir
argument is added as a prefix to the fname.root to create a full path name for
the files generated. Certain values are added to the Splot object as well as
the data for the tool-tip display. If the user wishes to return the Splot object
returnVl should be set to TRUE. If the user wishes to save the Splot object
to a file to load again later, saveFlag should be set to TRUE. The file will be
given the name saveName. This argument should be the complete path name
(i.e. the directory structure should be included otherwise it is saved in the
current working directory). The cleanDir option will remove the intermediate
files generated for use internally. It is recommended to leave cleanDir=TRUE.

5.3.5 Comments on automap feature and helpful hints

Currently the new version of sendplot only has an automap feature. The au-
tomap method utilizes the R library rtiff and pixmap. An image is created
and then another image is created with the addition of two points at the graph
boundary locations. These images are converted to tif files. The images are
compared and the regions that are different, hence the bounding locations of

36

the plot, are found. The locations are determined through either a median or
mode method. This can be set through the argument automap.method. The
median will take the middle of all the rows and columns that are different as
the central location of the desired bounding points. The mode method looks for
the most common areas and takes the middle of that region.

There are a few reasons why the automap method may throw errors. These
helpful hints should aid in clarification and resolutions. A common cause of error
is that the graphing region is two small based on margin size and the location
allocation given in the mat for layout. If the plotting region is too small, the
points that are added will be less than a pixel and will not appear as a region
of difference when images are compared. Likewise, if the plotting region is too
large, and the point size is small, the point will also be less than a pixel and
not be recognized. Margins and matrix allocations may be altered. The user
may also try increasing or decreasing the size of the points added for automatic
detection. This is controlled through the argument bb.cex. This should be the
numeric point size of the bounding points. Another common cause for error is
the color of the plot at the plot boundary may be the same color as the added
points. This will also cause no change to be recognized and an error to occur.
The color of the bounding points may be changed through the bb.clr argument.
This should be a character value with the name of the color. By default the
application tries blue, red, black, white, and green. It will stop if any one of the
colors works properly.

5.3.6 Examples of makeImap

This section will use the makeImap function to add various sets of data to the
example seen in figure 7.

CREATING LAYOUT FIGURE 1

This example will add three interactive data sets to figure 1: two sets of
points/circle and set of rectangles.

In section 5.2, a static version of a layout of plots is generated. This allows
the Splot object to save output from the R boxplot function call. This output
can be used to add data to the plot. For example, perhaps the median values
of each group:

xvec = 1:6
yvec = Splot$plot.output[[1]]$stats[3,]

The xvec and yvec will be the locations of our interactive regions, and there-
fore be passed into makeImap as x.pos and y.pos respectively. Now data will be
added to each group using the x.labels, x.links, and asLinks arguments.

Three pieces of data will be added through the x.labels argument: an iden-
tifier for the group (i.e. boxplot.group1, boxplot.group2, ...), the median value

37

(i.e. yvec), and, since we will be using asLinks to make certain points interac-
tive, a label to indicate as such. x.lbls is a data.frame of the dimension n by m,
where n is the number of points, in this case 6, and m columns of information,
in this case 3. The names, or column names, of the data frame will be used as
the label in the tool-tip display.

x.lbls = as.data.frame(matrix(c("boxplot.group1","boxplot.group2",
"boxplot.group3","boxplot.group4",
"boxplot.group5","boxplot.group6",
as.character(yvec),
"not a link", "not a link",
"im a link", "im a link",
"not a link", "not a link"),

ncol=3))
names(x.lbls) = c("x.Label.1","x.Label.2", "asLinks")

Similar to the x.labels argument is the x.links argument. This will add
hyperlinks to the tool-tip display. Data in this data.frame should be complete
address of the link (i.e http://www.buffalo.edu) or NA if there should not be a
link. In this example, the first three groups will have a link.1 that links to the
University at Buffalo homepage and all of the groups will have a link.2 with two
hyperlinks: one to the University at Buffalo homepage and one to the Center
for Excellence in Bioinformatics and Life Sciences homepage. Notice how the
two links for link.2 are given: it is a single character string but the two links are
separated with a comma.

x.links = as.data.frame(matrix(rep(NA, 12), nrow=6))
x.links[1:3,1] = "http://www.buffalo.edu"
x.links[,2] = "http://www.buffalo.edu, http://www.bioinformatics.buffalo.edu/"
names(x.links) = c("link.1", "link.2")

The asLinks argument makes the regions themselves hyperlinks. For this
example, the third and forth groups will be hyperlinks to the University at
Buffalo Biostatistic Department software web-page.

asLinks = c(NA, NA, "http://sphhp.buffalo.edu/biostat/research/software/index.php",
"http://sphhp.buffalo.edu/biostat/research/software/index.php", NA, NA)

Now that x.lbls, x.links, and asLinks have been defined, they may be passed
into the makeImap function to make the boxplot groups interactive.

Splot = makeImap(Splot, figure=1, xy.type="points",
x.pos=xvec, y.pos=yvec,
x.labels = x.lbls, asLinks = asLinks, x.links=x.links,
fname.root="sendPlotEx",dir=direct,spot.radius=25)

The boxplot graph corresponds to figure 1 as defined by the layout in figure
8. In this case the region is going to be a point or circle; point is used. The spot

38

Figure 13: boxplot, group2, tool-tip display for layout figure 1.

radius can be adjusted to allow for a larger interactive region on the HTML
page. It is possible to change the tool-tip display font, font size, font color or
background color. In the above example, defaults are used. Figure 13 shows the
second points tool-tip display.

In the boxplot graph, figure 9, notice how there are two outlier points. Now
we will add data to the first outlier point. Only one point is going to be given,
therefore all data.frames are of the dimension 1 by n. The interactive region will
still be added to figure 1 and the xy.type appropriate will either be a point or
circle; point was used in the last example, so we will use circle. The x.pos and
y.pos values will again be taken from the plot output generated from running
the boxplot function. For points and circles, the x and y values are equivalent,
therefore x.labels and y.labels are interchangeable; we include both an x.labels
and y.labels argument although they may have been combined into one 1 by n
data.frame. The x.labels argument is including data for the type of region and
that the point is a link which will be set through asLinks. The y.labels argument
is giving information about the value of the outlier point and details about the
tool-tip display. In this example we will be changing all of the default tool-tip
settings. Notice the makeImap arguments appropriately named for font.type,
font.size, font.color, and background color; these are the arguments that change
the tool-tip features. In this example we change the font type, increase the font
size, change the font color to hotpink, and change the background color to blue.

Splot=makeImap(Splot, figure=1, xy.type="circle",
x.pos=Splot$plot.output[[1]]$group[1],
y.pos=Splot$plot.output[[1]]$out[1],
x.labels = list(Xlabel1.xyType="point", Xlabel2.asLinks="im a link"),
y.labels = list(ylabel1.yValue="7", tooltip.font="arial",

tooltip.size="20",tooltip.fontcolor="hotpink",
tooltip.background="blue"),

asLinks = "code.html/interactiveFigure1.html",
fname.root="sendPlotEx", spot.radius=20,dir=direct,
font.type="arial", font.size="20", font.color="hotpink", bg.color="blue")

The tool-tip designed is shown in figure 14.

39

Figure 14: boxplot, outlier tool-tip display for layout figure 1.

The final interactive regions that will be added to the first figure (figure=1)
will be for the extra rectangular regions plotted through the initSplot plot.extras
argument. To recall the plot.extras call was:

>Splot$plot.extras[1]

$figure1
[1] "rect(xleft=c(3,1), ytop=c(25,5),xright=c(4,2), ybottom=c(20,0));
title(main='A', cex=3)"

Notice, the bounding locations of both rectangles are already known since
they were user specified. The x.pos and y.pos arguments become the rect func-
tion arguments x.left and y.top respectively. The makeImap function has two
additional arguments for the case when a rectangular region is used: x.right.pos
and y.bottom.pos. The rect function arguments xright and ybottom are used
for these values respectively. The xy.type is now going to be rect instead of
the previously used circle or point. Again data is added through the x.labels,
y.labels, x.links, asLinks, etc. arguments. All data.frames will be of dimension
2 by n since there are two rectangular regions. The x.labels argument will give
a label, and coordinates for the rectangular regions as well as an indication if
asLinks was used. The argument y.labels will give information on the changes
of tool-tip settings. In this case the font color is specified as cyan, and the back-
ground color is specified as black. Notice although there are two regions being
specified the asLinks argument is a single value. This value will be repeated for
all regions: in this case twice. The x.links data.frame will also be utilized. As
the x.links data.frame is set up the first rectangle will have two links: the UB
link and the buildings links. The second rectangle will also have two links but
it will only have the buildings links and the stats link.

40

Figure 15: boxplot, rectangle tool-tip display for layout figure 1

x.links = as.data.frame(matrix(rep(NA, 6), nrow=2))
x.links[1,1] = "http://www.buffalo.edu"
x.links[,2] = "http://www.buffalo.edu, http://www.bioinformatics.buffalo.edu/"
x.links[2,3] = "http://sphhp.buffalo.edu/biostat/"
names(x.links) = c("UB", "buildings", "stats")

Splot = makeImap(Splot, figure=1, xy.type="rect",
x.pos=c(3,1), y.pos=c(25,5),
x.right.pos=c(4,2), y.bottom.pos=c(20,0),
x.labels = as.data.frame(list(Xlabel.1=c("rect.1","rect.2"),

Xlabel.2.coordinates=c("3,20-3,25-4,25-4,20","1,0-1,5-2,5-2,0"),
asLinks=c("im a link", "im a link"))),

y.labels = list(tooltip.size=c("15","15"),
tooltip.fontcolor=c("cyan","cyan"),
tooltip.background=c("black","black")),

asLinks = "http://sphhp.buffalo.edu/biostat/",
fname.root="sendPlotEx",dir=direct,
x.links=x.links, font.size=15, font.color="cyan", bg.color="black")

Figure 15 show the tool-tip display for one of the rectangles.

CREATING LAYOUT FIGURE 2

This example will add three interactive data sets to figure 2: two sets of
points and a polygon.

The points in these plots are added directly through the plot.calls. Looking
at the original plot.calls setting for figure 2:

41

>Splot$plot.calls[2]

[1] "plot(1:3,1:3, col='blue', xlab='', ylab=''); points(1:2, 2:3, col='red')"

First, interactive data will be added for the set of three blue points. The
x.labels argument will add a label for the xy.type (i.e point1, point2, point3)
and an indication if the point is a link, which is determined by the asLink
argument. The y.labels argument is also used to relay information about the
tool-tip display changes; the font is now larger and green, and the background
is transparent. Notice to get a transparent background the bg.color is set to an
empty string. The y.link argument will add hyperlinks to the tool-tip. In this
example the first point will have two hyperlinks: the UB link and the department
link. The second point will have all three: UB, buildings, and department links.
The third point will only have two links: the building and department links.
Note: The data set is a set of points and therefore x.labels and y.labels may
be used interchangeably, as well as x.links and y.links. x.labels and y.labels
therefore could be combined into one larger data.frame. The asLinks argument
determines if the points themselves should be hyperlinks. If NA the point is not
a hyperlink, otherwise values should be complete web addresses. In this case,
each point is a link to a different site either the University at Buffalo, Center
for Excellence in Bioinformatics and Life Sciences, or the University at Buffalo
Biostatistics web-pages.

x.lbls = as.data.frame(list(xLabel1.xyType=c("point1", "point2", "point3"),
xLabel2.asLinks=c("im a link", "im a link", "im a link")))

y.links = as.data.frame(matrix(rep(NA, 9), nrow=3))
y.links[1:2,1] = "http://www.buffalo.edu"
y.links[2:3,2] = "http://www.buffalo.edu, http://www.bioinformatics.buffalo.edu/"
y.links[,3] = "http://sphhp.buffalo.edu/biostat/"
names(y.links) = c("UB", "building", "department")
asLinks=c("http://www.buffalo.edu",

"http://www.bioinformatics.buffalo.edu/",
"http://sphhp.buffalo.edu/biostat/")

Splot = makeImap(Splot, figure=2, xy.type="circle",
x.pos=1:3, y.pos=1:3,
y.labels = list(tooltip.fontcolor=c("green", "green", "green"),

tooltip.size=c("14", "14", "14"),
tooltip.background=c("transparent", "transparent", "transparent")),

asLinks = asLinks, x.labels = x.lbls,
fname.root="sendPlotEx", dir=direct, y.links=y.links,
bb.cex=5, spot.radius=20,
font.color="green",bg.color="", font.size="14")

Figure 16 shows the tool-tip for the first point of the dataset. The entire

42

Figure 16: scatterplot, point tool-tip display showing transparency for layout
figure 2.

Figure 17: scatterplot, point tool-tip display dataset 2 for layout figure 2.

plot is displayed to better see the transparent effect of the tool-tip background.

Now interactive data will be added to the other two red points. Similar
data to the above will be added, however the tool-tip display will use default
settings, there will not be any hyperlinks included, and none of the points will
act as hyperlinks.

y.lbls = as.data.frame(list(xLabel1.xyType=c("point1", "point2"),
xLabel2.asLinks=c("im not a link", "im not a link")))

Splot = makeImap(Splot, figure=2, xy.type="circle",
x.pos=1:2, y.pos=2:3,
x.labels = list(tooltip=c("default settings", "default settings")),
y.labels = y.lbls,dir=direct,
fname.root="sendPlotEx", bb.cex=5,spot.radius=15)

The tool-tip displayed in figure 17 is what is generated.

A new unique region, a polygon, is included in figure 2. The xy.type therefore
becomes polygon. It was added through the plot.extras argument and therefore
the vertice locations are known. These locations become the x.pos and y.pos
arguments. Recall:

43

>Splot$plot.extras[3]

$figure2
[1] "polygon(x=c(2,2.5,3,2.5), y=c(1,2.5,1,1.5));title(main='B', cex=3)"

Notice given the above vertices, the polygon would be open. This application
will assume all polygons are closed figures and add in the segment to close
automatically (i.e x=c(2,2.5,3,2.5,2) and y=c(1,2.5,1,1.5,1).

Only one polygon region may be added at a time. All data.frames are going
to be of the dimension 1 by n, where n is desired display information. The
tool-tip will have increased san-serif purple font larger than the default setting.
The polygon will also contain links to three websites and will link itself to the
University at Buffalo Biostatistics web-page.

x.links = as.data.frame(matrix(rep(NA, 3), nrow=1))
x.links[,1] = "http://www.buffalo.edu"
x.links[,2] = "http://www.bioinformatics.buffalo.edu/"
x.links[,3] = "http://sphhp.buffalo.edu/biostat/"
names(x.links) = c("UB", "CoE", "biostats")

Splot = makeImap(Splot, figure=2, xy.type="polygon",
x.pos=c(2,2.5,3,2.5), y.pos=c(1,2.5,1,1.5),
x.labels = as.data.frame(list(xLabel.xyType = "Polygon")),
asLinks="http://sphhp.buffalo.edu/biostat/", dir=direct,
x.links=x.links,fname.root="sendPlotEx", bb.cex=5,
y.labels = as.data.frame(list(yLabel1.asLinks="Im a link",

tooltip.fonttype="san-serif",
tooltip.fontsize="30",
tooltip.fontcolor="purple")),

font.size=30, font.type="sans-serif", font.color="purple")

Figure 18 shows the tool-tip for the polygon region

CREATE LAYOUT FIGURE 3

There are a few different options to make the image plot interactive. The
options will determine whether the bounding locations or the central location
for the measurements are known.

To recall, the plot.calls argument for figure 3:

44

Figure 18: scatterplot, polygon tool-tip for layout figure 2

>Splot$plot.calls[3]

[1] "image(1:2,1:3, z=matrix(myX,ncol=3,nrow=2), xlab='', ylab='')"

The values for x and y represent where the values at z were taken; they
therefore are the central locations for the measurements. If these values are
used for x.pos and y.pos the xy.type should be image.midpoints. The midpoint
of each rectangular region will be interactive for a certain specified spot.radius.
Figure 19 shows an example of the interactive region within an image when
using image.midpoint.

The other xy.type options for an image are image.boundaries and image.box.
These options are used when the boundary locations are known for an image. In
figure 19, the bounding grid locations for x are 0.5, 1.5, and 2.5 while the bound-
ing grid locations for y are 0.5, 1.5, 2.5, and 3.5. These are the x.pos and y.pos
values if xy.type is image.boundaries or image.box. The value image.boundaries
would result in an interactive region seen in figure 19. The function uses the
boundary locations to compute the midpoint region. When image.box is used,
the boundary locations are used to generate rectangular interactive regions. Fig-
ure 20 shows the example interactive region for an image when this option is
utilized.

Interactive data will now be added to the image using the x.labels, y.labels,
and xy.labels arguments. The difference between the x.labels, y.labels, and

45

Figure 19: Example showing the interactive region within an image when im-
age.midpoints is used. Note: black circles only indicate region that is interactive
they do not actually appear in the image.

46

Figure 20: Example showing the interactive region within an image when im-
age.box is used. Note: blue rectangles only indicate a region that is interactive
they do not actually appear in the image.

47

xy.labels arguments may really be distinguished when adding data to an image
plot where the x and y values are not of equal length and are not representing
the same point. The x.labels argument hold data specific to the x axis points. In
this case there are two x values so x.labels is of the dimension 2 by n. Two pieces
of x.specific data will be added: an indication that the xy.type is image.box, and
an indication of which X value the image is referring.

x.lbls=as.data.frame(list(xLabels.xy.type= c("image.box", "image.box"),
xLabels.1 = c("X.1", "X.2")))

The y.labels argument behaves exactly as the x.labels argument, only with
respect to the y values or y.axis. In this case the y.labels argument will be of
the dimension 3 by n. Only one y specific data will be added: an indication of
which Y value the image is referring.

y.lbls=as.data.frame(list(y.Labels = c("Y.1", "Y.2", "Y.3")))

The xy.labels argument contains data specific to both x and y data points
of an image. All matrices within the xy.labels argument should be the same
dimension as the matrix of values passed in the image call for z: in this example
3 by 2.

xy.lbls=list(XY.label = matrix(c("image.box1","image.box2", "image.box3",
"image.box4","image.box5","image.box6"),ncol=2),

XY.label2 = matrix(c("X1.Y1","X1.Y2", "X1.Y3",
"X2.Y1","X2.Y2","X2.Y3"),ncol=2))

Hyperlinks may be added to the tool-tip display through the x.links, y.links,
and xy.links arguments.These arguments behave exactly the same as x.labels,
y.labels, and xy.labels respectively; the only difference is the data given in the
links arguments should be complete web addresses. The following will have an
x specific link for the first x value only and y specific links for the second and
third y value.

x.links=as.data.frame(list(X.links.1 = c("http://www.buffalo.edu",
NA)))

y.links=as.data.frame(list(Y.links.1 = c(
NA,
"http://www.buffalo.edu, http://sphhp.buffalo.edu/biostat/index.php",
"http://sphhp.buffalo.edu/biostat/index.php")))

Notice how two links may be included by separating them with a comma (as
seen with second y.links, Ylinks.1 entry). The function call to add the interactive
data utilizing the image.box xy.type is the following:

Splot = makeImap(Splot, figure=3, xy.type="image.box",
x.pos= c(.5,1.5,2.5), y.pos=c(.5,1.5,2.5,3.5),
x.labels = x.lbls, y.labels = y.lbls, xy.labels=xy.lbls,
x.links=x.links, y.links=y.links,dir=direct,
fname.root="sendPlotEx", bb.cex=5, spot.radius=10)

48

Figure 21: Image figure with corresponding tool-tip display boxes

Although not included above, there is an option to make any of the regions
within the image a hyperlink themselves: asLinks. The asLinks argument has
several acceptable forms. The asLinks argument may be a matrix or data.frame
of the same dimension as the z value matrix (the image dimensions): in the
example this would be 2 x 3. It may also be a vector of length equal to x*y with
the order equivalent to the result of an as.vector call on the image matrix. The
length would be 6 for the example. The asLinks argument may also be a vector
of length equal to the length of x or y, indicating x, or y, specific hyperlinks.
If asLinks is of length x, the vector will be repeated length of y so that every
similar x value will be the same hyperlink, and vice versa for y. If asLinks is
of length one and is not NA, the value will be repeated for every grid location.
NA represent a point that is not a hyperlink.

The Figure 21 displays the image with the tool-tips displayed for each region.
This is not real functionality, only one tool-tip displays at a time, however,
hopefully this will be useful in comparing the x-specific, y-specific, and xy-
specific data that is added through the above makeImap calls.

CREATING LAYOUT FIGURE 4

Layout figure 4 will be a static or decoration plot only. No interactive data
sets added.

49

Note: None of these examples utilized the x.images, y.images, or xy.images.
These behave similarly to the labels or links arguments. Remember to include
the complete path to the images from the directory the files are being written to.
It is recommended to store images in the same directory as working directory
to ensure paths are correct.

5.4 makeSplot: Making the Plot

At any point after the Splot object is made, a plot can be generated for the
object. If makeImap has not been utilized a static plot is created. If makeImap
has been utilized, an interactive html file may also be generated. The following
is an example call:

makeSplot(Splot,
fname.root="Splot",
dir="./",
overwriteSourcePlot = NA,
makeInteractive=TRUE,
overrideInteractive=NA,
Default=TRUE,
header="v3",
window.size = "800x1100",
returnObj = FALSE)

The following gives brief descriptions of the arguments, some will be dis-
cussed further in this section:

Splot: an Splot, sendplot, object: see section on initSplot

fname.root: character, base name to use for file[s] created

dir: character, directory path for where the file[s] should be created

overwriteSourcePlot: character vector, the type of file created: ps (postscript),
png, jpeg, tiff

makeInteractive: logical indicating if the interactive html file should be pro-
duced

overrideInteractive: logical vector equal to the length of the number of figures
in the layout, determines which interactive data should be included in the
html file

Default: logical, if a default region is set should it be included in the html file

header: may either be v1,v2, or v3. This determines which tooltip header will
be in the html file

50

window.size: size of the html window. Only effective when header=v3

returnObj: logical, indicates if the Splot object should be returned with up-
dated information

In the automatic mapping portion of this function, .png (or .jpeg) and .tif
files are created. The fname.root argument gives the base name for all these
files to ensure that previously generated files are not accidentally overwritten.
The dir argument is added as a prefix to the fname.root to create a full path
name for the files generated. This will also be the name of the html file that is
created if makeInteractive is TRUE. A static image may be generated without
creating the html file by setting makeInteractive to FALSE. If makeInteractive
is TRUE the application will attempt to make an interactive html. The files
created are determined by the source.plot setting when the Splot object was
created. If the user so chooses, they may override what is set in the Splot object
by setting overwriteSourcePlot. If overwriteSourcePlot is NA, it uses the Splot
object value. The options for overwriteSourcePlot are: ”ps” for postscript, ”png”
for a portable network graphics, ”jpeg” for a joint photographic experts group,
or ”tiff” for a tiff image.

Tool-tip data must have been added through the makeImap function for each
of the desired interactive figures. There may be occasions where information is
added but it is not necessary to display in the html file. The argument over-
rideInteractive is a logical vector of length equal to the number of figures in
the layout. It indicates if the figure’s interactive data, if applicable, should be
included in the html. If overrideInteractive is NA, it will use the default set-
tings provided when initializing the Splot object. A default interactive region,
which will be active everywhere in the figure that does not have an alternate
setting through makeImap, may or may not be displayed through the argument
Default. For more information on default region and how to set this region in
the Splot object see section 5.1. The Default argument is therefore a logical
TRUE if displayed, FALSE if hidden (only applicable if default has been set for
Splot object).

The arguments header and window.size refer to qualities when viewing the
html file. The header controls which header information is included for the
html file. It also contains the needed javascript tooltip information necessary
for interactive plots. The different versions of headers have different features
or work on different web browsers. The main difference between the currently
available headers are given below:

v1: works well with Firefox and displays information in the upper right corner
of the web browser

v2: works well with Firefox and internet explorer and displays information at
the mouse location

51

v3: is the same as v2 except it allows control of the html window size. The
default window size is 800x1100 and can be changed with the argument
window.size

As mentioned in the v3 header description, if using that option the html
window size may be adjusted for better viewing. The window.size argument de-
faults to ”800x1100”. It may be adjusted by entering a character value ”<width>
x <height>”. The separation between the width and height must be ”x”. The
size is in pixels.

Note: The above description mentions Firefox and internet explorer for
web browsers. These are the browser we have tested. Other collaborators have
used different browser, the requirement for viewing is the browser must have
javascript capabilities. Also note, depending on the browser, privacy settings
may have to be altered to allow for interactive data to display. Browsers may
block the interactive content as privacy risks or they are considered pop-ups.

The following is an example Splot call to make the interactive version of
figure 7 :

Splot = makeSplot(Splot,fname.root="sendPlotEx",dir=direct,returnObj=TRUE)

5.5 Extra Functions

There are two other functions worth mentioning that will be described further:

addDefault: adds a default region to interactive html

removeImap: removes any or all sets of interactive mapping data for a given
figure, or a default region

5.5.1 addDefault: Add Default Tool-tip Region

A default region may be added in the html image map. A default region will span
the entire layout of figures where other regions have not already been defined.
The following is example code that will set a default region for an Splot object:

addDefault(Splot,
data=NA,
data.labels=NA,
links=NA,
links.labels=NA,
asLink=NA,
font.type="Helvetica",
font.color="black",
font.size="12",
bg.color='#D6E3F6',

52

returnVl=TRUE,
saveFlag=FALSE,
saveName="Splot.RData")

The data displayed in the tool-tip is controlled with the following arguments:

data: character vector of all data to be displayed

data.labels: character vector of labels corresponding to location in data

links: character vector with complete web address

links.labels: character vector of labels corresponding to location in links

The data and links arguments are different than in the makeImap function
in that they are not matrix or data.frames. They are simply character vectors.
The corresponding labels arguments, therefore, hold the names to use for labels
in the tool-tip (since before column names from the data.frames are used). The
argument asLink will be a single character vector with the complete web address
or NA if no hyperlink is desired. Only one default region may be set at any
given time.

The arguments for controlling the tool-tip display are the same as the makeImap
section. Please refer to section 5.3 for more information on font.type, font.color,
font.size and bg.color.

A new object is added to the Splot object to hold the default region informa-
tion. The arguments returnVl and saveFlag therefore indicate if the new object
should be returned or saved to a file.

As mentioned in section 5.4, a default region may be set but not displayed. If
the addDefault function is run and the default information is saved in the Splot
object, there is still the option when creating the html if the default tool-tip
should be displayed. This is controlled through the makeSplot Default argu-
ment. See section 5.4 for more details.

The following will add a default tool-tip region to figure 7:

Splot = addDefault(Splot,
data=c("", "quick", "convenient", "highly customizable",

"This is a default region",
"arial", "gray", "yellow"),

data.labels=c("Sendplot selling points", " 1", " 2", " 3",
"type",
"tooltip.font", "tooltip.backgroundColor","tooltip.fontColor"),

links=c("http://www.buffalo.edu",
"http://www.bioinformatics.buffalo.edu/"),

links.labels=c("UB", "CoE"),

53

Figure 22: Example tool-tip default

font.size=10, font.type="arial",
bg.color="gray", font.color="yellow")

Note: The default region will only display if the makeSplot function is run
with Default=TRUE:

Splot = makeSplot(Splot, fname.root="sendPlotEx", dir=direct,
returnObj=TRUE, Default=TRUE)

The above code make the tool-tip seen in figure 22.

5.5.2 removeImap: Removing Interactive Regions

Sections 5.3 and 5.5.1 addressed adding sets of data for the tool-tip functionality.
It is also possible to remove any set of data for a given figure or a set default
region. This is achieved through the removeImap function:

removeImap(Splot,
figure,
subset=NA,
returnVl=TRUE,
saveFlag=FALSE,
saveName="Splot.RData")

The arguments figure and subset control what set[s] of data is removed.

figure: Either a single numeric value corresponding to the figure as specified in
the layout matrix or ”Default”

subset: Numeric indication of which set[s] of data to remove. Set numbers
correspond to the order in which they were added (using makeImap)

54

To remove a set default region, the figure value should be ”Default”. If a
default region was set it will be removed. It is only possible to remove data sets
for a single figure at a time. The figure number corresponds to the plot region
in the layout matrix. The subset argument controls what sets[s] for the given
figure will be removed. If subset is left as NA, all the data for the figure will be
removed. A numeric vector is the other option for the subset argument. The
numbers will indicate which set[s] to remove. The set numbers correspond to
the order in which they were added (by makeImap). The function will check to
see if there are appropriate sets and remove all those that apply.

This function changes the Splot object. It is therefore necessary to specify
if the new object should be returned or saved through the returnVl or saveFlag
arguments.

The follow is an example removing the Default region:

Splot = removeImap(Splot, figure="Default", returnVl=TRUE, saveFlag=FALSE)

Going back to the example, there are three iMap regions for Figure 2: the
blue points, the red points, and the polygon. The following will remove the
interactive data for the red points:

Splot = removeImap(Splot, figure=2, subset=2, returnVl=TRUE, saveFlag=FALSE)

Notice how the figure specified is 2 and since the red points were the second
data set added the subset is also 2. To remove all iMaps for a figure, leave
subset as NA. The following removes all iMaps for the first figure:

Splot = removeImap(Splot, figure=1, subset=NA, returnVl=TRUE, saveFlag=FALSE)

6 closing remarks

Look for our bioinformatics wrapper: iGenomicViewer

55

