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The National Center for Atmospheric Sciences (NCAR) develops and implements weather and climate
models. Verification statistics play a key role in this cycle. Functions in the verification library contains
functions that have been developed in this process.

While the examples in this library focus on atmospheric topics, they are written to be applicable to any
situations in which there is a prediction or forecast and an observation of the outcome. The statistics used
to verify and study weather and climate forecasts are shared by many fields. Most notably, these include the
fields of medicine (where the name misclassification statistics is favored) and signal detection theory. Some
useful references are listed below.

The type of predictions and observations determine which methods are appropriate for verification. The
following types of predictions are currently supported: binary, categorical, continuous, probabilistic and
distributions. The presence or absence of fog is an example of binary data. A forecast for turbulence
expressed in terms of low, moderate and extreme is a categorical forecast. The chance of precipitation is
an example of a probabilistic forecast. A temperature forecast as a single value is (essentially) a continuous
variable. People are finding it increasingly useful to express the uncertainly of a point forecast. In this case,
the forecast may be expressed as a distribution.

1 Finley’s Tornado

Any discussion of verification must begin in the beginning and for weather, that means John Finley and
tornado forecasts. In 1884, John Finley using the telegraph, created yes/no tornado forecasts for 18 regions
of the US Finley (1884). Citing the results in Table 1, he explained that his method was 96.6 accurate.

Table 1: Finley Tornado Data
Forecasts

Observation Yes No
Yes 28 72
No 23 2680

[1] " Assume data entered as c(n11, n01, n10, n00) Obs*Forecast"

The forecasts are binary, the observations are binary.
The contingency table for the forecast

[,1] [,2]
[1,] 28 72
[2,] 23 2680

PODy = 0.549
TS = 0.2276
ETS = 0.216
FAR = 0.72
HSS = 0.3553
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PC = 0.9661
BIAS = 1.961
Odds Ratio = 45.31
Log Odds Ratio = 3.814
Odds Ratio Skill Score = 0.9568
Extreme Dependency Score = 0.7396
Symmetric Extreme Dependency Score = 0.5935

It was quickly pointed out that since tornados are so rare, if one always forecasted no tornado, the percent
correct would be 98.2the time. The downside to this that the probability of detecting a tornado (PODy)
drops to 0.

[1] " Assume data entered as c(n11, n01, n10, n00) Obs*Forecast"

The forecasts are binary, the observations are binary.
The contingency table for the forecast

[,1] [,2]
[1,] 0 0
[2,] 51 2752

PODy = 0
TS = 0
ETS = 0
FAR = NaN
HSS = 0
PC = 0.9818
BIAS = 0
Odds Ratio = NaN
Log Odds Ratio = NaN
Odds Ratio Skill Score = NaN
Extreme Dependency Score = -1
Symmetric Extreme Dependency Score = NaN

Note: verify is an overloaded function whose behavior is dictated by the types of forecasts and ob-
servations. By default, verify assumes that the forecast is probabilistic and the observation is binary. In
the preceding example, since both the forecast and observation are binary, the forecast type needs to be
described.

2 Verifying a precipitation forecast

While variables such as temperature, humidity and wind speed are traditionally forecast as a point forecast,
precipitation has historically been forecast as a probability. The following example use precipitation forecast
made by the Finnish Meteorological Institute Ebert (2006). This data is included as a sample data set in
the verification package.

If baseline is not included, baseline values will be calculated from the sample obs.

The forecasts are probabilistic, the observations are binary.
Sample baseline calculated from observations.
Brier Score (BS) = 0.1445
Brier Score - Baseline = 0.1793
Skill Score = 0.1942
Reliability = 0.02536
Resolution = 0.06017
Uncertainty = 0.1793
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Typically, the probability of rain is expressed as one of a finite number of probabilities such as 10%, 20%,
etc. Its not typical to see a forecast saying there is a 34.7% chance of rain. For automated forecasts or one’s
which aren’t rounded a continuous range of values between 0 and 1 are possible. The bins option addresses
this distinction. If bins = TRUE, forecast are placed into bins and assigned the center values. By default
these bins are described by the threshold parameter and are (0, 0.1, ..., 0.9, 1). If FALSE, as in the case for
precipitation forecasts, each forecast is considered individually. This becomes important when calculating
statistics such as the Brier statistic.

> plot(A)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability, yi

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y,

 o
1

No skill

● ●

●

●

●

●

●

●

●

●

●

0.
13

3

0.
15

9 0.
17

1

0.
11

8 0.
05

5

0.
06

4

0.
06

4

0.
09

8

0.
06

9 0.
03

2

0.
03

8

Attribute Diagram

No resolution

Figure 1: Attribute Diagram for light precipitation forecast

While the attribute diagram (Figure 1 ) is the default diagram for a probabilistic forecast, there are
other very useful diagrams. The receiver operating characteristics (ROC) plot is also commonly used. A
ROC plot displays the relation between false alarms and hits (successfully forecasted events) across a range
of thresholds. Figure 2 shows a ROC plot for the probability of precipitation forecast. Since one wants a
high ratio of hits to false alarms, the better the forecast, the further into the upper left hand corner the
plot extends. This plot displays two lines. The black, un-smooth line is the empirical ROC plot. At each
threshold, points are plotted. The smoother line is the result of fitted a binormal distribution to the points.
For a perfect forecast, the area under the ROC curve would equal 1. In this example, the area under the
curve is shown in the legend box. First the area under empirical curve is shown followed by the area under
the bi-normal curve.
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> mod24 <- verify(d$obs_norain, d$p24_norain, bins = FALSE)

If baseline is not included, baseline values will be calculated from the sample obs.

> mod48 <- verify(d$obs_norain, d$p48_norain, bins = FALSE)

If baseline is not included, baseline values will be calculated from the sample obs.

> roc.plot(mod24, plot.thres = NULL)

> lines.roc(mod48, col = 2, lwd = 2)

> leg.txt <- c("24 hour forecast", "48 hour forecast")

> legend(0.6, 0.4, leg.txt, col = c(1, 2), lwd = 2)
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Figure 2: Receiver operating characteristic curve for chance of rain forecast at 24 and 48 hour lead times.

Unfortunately, estimating and expressing the uncertainty in these curves is seldom done. The verification
packages offers a couple options for this. The data can be bootstrapped, to estimate the variance at the set
thresholds (Figure 3).
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> B <- roc.plot(A, CI = TRUE, n.boot = 100)
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Figure 3: ROC curve with bootstrapped confidence intervals.

3 Value Diagrams

The utility of a forecast varies based upon the needs and concerns of an individual user. Value diagrams can
be used to determine over what range of cost-lost (cl) ratios a forecast will provide value. The cost-lost ratio
is the ratio of the cost of preparing for an event that doesn’t occur over the losses that will occur if one is
not prepared. Small values indicate that the costs to prepare are small in relation to the losses. The peaks
of this graph occurs at the baseline average of an event. Figure 4 is an illustration of a value diagram for
the Finnish precipitation data.
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> value(d$obs_rain, d$p24_rain, main = "Rain-No Rain Forecast",

+ cl = seq(0.01, 0.99, 0.05), all = TRUE)
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Figure 4: Value diagram of light precipitation forecast.

4 Discrimination Plot

A discrimination plot illustrates the the distributions of forecasts grouped by different types of distributions.
Ideally, one would see a distinct histograms (Figure 5) .
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> discrimination.plot(disc.dat$group.id, disc.dat$frcst, main = "Sample Plot")

● ●

Model 0

Model 1

Model 2

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

Forecast

R
el

at
iv

e 
F

re
qu

en
cy

●

●

●

●

●

●

●

●

●

●

Sample Plot

Figure 5: Discrimination plot using aviation forecast.

5 Reliability Diagram

Related to the attribute diagram is the reliability diagram. A reliability diagram can be used to compare
multiple forecasts. Figure 6 is an example using data from Wilks (1995).
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> y.i <- c(0, 0.05, seq(0.1, 1, 0.1))

> obar.i <- c(0.006, 0.019, 0.059, 0.15, 0.277, 0.377, 0.511, 0.587,

+ 0.723, 0.779, 0.934, 0.933)

> prob.y <- c(0.4112, 0.0671, 0.1833, 0.0986, 0.0616, 0.0366, 0.0303,

+ 0.0275, 0.245, 0.022, 0.017, 0.203)

> obar <- 0.162

> reliability.plot(y.i, obar.i, prob.y, titl = " Wilks Data", legend.names = c("Model A"))

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability, yi

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y,

 o
1

 Wilks Data

●
●

●

●

●

●

●

●

●

●

● ●

● Model A

0.
0

0.
2

0.
4

Figure 6: Reliability diagram of Wilks example.
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