
Introduction to the wordnet Package

Ingo Feinerer

June 26, 2010

Abstract

The wordnet package provides a R interface to the WordNet lexical
database of English.

Introduction

The wordnet package provides a R via Java interface to the WordNet1 lexical
database of English which is commonly used in linguistics and text mining. In-
ternally wordnet uses Jawbone2, a Java Api to WordNet, to access the database.
Thus, this package needs both a working Java installation, activated Java under
R support, and a working WordNet installation.

Since we simulate the behavior of Jawbone, its homepage is a valuable source
of information for background information and details besides this vignette.

Loading the Package

The package is loaded via

> library("wordnet")

Dictionary

A so-called dictionary is the main structure for accessing the WordNet database.
Before accessing the database the dictionary must be initialized with the
path to the directory where the WordNet database has been installed (e.g.,
/usr/local/WordNet-3.0/dict). On start up the package searches environ-
ment variables (WNHOME) and default installation locations such that the Word-
Net installation is found automatically in most cases. On success the package
stores internally a pointer to the WordNet dictionary which is used package
wide by various functions. You can manually provide the path to the WordNet
installation via setDict().

1http://wordnet.princeton.edu/
2http://mfwallace.googlepages.com/jawbone.html

1



Filters

The package provides a set of filters in order to search for terms according to
certain criteria. Available filter types can be listed via

> getFilterTypes()

[1] "ContainsFilter" "EndsWithFilter" "ExactMatchFilter"

[4] "RegexFilter" "SoundFilter" "StartsWithFilter"

[7] "WildcardFilter"

A detailed description of available filters gives the Jawbone homepage. E.g.,
we want to search for words in the database which start with car. So we
create the desired filter with getTermFilter(), and access the first five terms
which are nouns via getIndexTerms(). So-called index terms hold information
on the word itself and related meanings (i.e., so-called synsets). The function
getLemma() extracts the word (so-called lemma in Jawbone terminology).

> filter <- getTermFilter("StartsWithFilter", "car", TRUE)

> terms <- getIndexTerms("NOUN", 5, filter)

> sapply(terms, getLemma)

[1] "car" "car-ferry" "car-mechanic" "car battery"

[5] "car bomb"

Synonyms

A very common usage is to find synonyms for a given term. Therefore, we
provide the low-level function getSynonyms(). In this example we ask the
database for the synonyms of the term company.

> filter <- getTermFilter("ExactMatchFilter", "company", TRUE)

> terms <- getIndexTerms("NOUN", 1, filter)

> getSynonyms(terms[[1]])

[1] "caller" "companionship" "company" "fellowship"

[5] "party" "ship's company" "society" "troupe"

In addition there is the high-level function synonyms() omitting special param-
eter settings.

> synonyms("company")

[1] "caller" "companionship" "company" "fellowship"

[5] "party" "ship's company" "society" "troupe"

Related Synsets

Besides synonyms, synsets can provide information to related terms and synsets.
Following code example finds the antonyms (i.e., opposite meaning) for the
adjective hot in the database.

2



> filter <- getTermFilter("ExactMatchFilter", "hot", TRUE)

> terms <- getIndexTerms("ADJECTIVE", 1, filter)

> synsets <- getSynsets(terms[[1]])

> related <- getRelatedSynsets(synsets[[1]], "!")

> sapply(related, getWord)

[1] "cold"

3


