
R Package FME : Inverse Modelling, Sensitivity,

Monte Carlo – Applied to a Nonlinear Model

Karline Soetaert
NIOO-CEME

The Netherlands

Abstract

Rpackage FME (Soetaert and Petzoldt 2010) contains functions for model calibration,
sensitivity, identifiability, and Monte Carlo analysis of nonlinear models.

This vignette (vignette("FMEother")), applies the FME functions to a simple non-
linear model.

A similar vignette (vignette("FMEdyna")), applies the functions to a dynamic simi-
lation model, solved with integration routines from package deSolve

A third vignette, (vignette("FMEsteady")), applies FME to a partial differential
equation, solved with a steady-state solver from package rootSolve

vignette("FMEmcmc") tests the Markov chain Monte Carlo (MCMC) implementation

Keywords:˜steady-state models, differential equations, fitting, sensitivity, Monte Carlo, iden-
tifiability, R.

1. Fitting a Monod function

1.1. The model

This example is discussed in (Laine 2008) (who quotes Berthoux and Brown, 2002. Statistics
for environmental engineers, CRC Press).

The following model:

y = θ1 ·
x

x+ θ2
+ ε

ε ∼ N(0, Iσ2)

is fitted to data.

1.2. Implementation in R

> require(FME)

First we input the observations

2 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Nonlinear Model

> Obs <- data.frame(x=c(28, 55, 83, 110, 138, 225, 375), # mg COD/l

+ y=c(0.053,0.06,0.112,0.105,0.099,0.122,0.125)) # 1/hour

The Monod model returns a data.frame, with elements x and y :

> Model <- function(p, x) return(data.frame(x = x, y = p[1]*x/(x+p[2])))

1.3. Fitting the model to data

We first fit the model to the data.

Function Residuals estimates the deviances of model versus the data.

> Residuals <- function(p) (Obs$y - Model(p, Obs$x)$y)

This function is input to modFit which fits the model to the observations.

> print(system.time(

+ P <- modFit(f = Residuals, p = c(0.1, 1))

+))

user system elapsed

0.012 0.000 0.010

We can estimate and print the summary of fit

> sP <- summary(P)

> sP

Parameters:

Estimate Std. Error t value Pr(>|t|)

[1,] 0.14542 0.01564 9.296 0.000242 ***

[2,] 49.05292 17.91196 2.739 0.040862 *

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.01278 on 5 degrees of freedom

Parameter correlation:

[,1] [,2]

[1,] 1.0000 0.8926

[2,] 0.8926 1.0000

We also plot the residual sum of squares, the residuals and the best-fit model

> x <-0:375

Karline Soetaert 3

●

●

● ● ● ● ●

1 2 3 4 5 6 7

0.
00

1
0.

00
2

0.
00

4

residual sum of squares

iteration

−

1 2 3 4 5 6 7

−
0.

01
0.

01

residuals

Index

−
●●

●●●

● ●

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

best−fit

mg COD/l

1/
hr

Figure 1: Fit diagnostics of the Monod function - see text for R-code

> par(mfrow = c(2, 2))

> plot(P, mfrow = NULL)

> plot(Obs, pch = 16, cex = 2, xlim = c(0, 400), ylim = c(0, 0.15),

+ xlab = "mg COD/l", ylab = "1/hr", main = "best-fit")

> lines(Model(P$par, x))

> par(mfrow = c(1, 1))

1.4. MCMC analysis

We then run an MCMC analysis. The -scaled- parameter covariances returned from the
summary function are used as estimate of the proposal covariances (jump). Scaling is as in
(Gelman, Varlin, Stern, and Rubin 2004).

For the initial model variance (var0) we use the residual mean squares also returned by the
summary function. We give equal weight to prior and modeled mean squares (wvar0=1)

The MCMC method adopted here is the Metropolis-Hastings algorithm; the MCMC is run
for 3000 steps; we use the best-fit parameter set (P$par) to initiate the chain (p). A lower
bound (0) is imposed on the parameters (lower).

> Covar <- sP$cov.scaled * 2.4^2/2

> s2prior <- sP$modVariance

> print(system.time(

+ MCMC <- modMCMC(f = Residuals, p = P$par, jump = Covar, niter = 3000,

4 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Nonlinear Model

+ var0 = s2prior, wvar0 = 1, lower = c(0, 0))

+))

number of accepted runs: 1111 out of 3000 (37.03333%)

user system elapsed

1.604 0.024 1.683

By toggling on covariance adaptation (updatecov and delayed rejection (ntrydr), the accep-
tance rate is increased:

> print(system.time(

+ MCMC <- modMCMC(f = Residuals, p = P$par, jump = Covar, niter = 3000,

+ ntrydr = 3, var0 = s2prior, wvar0 = 1, updatecov = 100, lower = c(0, 0))

+))

number of accepted runs: 2592 out of 3000 (86.4%)

user system elapsed

4.072 0.000 4.095

> MCMC$count

dr_steps Alfasteps num_accepted num_covupdate

2504 10446 2592 29

The plotted results demonstrate (near-) convergence of the chain.

> plot(MCMC, Full = TRUE)

The posterior distribution of the parameters, the sum of squares and the model’s error stan-
dard deviation.

> hist(MCMC, Full = TRUE, col = "darkblue")

The pairs plot shows the relationship between the two parameters

> pairs(MCMC)

The parameter correlation and covariances from the MCMC results can be calculated and
compared with the results obtained by the fitting algorithm.

> cor(MCMC$pars)

p1 p2

p1 1.0000000 0.9120163

p2 0.9120163 1.0000000

> cov(MCMC$pars)

Karline Soetaert 5

0 500 1500 2500

0.
10

0.
20

0.
30

p1

iter

0 500 1500 2500

50
15

0
25

0

p2

iter

0 500 1500 2500

0.
00

1
0.

00
3

0.
00

5

SSR

iter

0 500 1500 2500

5e
−

05
2e

−
04

1e
−

03

var_model

iter

va
ria

nc
e

Figure 2: The mcmc - see text for R-code

6 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Nonlinear Model

p1

−

0.10 0.15 0.20 0.25 0.30

0
5

10
20

p2

−

0 50 100 150 200 250

0.
00

0
0.

01
0

0.
02

0

SSR

−

0.001 0.003 0.005

0
10

00
20

00
30

00

error var_model

va
r_

m
od

el

0e+00 4e−04 8e−04

0
20

00
60

00

Figure 3: Hist plot - see text for R-code

Karline Soetaert 7

p1

50 100 150 200 250

0.
10

0.
15

0.
20

0.
25

0.
30

●
●●●

●

●●

●●●●
●

●

●

●
●●●

●
●

●

●

●

●●●●●●●

●●●
●
●●●●

●●●●
●
●

●
●●

●●

●●●●

●●
●
●●
●

●
●●●
●●

●●

●●
●

●●
●

●

●
● ●●●●●●●●

●
●

●
●●
●

●●●
● ●●

●●●
●●

●●●
●●
●

●●
●●●●●●

●●
●●

●●
●

●

●●●●

●

●

●
●●●

●●●
●

●
●

●●
●●●

●
●
●

●
●●●

●

●●●●

●

●

●●
●●
●

●●●●●●●
●●●

●
●●

● ●
●●●
●●

●●
●

●

●

●●●●
●

●●
●
●●●

●●●●●

●●
●●

●

●
●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●●●

●●

●●●● ●●●
●

●

●
●

●●●●●●

●●●●●●●●●●

●
●●

●●●●

●
●

●

●●●
●●●

●●
●●●

●●
●

●●●
●●

●●

●●●●
●

●
●

●●●

●

●

●●●
●●●●

●●

●●

●
●●
●

●●●

●
●

●●

●

●●

●

●

●●
●●

●

●

●

●
●

●●●●
●

●●●
●

●●

●

●●●
●

●●●●
●

●●●
●

●
●

●●●●
●●
●
●

●
●

●
●

●●

●

●
●●●●●●

●●●
●
●●●

●
●

●●●●

●
●

●●●●
●

●●●●
●●

●

●
●●

●●
●●●
●

●●●●●

●
●●
●

●

●

●●●
●●●
●●●●

●
●●

●
●

●●●●

● ●●

●

●
●

●
●●

●●●●●
●

●●●●

●
●

●●
●
●

●
●

●●●●●●●
●●●

●●

●●

●●●

●●

●
●

●
●

●●

●●

●

●●
●

●
●●

●

●●●

●●●●●

●●
●●
●

●

●

●
●●
●●

●

●
●

●

●

●

●
●

●●●

●
●

●
●●

●

●
●

●

●
●●●

●
●

●●●
●●●●

●●●●

●●

●●●●●
●●●●

●
●●
●

●

●●●●
●

●●

●
●●●

●
●

●●●●

●●

●

●
●●

●
●

●
●●●

●●●●●●●●
●●
●●●●

●●
●●●

●●●●●●●●●●●
●

●●
●●
●

● ●●
●

●●
●
●●●
●●●●

●
●

●

●●●● ●
●●

●

●
●

●●
●●

●●●●●
●

●

●●●●●●
●●●●●●●●●

●
●

●

●

●

●●●●

●
●●●

●●

●●●●

●●

●

●●
●

●●

●
●●●●●●

●●● ●

●●●

●●●

●●●
●●

●●

●●

●

●
●

●●

●

●
●
●

● ●

●●

●
●

●●

●●●●●●●●
●●

●
●

●
●

●

●●

●
●

●●●
●

●
●●●

●

●

●●

●

●●●●●

●
●

●●●

●●●

●

●

●●

●

●●

●

●

●
●

●
●●●

●

●●
●●

●●●

●●●●

●●

●●

●

●
●●

●●
●●●●●●●
●●

●●

●●●
●

●
●

●

●●●●

●

●
●●

●●●●

●

●

●

●

●●

●
●

●
●●●●

●

●
●

●●●

●●●
●●●

●●●

●●●
●

●●●●
●●●

●
●

●

●●●
●●●●

●●●●●

●●
●

●
●

●
●●●

●

●
●

●
●

●
●
●

●●

●●

●●●●
●●
●●●

●
●
●

●●●●●●
●●●

●
●

●
●

●●
●●●●●

●●●●●
●

●
●

●

●●●

●

●●
●
●

●

●
●●
●●●

●●

●●

●

●●●
●

●

●●
●

●
●●

●
●●●
●

●●

●

●●●●●●●●
●●
●●

●
●

●●●●

●
●●

●

●●

●
●●

●

●

●
●●

●●

●
●●●
●

●●●●●●
●

●●●●
●●

●
●

●●

●●

●

●●

●●

●

●
●●

●

●
●●

●

●●

●●●
●

●

●

●●●●
●
●●●●

●●●

●●●
●

●
●

●●

●
●

●

●

●●

●
●

●

●●●

●●
●●●●

●●
●●●
●

●
●

●

●●

●●

●
●●

●●●

●●
●

●
● ●●●●●●
●●●

●●●●
●●●●●●●●

●●
●

●
●

●●●
●

●

●
●

●
●●

●●

●
●●●●

● ●●

●

●●

●●

●

●●
●

●
●

●

●
●●

●
●

●
●●

●

●● ●

● ●

●●●●
●

●●
●●
●●
●●●●●

●
●●

●●●
●
●

●●●
●

●
●

●
●●●

●
●

●

●●●●
●●●●●

●

●●●
●

●
●●●●

●
●●
●●

●
●
●●●
●●●
●●●●●●

●

● ●

●●

●

●

●●

●
●

●

●

●

●

●

●●●●
●●●●
●
●●●

●●

●
●

●
●

●●
●●

●●
●● ●
●

●

●●●●
●

●

●●

●
●
●●●
●

●

●

●

●●●
●●●●

●●●●●●

●
●●
●

●●

●●
●●●●

●●
●●●●

●

●
●●

●
●●
●

●●●●
●●●●

●
●

●●●●●●●

●

●●●●

●
●●●

●●

●●
●

●●

●
●●●
●●●

●

●

●●
●●
●●●●●

●●
●

●
●●

●
●●

●●●●●●●●
●
●
●

●
●●●

●●
●
●●●●●●

●●●
●●●

●●
●
●●

●
●

●●
●●●
●●

●●
●

●

●

●●●
●●

●●●●●●
●●

●●●●

●●●
●●●●

●
●●●●

●●
●●●●●●●

●●●
●

●●●

●●●●
●

●

●●
●●●

●●
●
●●●

●●●
●

●

●

●●●●●
●

●●
●●●●

●
●

●●●●●●
●●●●●

●

●

●
●●

●

●●●
●●●●

●
● ●●

●
●

●
●●

●●
●

●
●●●●●

●

●

●●●●
●●●

●

●●●●
● ●●

●●

●

●
●

● ●●●●●

●

●
●

●

●●
●

●●

●

●●
●●●●●

●●●●
●

●●
●●

●●

●

●
●

●●

●●

●●
●

●●●

●

●

●●

●
●

●
●

●
●●

●●
●

●
●

●
●●●

●●●
●

●●●●●●●

●

●●

●●

●

●●

●

●●
●●●

●
●●

●

●●●●

●
●

●
●

●●● ●●●
●●

●●●
●●●●●

●●

●●●

●●

●●●●

●

●●
●
●●

●

●●●●
●

●●
●

●●●

●●
●●●
●●●

●
●●●
●

●●●

●●
●●●●●
●

●● ●
●●

●●

●●
●
● ●●●●

●
●

●

●

●

●●●
●●●

●●
●●

●
●●●●●●

●●●

●●
●●●

●●
●

●
●

●●●
●

●

●
●●●

●●●
●

●●
●

●●●●●●●
●●

●

● ●
●

●

●●●●

●

●●●
●●●●

●●

●●●

●●
●●●●●

●●●
●

●●

●

●
●●

●●●
●

●

●

●

●
●

●
●

●●●●
●
●

●

●●

●●

●●

●●●
●

●

●●
●●●

●

●

●

●●●●●
●

●

●●

●●

●●●

●●
●●●●●
●

●
●●●●●●●●

●
●

●

●

●●

●●●

●
●●●●

●●●●
●

●●

●

●●●

●
●

●●
●

●●

●●

●
●●

●
●

●
●●

●
●●●

●●

●●
●

●●

●
●

●●
●●●●
●●
●●●

●
●

●

●●●
●●●●

●

●

●

●●●
●

●●
●

●●● ●●
●●●●

●
●

●

●●
●●●●●

●
●●●
●

●●
●●

●
●

●
●●●
●●●

●●

● ●●
●
●

●

●

●

●
●

● ●

●
●●

●●●●
●

●
●

●

●●●

●

●●
●

●●

●●
●

●
●

●
●●●
●●●●●

●

●●
●●●
●

●

●
●●●

●●
●

●●
●

●●
●

●

●
● ●●
●●●●●

●
●

●●●

●●●●
●●

●
●

●●●●

●

●●●●●

●●●
●●● ●●●●●

●

●
●
●●

●
●

●●

●
● ●

●●●

●●●

●

●

●●
●

●●

●●
● ●

●
●●●●●

●
●

●●

●●

●●●●●●●

●●

●●
●

●●

●

●

●●
●

●
●●●●●●●
●●●●●

●
●

●
●●●

●
●●●
●

●●
●

●

●●●

●

●

●

●

●●
●●
●●●

●
●

●
●●

●●●
●●

●
●

●
●

●
●●

●

●●

●●●●●●●●
●●●●●●

●●● ●●●

●●●

●●

●●●

●●●

●●

●
●

●
●

●●

●
●
●●●

●
●

●
●●

●●●●

●●●●●●●

●●
●

●
●●●●●●

●●
●
●
●●

●●●●●●
●

●
●●●

●
●

●●●●●

●●
●●

●
●●

●
●

●●

●
●

●
●●
●●

●●●●

●
●●

●
●

●
●●

●●●●

●●

●
●

●
●

●●
●

●
●

●●

●●

●●●
● ●

●
●
●

●●

●
●

●●●

●●

●●

●●●●
●

●●
●

●
●●

●
●●

●●

●●

●
●●

●

●●●●

●●●●●

●
●●●

●●●

●●

●●

●●●●
●●●●●

●●●

●

●●●
●

●●

● ●●

●
●

●
●●

●

●
●●●
● ●●●

●●●

●
●

●
●●

●●●
●

●

●●

●
●

●
●

●●
●

●●●●●●●

●●●●●●
●

●

●
●●

●●●

●●●
●

●

●●
●●

●
●●
●●

●
●

●

●●
●

●
●●●●●

● ●●
●

●

●●●
●

●●
●●

●
●●●

●●●
●●●

●
●

●●
●●
●

●●●●
●

●
●

●
●
●

●

●
●

●●
●

●
●●●●

●●●
●●

●
●●

●
●●

●
●●●●
●

●
●
●●●

●●●
●●●

●
●●●

●●●

●●●●
●●●

●
●

●

●

●
●●

●
●

●●●●
●●●●●●

●
●

●
●●●

●

●

●●

●
●●
●●●

●●●

●●●

●
●

●●●

●
●

●
●

●

●●●

●

●

●
●●
●

●●

●

●
●

●

●

●
●

●

● ●

●●

●

●

●●

●

●●
●●●

●

●
●●
●●
●

●
●

●●●
●●●

●●
●●

●

●
●
●●

●●●●
●●

●

●
●
●

●

●

●

●
●●

●

● ●

●

●●

●●
●

●

●●

●●●●

●
●

●●●●●
●

●●
●

● ●●●●●●
●

●
●

●●

●●●

●●●●●●

●
●●

●●●

●
●

●●

●●●
●

●

●●
●

●●●●

●●
●

●●

0.10 0.15 0.20 0.25 0.30

50
10

0
15

0
20

0
25

0

0.91

p2

Figure 4: Pairs plot - see text for R-code

8 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Nonlinear Model

p1 p2

p1 0.000327865 0.3724118

p2 0.372411811 508.5651170

> sP$cov.scaled

[,1] [,2]

[1,] 0.0002447075 0.2501157

[2,] 0.2501156995 320.8381526

The Raftery and Lewis’s diagnostic from package coda gives more information on the number
of runs that is actually needed. First the MCMC results need to be converted to an object of
type mcmc, as used in coda.

> MC <- as.mcmc(MCMC$pars)

> raftery.diag(MC)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

Also interesting is function cumuplot from coda:

> cumuplot(MC)

1.5. Predictive inference including only parameter uncertainty

The predictive posterior distribution of the model, corresponding to the parameter uncer-
tainty, is easily estimated by running function sensRange, using a randomly selected subset
of the parameters in the chain (MCMC$pars; we use the default of 100 parameter combinations.

> sR<-sensRange(parInput=MCMC$pars,func=Model,x=1:375)

The distribution is plotted and the data added to the plot:

> plot(summary(sR), quant = TRUE)

> points(Obs)

1.6. Predictive inference including also measurement error

There is an other source of error, which is not captured by the senRange method, i.e. the
one corresponding to the measurement error, as represented by the sampled values of σ2.

This can be estimated by adding normally distribution noise, ξ ∼ N(0, Iσ2) to the model pre-
dictions produced by the parameters from the MCMC chain. Of course, the σ and parameter
sets used must be compatible.

First we need to extract the parameter sets that were effectively used to produce the output
in sR. This information is kept as an attribute in the output:

Karline Soetaert 9

0 1000 2000 3000

0.
14

0.
16

0.
18

0.
20

Iterations

p1

0 1000 2000 3000

20
40

60
80

10
0

12
0

Iterations

p2

Figure 5: Cumulative quantile plot - see text for R-code

10 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Nonlinear Model

0 100 200 300

0.
00

0.
05

0.
10

0.
15

y

x

y

q05−q95
q25−q75

●

●

●

●

●

●
●

Figure 6: Predictive envelopes of the model, only assuming parameter noise - see text for
R-code

Karline Soetaert 11

0 100 200 300

0.
00

0.
05

0.
10

0.
15

y

x

y

q05−q95
q25−q75

●

●

●

●

●

●
●

Figure 7: Predictive envelopes of the model, including parameter and measurement noise -
see text for R-code

> pset <- attributes(sR)$pset

Then randomly distributed noise is added; note that the first two columns are parameters;
ivar points only to the variables.

> nout <- nrow(sR)

> sR2 <- sR

> ivar <- 3:ncol(sR)

> error <- rnorm(nout, mean = 0, sd = sqrt(MCMC$sig[pset]))

> sR2[,ivar] <- sR2[,ivar] + error

> plot(summary(sR2),quant=TRUE)

> points(Obs)

12 FME – Inverse Modelling, Sensitivity, Monte Carlo With a Nonlinear Model

2. Finally

This vignette was made with Sweave (Leisch 2002).

References

Gelman A, Varlin JB, Stern HS, Rubin DB (2004). Bayesian Data Analysis. Chapman &
Hall/CRC, Boca Raton, 2nd edition.

Laine M (2008). Adaptive MCMC Methods with Applications in Environmental and Models.
Finnish Meteorological Institute Contributions 69. ISBN 978-951-697-662-7.

Leisch F (2002). “Dynamic Generation of Statistical Reports Using Literate Data Analysis.” In
W˜Härdle, B˜Rönz (eds.), “COMPSTAT 2002 – Proceedings in Computational Statistics,”
pp. 575–580. Physica-Verlag, Heidelberg.

Soetaert K, Petzoldt T (2010). “Inverse Modelling, Sensitivity and Monte Carlo Analysis in
R Using Package FME.” Journal of Statistical Software, 33(3), 1–28. URL http://www.

jstatsoft.org/v33/i03/.

Affiliation:

Karline Soetaert
Centre for Estuarine and Marine Ecology (CEME)
Netherlands Institute of Ecology (NIOO)
4401 NT Yerseke, Netherlands
E-mail: k.soetaert@nioo.knaw.nl
URL: http://www.nioo.knaw.nl/users/ksoetaert

http://www.jstatsoft.org/v33/i03/
http://www.jstatsoft.org/v33/i03/
mailto:k.soetaert@nioo.knaw.nl
http://www.nioo.knaw.nl/users/ksoetaert

	Fitting a Monod function
	The model
	Implementation in R
	Fitting the model to data
	MCMC analysis
	Predictive inference including only parameter uncertainty
	Predictive inference including also measurement error

	Finally

