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Chromatin immunoprecipitation followed by hybridization to a genomic tiling mi-
croarray (ChIP-Chip) is a routinely used protocol for localizing the genomic targets of
DNA-binding proteins. The resolution to which binding sites in this assay can be iden-
tified is commonly considered to be limited by two factors: (a) the resolution at which
the genomic targets are tiled in the microarray, and (b) the large and variable lengths
of the immunoprecipitated DNA fragments.

The MeDiChI package uses a generative model of binding sites in ChIP-chip data, and
an approach for efficiently and robustly learning that model from diverse data sets. We
have evaluated MeDiChI’s performance using simulated data, as well as on several diverse
ChIP-chip data sets collected on widely different tiling array platforms for two different
organisms (S. cerevisiae and H. salinarum NRC-1). We find that MeDiChI accurately
predicts binding locations to a resolution greater than that of the probe spacing, even
for overlapping peaks, and can increase the effective resolution of tiling array data by a
factor of 5× or better. Moreover, the method’s performance on simulated data provides
insights into effectively optimizing the experimental design for increased binding site
localization accuracy and efficacy.

The MeDiChI package includes functions for constructing a peak profile, using it to
deconvolve the ChIP-chip data, and plotting and examining the resulting fits. It also
includes functions for generating simulated data for quality assessment.

We encourage you to read this package’s publication, listed at the bottom of this
document, and to visit the companion website, itemized just below.

http://baliga.systemsbiology.net/medichi

1 Technical Background and Notes

The MeDiChI package requires a very basic data format, by default a two-column ma-
trix listing the central chromosomal coordinate of each probe and its intensity (NOTE:
intensities should be un-logged). Multiple replicates may be included in this single data
set. For more information, see the online help documentation for this package.
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2 Demo 1: Load and deconvolve a small chromoso-

mal segment of ChIP-chip data

In this first demonstration, we

• Initialize the MeDiChI library and load the example low-resolution H. salinarum
NRC-1 data set

• Deconvolve a small part of this data set on the main chromosome, including 100
bootstraps

• Plot and examine the resulting fit and bootstrap distribution

> library(MeDiChI)

Loading MeDiChI, version 0.4.0 (Tue Oct 12 11:20:57 2010)

> data("halo.lowres", package = "MeDiChI")

> fit <- chip.deconv(data.halo.lowres, where = "Chr", fit.res = 10,

+ center = 650000, wind = 20000, max.steps = 100, n.boot = 10,

+ kernel = kernel.halo.lowres, verbose = TRUE)

Using 1.520822 as data cutoff!

MEAN PROBE SPACING = 500

Step for min AIC: 33 15 ; BIC: 26 14 ; using: bic

13 coeffs at > 0 for LARS step 26

Number of coeffs: 13 ... Reduced to 8 non-redundant coeffs.

*** BOOTSTRAP ITER: 2 ***

Step for min AIC: 4 4 ; BIC: 3 3 ; using: bic

2 coeffs at > 0 for LARS step 3

Number of coeffs: 2 ... Reduced to 2 non-redundant coeffs.

*** BOOTSTRAP ITER: 3 ***

Step for min AIC: 4 4 ; BIC: 3 3 ; using: bic

2 coeffs at > 0 for LARS step 3

Number of coeffs: 2 ... Reduced to 2 non-redundant coeffs.

*** BOOTSTRAP ITER: 4 ***

Step for min AIC: 5 5 ; BIC: 3 3 ; using: bic

2 coeffs at > 0 for LARS step 3

Number of coeffs: 2 ... Reduced to 1 non-redundant coeffs.

*** BOOTSTRAP ITER: 5 ***

Step for min AIC: 13 9 ; BIC: 6 4 ; using: bic

3 coeffs at > 0 for LARS step 6

Number of coeffs: 3 ... Reduced to 3 non-redundant coeffs.
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*** BOOTSTRAP ITER: 6 ***

Step for min AIC: 2 2 ; BIC: 2 2 ; using: bic

1 coeffs at > 0 for LARS step 2

Number of coeffs: 1 ... Reduced to 1 non-redundant coeffs.

*** BOOTSTRAP ITER: 7 ***

Step for min AIC: 6 6 ; BIC: 5 5 ; using: bic

4 coeffs at > 0 for LARS step 5

Number of coeffs: 4 ... Reduced to 3 non-redundant coeffs.

*** BOOTSTRAP ITER: 8 ***

Step for min AIC: 3 3 ; BIC: 2 2 ; using: bic

1 coeffs at > 0 for LARS step 2

Number of coeffs: 1 ... Reduced to 1 non-redundant coeffs.

*** BOOTSTRAP ITER: 9 ***

Step for min AIC: 6 6 ; BIC: 2 2 ; using: bic

1 coeffs at > 0 for LARS step 2

Number of coeffs: 1 ... Reduced to 1 non-redundant coeffs.

*** BOOTSTRAP ITER: 10 ***

Step for min AIC: 3 3 ; BIC: 1 1 ; using: bic

0 coeffs at > 0 for LARS step 1

Number of coeffs: 0 ... Reduced to 0 non-redundant coeffs.

> coef(fit)

position intensity p.value <

83 640322 2.2199189 0.1

210 644082 2.1581575 0.1

380 646272 1.0803201 0.1

501 648972 0.4423681 0.7

599 649952 1.0666237 0.1

706 654012 2.4796942 0.1

819 657132 1.6817031 0.1

907 659502 0.5821610 0.3

> plot(fit, plot.genes = TRUE, cex = 0.5, cex.lab = 0.8, cex.axis = 0.8)

You should see a plot of the chunk of data and the resulting fit appear, similar to
this one:
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3 Demo 2: Deconvolve an entire data set

Here we deconvolve the entire data set rather than one small chunk. This method
effectively deconvolves small chunks of data in a scrolling window and merges the results
at the end. Depending on the size of the data set, this procedure can take a while (this
particular example will take about 15 minutes). In this demonstration, we

• Deconvolve the entire data set, including bootstraps

• Plot and examine parts of the resulting fit and bootstrap distribution

> fits <- deconv.entire.genome(data.halo.lowres, max.steps = 100,

+ fit.res = 30, n.boot = 10, boot.sample = "residual", kernel = kernel.halo.lowres,

+ verbose = FALSE)

> coef(fits$fits.fin$Chr)

> plot(fits$fits.fin$Chr, center = 650000, wind = 20000, plot.genes = T)

You should see a plot appear, similar to the one above. The print-out of the co-
efficients will include p-values for each detected peak (based upon bootstrap statistics
across the entire data set).
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4 Demo 3: Learn the peak profile from data

In the previous twoexamples, we used a pre-computed ChIP-chip peak profile (the same
one that was used in the manuscript [1]. In this demo, we will show how this peak
profile is computed from the data set. This method starts with a guess for good starting
parameters, generates a binding profile using those parameters, and detects binding sites
across the data set as in the previous example. It then identifies the 20 brightest, most
isolated peaks, and adjusts the peak profile parameters to better reflect those peaks.
This process is repeated several times. It can be sped up by adjusting the parameters of
the following function to make its repeated calls to deconv.entire.genome() execute
faster. In this demonstration, we

• Fit a peak profile (kernel) to the low-resolution H. salinarum NRC-1 data set

• Plot the resulting fit and learn how to use the output for a run of chip.deconv()
or deconv.entire.genome()

> peak.params <- fit.peak.profile(data.halo.lowres, tile.size = 500,

+ quant.cutoff = "q0.98", chrom = "Chr", fit.res = 30, max.steps = 100,

+ plot = T, name = "Halo-lowres")

The resulting structure can be plotted, which will display seven of the brightest
peaks contributing to the fit, the best-fit DNA fragment length distribution, and the
final peak profile, including all data data points surrounding the 20 brightest, isolated
peaks (shifted and normalized based on their best-fit positions and intensities).

> plot(peak.params)

This results in something like this for the above example:
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> peak.params$kernel

may be used as a kernel for more accurate deconvolution chip.deconv() or de-

conv.entire.genome() as in the previous two examples.

5 For More Information

For more information, please visit:
http://baliga.systemsbiology.net/medichi
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