Introduction to the
MethComp package

(compiled Friday 4" February, 2011, 22:37)

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark
& Department of Biostatistics, University of Copenhagen
bxc@steno.dk
www.biostat.ku.dk/ bxc

Contents

1 Data structures 2

2 Function overview 5
2.1 Graphical functions . . . . . . . ... 5)
2.2 Data manipulating functions . . . . . .. ... o L0000 5)
2.3 Analysis functions . . . . . ... Lo 6

2.4 Reporting functions . . . . . . ... 6


www.biostat.ku.dk/~bxc

2 1 Data structures

The purpose of the MethComp package is to provide computational tools to
manipulate, display and analyze data from method comparison studies. A method
comparison study is a study where two methods of quantitative measurement are
compared by measuring the same set of items with both methods.

There may be more than two methods, and there may be replicate measurements on
each item by each method.

1 Data structures

In general we are concerned with measurements by different methods, on different items
(persons, samples), possibly replicated.

Often such data are represented by a row of measurements for each item, with
possible replicates listed either below or beside each other. This implicitly assumes that
some replicate measurements belong together, which is not necessarily the case in all
situations.

All functions in MethComp assume data to be represented in the “long” form, with one
measurement on each row, and columns to indicate method, item and replicate.
Specifically, we assume the following columns are available in a data frame:

e meth The measurement method. Numeric or factor.

e item Identification of item (person, sample). Numeric or factor.

e repl Replicate number. Numeric or factor.

e y The measurement by method meth on item item, replicate number repl.

There is a class, “Meth” for this kind of data frame. A dataframe is converted to a
Meth object by using the Meth function on it:

> data( ox )
> str( ox )

'data.frame': 354 obs. of 4 variables:

$ meth: Factor w/ 2 levels "CO","pulse": 1111111111 ...
$ item: num 1112223334 ...

$ repl: num 1231231231 ...

$ vy :num 78 76.4 77.2 68.7 67.6 68.3 82.9 80.1 80.7 62.3 ...

> ox <- Meth( ox )

The following variables from the dataframe
"ox" are used as the Meth variables:

meth: meth
item: item
repl: repl

yo ¥



The MethComp package. 3

#Replicates
Method 1 2 3 #Items #0bs: 354 Values: min med max
co 1 4 56 61 177 22.2 78.6 93.5
pulse 1 4 56 61 177 24.0 75.0 94.0

> summary( ox )

#Replicates
Method 1 2 3 #Items #0bs: 354 Values: min med max
co 1 4 56 61 177 22.2 78.6 93.5
pulse 1 4 56 61 177 24.0 75.0 94.0

If these variable are not availabe in the data frame we may create them on the fly or by
giving the variable positions as arguments to the Meth function:

> data( fat )
> str( fat )

'data.frame': 258 obs. of b5 variables:
$Id :num 11133355511 ...
$ Obs: Factor w/ 2 levels "KL","SL": 1111111111

$ Rep: num 1231231231 ...
$ Sub: num 1.6 1.7 1.7 2.8 2.9 2.8 2.7 2.8 2.9 3.9 ...
$ Vic: num 4.5 4.4 4.7 6.4 6.2 6.53.63.944.3
> sc <- Meth( fat, 2, 1, 3, 4 )
The following variables from the dataframe
"fat" are used as the Meth variables:
meth: Obs
item: Id
repl: Rep
y: Sub
#Replicates
Method 3 #Items #0bs: 258 Values: min med max
KL 43 43 129 0.39 1.7 4.2
SL 43 43 129 0.51 1.7 4.1
> str( sc )
Classes 3AYMethaAZ and 'data.frame': 258 obs. of variables:

$ meth: Factor w/ 2 levels "KL","SL": 111111
$ item: Factor w/ 43 levels "1", m2m, n3m mwqr . . 1
$ repl: Factor w/ 3 levels "1","2" "3": 1 2 3 1 2
$y :num 1.6 1.7 1.7 2.8 2.9 2.8 2.7 2.

$ Vic : num 4.5 4.4 4.7 6.4 6.2 6.5 3.6 3.

2
3



4 1 Data structures

> summary( sc )

#Replicates
Method 3 #Items #0bs: 258 Values: min med max
KL 43 43 129 0.39 1.7 4.2
SL 43 43 129 0.51 1.7 4.1

We may even give some of them as names of the columns in the dataframe:
> vi <- Meth( fat, 2,1,"Rep","Vic" )

The following variables from the dataframe
"fat" are used as the Meth variables:

meth: Obs
item: Id
repl: Rep
y: Vic
#Replicates

Method 3 #Items #0bs: 258 Values: min med max

KL 43 43 129 2.0 3.9 6.5

SL 43 43 129 2.3 4.1 6.7

However, more complicated operations on the dataframe is best done on the fly using
the with function (from the base package):

> data( hbalc )
> str( hbalc )

'data.frame': 835 obs. of 6 variables:

$ dev : Factor w/ 3 levels "BR.V2","BR.VC",..: 2222222211
$ type : Factor w/ 2 levels "Cap","Ven": 2222111122 ...

$ item : num 12 12 12 12 12 12 12 12 12 12 ...

$ dosamp: num 1111111111 ...
$ dana : num 2345234523 ...
$y :num 8.7 8.7 8.7 8.7 9.2 9 8.88.79.49.3 ...
> hbl <- with( hbalc,

+ Meth( meth = interaction(dev,type),
+ item = item,

+ repl = d.ana-d.samp,

" y =y, print=TRUE ) )

#Replicates
Method 3 4 #Items #0bs: 835 Values: min med max
BR.V2.Cap 0 38 38 152 5.3 8.0 12.6
BR.VC.Cap 19 19 38 133 5.3 8.2 12.1
Tosoh.Cap 0 38 38 152 5.0 7.8 11.8
BR.V2.Ven 19 19 38 133 5.5 8.1 12.0
BR.VC.Ven 19 19 38 133 5.3 8.0 11.6
Tosoh.Ven 20 18 38 132 5.3 8.0 12.1



The MethComp package. 5

> str( hbl )

Classes aAYMethaAZ and 'data.frame': 835 obs. of 4 variables:

$ meth: Factor w/ 6 levels "BR.V2.Cap","BR.VC.Cap",..: 55655222244 ...

$ item: Factor w/ 38 levels "1", "2", "3" "4" . . 12 12 12 12 12 12 12 12 12 12 ...
$ repl: Factor w/ 5 levels "O","1","2","3", ..: 2345234523 ...

$y :num 8.7 8.7 8.7 8.7 9.2 9 8.8 8.7 9.4 9.3 ...

Objects of class Meth (which inherits from data.frame) has methods such as summary,
plot, subset and transform. The functions mostly do not require the data to be in
Meth format — if a dataframe with the right columns is supplied, it is normally
converted internally to Meth format.

2 Function overview

The following is a brief overview of the functions in the MethComp package. The full
documentation is in the help pages for the functions, and an illustration of the way they
work can be obtained by referring to the printed manual at the end of this document or
on the fly by typing e.g.:

> 7plot.Meth

which will bring up the manual page for the function plot.meth. The example code
from the manual page can be run directly by:

> example( plot.Meth )

2.1 Graphical functions

BA.plot Makes a Bland-Altman plot of two methods from a data frame with method
comparison data, and computes limits of agreement. The plotting is really done by
a call to the function BlandAltman.

BlandAltman draws a Bland-Altman plot and computes limits of agreement.

plot.Meth Plots all methods against all others, both as a scatter plot and as a
Bland-Altman plot.

bothlines Adds regression lines of y on = and vice versa to a scatter plot. Optionally,
the Deming regression line can be added too.

2.2 Data manipulating functions

make.repl Generates (or replaces) a repl column in a data frame with columns meth,
item and y.

perm.repl Randomly permutes replicates within (method,item) and assigns new
replicate numbers.



6 2.3 Analysis functions

to.wide Transforms a data frame in the long form to the wide form where separate
columns for each method are generated, with one row per (item,replicate).

to.long Reverses the result of to.wide. The function can also generate a long form
dataset from a dataset with different methods beside each other.

summary .Meth Tabulates items by method and no. replicates for a Meth object.

Meth.sim Simulates a dataset from a method comparison experiment for given
parameters for bias, exchangeability and variance component sizes.

2.3 Analysis functions

BA.est Estimates in the variance components models underlying the concept of limits
of agreement, and returns the bias and the variance components. Assumes
constant bias between methods.

Deming Performs Deming regression, i.e. regression with errors in both variables.

DA.reg Regresses the differeneces between methods on the averages and derives
approximate linear conversion equations, based on [?].

AltReg Estimates via alternating regressions in the general model. Returns estimates
of mean conversion parameters and variance components.

MCmcmc Estimates via BUGS in the general model with non-constant bias (and in the
future) possibly non-constant standard deviations of the variance components.
Produces a MCmcmc object, which is an mcmc.1list object with some extra
attributes. mcmc.list objects are handeled by the coda package, so this is
required when calling MCmcmc.

2.4 Reporting functions

Some of these functions all take a MCmcmc object as input, others will postprocess the
output of DA.reg, BA.est or AltReg.

The functions BA.est, ALltReg return objetcs that have class MethComp, whereas the
result of MCmcmc can be converted to an object of this type by the MethComp function.
The reason for this is that the results of the MCmcmc function is output from an
MCMC-simulation which we may want to monitor by specisl functions. The MethComp
function only takes the central summaries from the MCmcmc object assuming the chains
have reached convergence.

print.MethComp Prints a table of conversion equation between methods analyzed, with
prediction standard deviations.

print.MCmcmc Prints a table of conversion equation between methods analyzed, with
prediction standard deviations, but also gives summaries of the posteriors for the
parameters that constitute the conversion algorithms.



The MethComp package. 7

plot.MethComp, plot.MCmcmc Plots the conversion lines between methods with
prediction limits.

post.MCmcmc Plots smoothed posterior densities for the estimates. Primarily of interest
for the variance components, but it has aruments to produce the posterior of the
intercepts and the slopes of the conversion lines between methods too.

check.MCmcmc Makes diagnistic plots of the traces of the chains included in the MCmcmc
object.



	Data structures
	Function overview
	Graphical functions
	Data manipulating functions
	Analysis functions
	Reporting functions


