ModelMap: an R Package for Model Creation and Map
Production

Elizabeth A. Freeman, Tracey S. Frescino, Gretchen G. Moisen

December 6, 2010

Abstract

The ModelMap package (Freeman, 2009) for R (R Development Core Team, 2008) enables
user-friendly modeling, validation, and mapping over large geographic areas though a single R
function or GUI interface. It constructs predictive models of continuous or discrete responses
using Random Forests or Stochastic Gradient Boosting. It validates these models with an
independent test set, cross-validation, or (in the case of Random Forest Models) with Out
OF Bag (OOB) predictions on the training data. It creates graphs and tables of the model
validation diagnostics. It applies these models to GIS image files of predictors to create
detailed prediction surfaces. It will handle large predictor files for map making, by reading in
the GIS data in sections,thus keeping memory usage reasonable.

1 Introduction

Maps of tree species presence and silvicultural metrics like basal area are needed throughout the
world for a wide variety of forest land management applications. Knowledge of the probable
location of certain key species of interest as well as their spatial patterns and associations to
other species are vital components to any realistic land management activity. Recently developed
modeling techniques such as Random Forest (Breiman, 2001) and Stochastic Gradient Boosting
(Friedman, 2001, 2002) offer great potential for improving models and increasing map accuracy
(Evans and Cushman, 2009; Moisen et al., 2006).

The R software environment offers sophisticated new modeling techniques, but requires advanced
programming skills to take full advantage of these capabilities. In addition, spatial data files can
be too memory intensive to analyze easily with standard R code. The ModelMap package provides
an interface between several existing R packages to automate and simplify the process of model
building and map construction.

While spatial data is typically manipulated within a Geographic Information System (GIS), the
ModelMap package facilitates modeling and mapping extensive spatial data in the R software
environment. ModelMap has simple to use GUI prompts for non-programmers, but still has the
flexibility to be run at the command line or in batch mode, and the power to take full advantage
of sophisticated new modeling techniques. ModelMap uses the rgdal package to read and predict
over GIS raster data. Large maps are read in sections, to keep memory usage reasonable.

The current implementation of ModelMap builds predictive models using Random Forests or
Stochastic Gradient Boosting. Random Forest models are constructed using the randomForest
package (Liaw and Wiener, 2002) and Stochastic Gradient Boosting models are constructed using
the gbm package (Ridgeway, 2007). The ModelMap package models both continuous and binary
response variables. For binary response, the PresenceAbsence package (Freeman, 2007) package
is used for model diagnostics.

Both Random Forest and Stochastic Gradient Boosting models are built as an ensemble of classi-
fication or regression trees (Breiman et al., 1984). Classification and regression trees are intuitive

methods, often described in graphical or biological terms. Typically shown growing upside down,
a tree begins at its root. An observation passes down the tree through a series of splits, or nodes,
at which a decision is made as to which direction to proceed based on the value of one of the
explanatory variables. Ultimately, a terminal node or leaf is reached and predicted response is
given.

Trees partition the explanatory variables into a series of boxes (the leaves) that contain the most
homogeneous collection of outcomes possible. Creating splits is analogous to variable selection in
regression. Trees are typically fit via binary recursive partitioning. The term binary refers to the
fact that the parent node will always be split into exactly two child nodes. The term recursive is
used to indicate that each child node will, in turn, become a parent node, unless it is a terminal
node. To start with a single split is made using one explanatory variable. The variable and the
location of the split are chosen to minimize the impurity of the node at that point. There are
many ways to minimizing the impurity of each node. These are known as splitting rules. Each of
the two regions that result from the initial split are then split themselves according to the same
criteria, and the tree continues to grow until it is no longer possible to create additional splits or
the process is stopped by some user-defined criteria. The tree may then be reduced in size using a
process known as pruning. Overviews of classification and regression trees are provided by De’ath
and Fabricius (2000), Vayssieres et al. (2000), and Moisen (2008).

While classification and regression trees are powerful methods in and of themselves, much work
has been done in the data mining and machine learning fields to improve the predictive ability of
these tools by combining separate tree models into what is often called a committee of experts, or
ensemble. Random Forests and Stochastic Gradient Boosting are two of these newer techniques
that use classification and regression trees as building blocks.

Random Forests — In a Random Forests model, a bootstrap sample of the training data is chosen.
At the root node, a small random sample of explanatory variables is selected and the best split
made using that limited set of variables. At each subsequent node, another small random sample
of the explanatory variables is chosen, and the best split made. The tree continues to be grown
in this fashion until it reaches the largest possible size, and is left un-pruned. The whole process,
starting with a new bootstrap sample, is repeated a large number of times. As in committee
models, the final prediction is a (weighted) plurality vote or average from prediction of all the
trees in the collection.

Stochastic Gradient Boosting — Stochastic gradient boosting is another ensemble technique in
which many small classification or regression trees are built sequentially from pseudo-residuals
from the previous tree. At each iteration, a tree is built from a random sub-sample of the dataset
(selected without replacement) producing an incremental improvement in the model. Ultimately,
all the small trees are stacked together as a weighted sum of terms. The overall model accuracy
gets progressively better with each additional term.

2 Package Overview

The ModelMap package for R enables user-friendly modeling, diagnostics, and mapping over
large geographic areas though simple R function calls: model.build(), model.diagnostics(),
and model.mapmake (). The function model.build() constructs predictive models of continu-
ous or discrete responses using Random Forests or Stochastic Gradient Boosting. The function
model.diagnostics() validates these models with an independent test set, cross-validation, or
(in the case of Random Forest Models) with Out OF Bag (OOB) predictions on the training data.
This function also creates graphs and tables of the model validation diagnostics. The function
model .mapmake () applies the models to GIS image files of predictors to create detailed prediction
surfaces. This function will handle large predictor files for map making, by reading in the GIS
data in sections, thus keeping memory usage reasonable.

2.1 Interactive Model Creation

The ModelMap package can be run in a traditional R command line mode, where all arguments
are specified in the function call. However, in a Windows environment, ModelMap can also be used
in an interactive, pushbutton mode. If the functions model.build(), model.diagnostics(), and
model .mapmake () are called without argument lists, pop up windows ask questions about the type
of model, the file locations of the data, response variable, predictors, etc ...

To provide a record of the options chosen for a particular model and map, a text file is generated
each time these functions are called, containing a list of the selected arguments.

This paper concentrates on the traditional command line function calls, but does contain some
tips on using the GUI prompts.

2.2 File Names

File names in the argument lists for the functions can be provided either as the full path, or as
the base name, with the path specified by the folder argument. However, file names in the Raster
Look Up Table (the rastLUT£n, described in section 2.8) must include the full path.

2.3 Training Data

Training and test data can be supplied in two forms. The argument gqdata.trainfn can be either
an R data frame containing the training data, or the file name (full path or base name) of the
comma separated values (CSV) training data file. If a filename is given, the file must be a comma-
delimited text file with column headings. The data frame or CSV file should include columns for
both response and predictor variables.

In a Windows environment, if qdata.trainfn = NULL (the default), a GUI interface prompts the
user to browse to the training data file.

Note: If response.type = "binary", any response with a value greater than 0 is treated as a
presence. If there is a cutoff value where anything below that value is called trace, and treated as
an absence, the response variable must be transformed before calling the functions.

2.4 Independent Test Set for Model Validation

The argument qdata.testfn is the file name (full path or base name) of the independent data set
for testing (validating) the model’s predictions, or alternatively, the R data frame containing the
test data. The column headings must be the same as those in the training data (qdatatrainfn).

If no test set is desired (for example, cross-validation will be performed, or RF models with out-
of-bag estimation), set qdata.testfn = FALSE.

In a Windows environment, if qdata.testfn = NULL (default), a prompt will ask the a test set is
available, and if so asks the user to browse to the test data file. If no test set is available, the a
prompt asks if a proportion of the data should be set aside as an independent test set. If this is
desired, the user will be prompted to specify the proportion to set aside as test data, and two new
data files will be generated in the output folder. The new file names will be the original data file
name with "_train" and "_test" pasted on the end.

2.5 Missing predictor values

There are three circumstances that can lead to having missing predictor values. First, there are
true missing values for predictors within the study area. Second, there are categorical predictors
with categories that are present in the test or mapping data but not in the training data. And

finally, portions of the mapping rectangle lie outside of the study area. Each of the three cases is
handled slightly differently by ModelMap.

In the first instance, true NODATA values in the test set or within the study area for production
mapping could be caused by data collection errors. These are data points or pixels for which you
may still need be interested in a prediction based on the other remaining predictors. These missing
values should be coded as NA. (Note: in Imagine image files, values of the specified NODATA value
will be read into R as NA.) The argument na.action will determine how these NA pixels will be
treated. There are 2 options: (1) na.action = "na.omit" (the default) where any data point or
pixel with any NA predictors is returned as -9999; (2) na.action = "na.roughfix" where before
making predictions, a missing categorical predictor is replaced with the most common category for
that predictor, and a missing continuous predictor is replaced with the median for that predictor
and a warning message is generated.

The second type of missing value occurs when using categorical predictors. There may be cases
where a category is found in the validation test set or in the map region that was not present
in the training data. This is a particularly common occurrence when using cross-validation on a
small dataset. Again, the argument na.action will determine how these data points or pixels are
treated. If na.action = "na.omit", no prediction will be made for these locations. If na.action
= "na.roughfix", the most common category will be substituted for the unknown category. In
either instance, a warning will be generated with a list of the categories that were missing from
the training data. After examining these categories, you may decide that rather than ignoring
these locations or substituting the most common category, a better option would be to collapse
similar categories into larger groupings. In this case you would need to pre-process your data and
run the predictions again.

The final type of missing predictor occurs when creating maps of non-rectangular study regions.
There may be large portions of the rectangle where you have no predictors, and are uninterested
in making predictions. The suggested value for the pixels outside the study area is -9999. These
pixels will be ignored, thus saving computing time, and will be exported as -9999. Any value
other than -9999 will be treated as a legal data value and a prediction will be generated for each
pixel.

Note: in Imagine image files, if the specified NODATA is set as —9999, any -9999 pixels will be read
into R as NA, and if na.action = "na.roughfix", predictions will be attempted for these pixels.
This will cause the computation time to increase, and these predictions will need to be masked
out when the final map is imported back into a GIS.

2.6 The Model Object

The two available model types (Random Forest and Stochastic Gradient Boosting) are stochastic
models. If a seed is not specified (with argument seed) each function call will result in a slightly
different model. The function model.build() returns the model object. To keep this particular
model for use in later R sessions, assign the function output to an R object, then use the functions
save() and load().

Random Forest is implemented through the randomForest package within R. Random Forest is
more user friendly than Stochastic Gradient Boosting, as it has fewer parameters to be set by
the user, and is less sensitive to tuning of these parameters. The number of predictors used to
select the splits (the mtry argument) is the primary user specified parameter that can affect model
performance, and the default for ModelMap is to automatically optimize this parameter with the
tuneRF () function from the randomForest package. In most circumstance, Random Forest is less
likely to over fit data. For an in depth discussion of the possible penalties of increasing the number
of trees (the ntree argument) see Lin and Jeon (2002). The randomForest package provides two
measures to evaluate variable importance. The first is the percent increase in Mean Standard
Error (MSE) as each variable is randomly permuted. The second is the increase in node purity
from all the splits in the forest based on a particular variable, as measured by the gini criterion

(Breiman, 2001). These importance measures should be used with caution when predictors vary
in scale or number of categories (Strobl et al., 2007).

Stochastic gradient boosting is implemented through the gbm package within R. Like Random
Forest, Stochastic gradient boosting also provides measures of variable importance. In this case,
it is the relative influence as described in Friedman (2001). Stochastic Gradient Boosting is more
challenging for a user, in that it requires a greater number of user specified parameters, and the
SGB models tend to be quite sensitive to these parameters. Model fitting parameters available
from the gbm package include shrinkage rate, interaction depth, bagging fraction, training fraction,
and the minimum number of observations per terminal node. In the ModelMap package, values for
these parameters can be set in the argument list when calling model.build (). Friedman (2001,
2002) and Ridgeway (2002) provide guidelines on appropriate settings for these model parameters.
In addition, the supplementary materials in Elith et al. (2008) provide R tools to tune model
parameters, and also to select the most relevant variables. Models created with the code from
Elith et al. (2008) can be used with the ModelMap package functions model.diagnostics() and
model .mapmake () to run additional diagnostics and predict over large raster grids.

2.7 Spatial Raster Layers

The ModelMap uses the rgdal package to read spatial rasters into R. The data for predictive
mapping in ModelMap should be in the form of pixel-based raster layers representing the predictors
in the model. The layers must also be in either ESRI Grid or ERDAS Imagine image (single or
multi-band) raster data formats, having continuous or categorical data values. For effective model
development and accuracy, if there is more than one raster layer, the layers must have the same
extent, projection, and pixel size.

The function model .mapmake () outputs an ASCII grid file of map information suitable to be im-
ported into a GIS. Small maps can also be imported back into R using the function read.asciigrid()
from the sp package (Pebesma and Bivand, 2005).

The supplementary materials in Elith et al. (2008) also contain R code to predict to grids imported
from a GIS program, including large grids that need to be imported in pieces. However this code
requires pre-processing of the raster data in the GIS software to produce ASCII grids for each layer
of data before they can be imported into R. ModelMap simplifies and automates this process, by
reading Arcinfo grids and Imagine image files directly, (including multi band images). ModelMap
also will verify that the extent of all rasters is identical (same cell size, same number of row and
columns, corners line up) and will produce informative error messages if this is not true. ModelMap
also simplifies working with masked values and missing predictors.

2.8 Raster Look Up Table

The Raster Look Up Table (rastLUTfn) provides the link between the spatial rasters for map
production and the column names of the Training and Test datasets. The Raster Look Up Table
can be given as an R data frame specified by the argument rastLUTfn or read in from a CSV file
specified by rastLUTfn.

The rastLUTfn must include 3 columns: (1) the full path and base names of the raster file or files;
(2) the column headers from the Training and Test datasets for each predictor; (3) the layer (band)
number for each predictor. The names (column 2) must match not only the column headers in
Training and Test data sets (qdata.trainfn and qdata.testfn), but also the predictor names in
the arguments predList and predFactor, and the predictor names in model.obj.

In a windows environment, the function build.rastLUT () may be used to help build the look-up-
table with the aid of GUI prompts.

Name Type Description

ELEV250 Continuous | 90m NED elevation (ft)

resampled to 250m, average of 49 points
NLCDO01_-250 | Categorical | National Land Cover Dataset 2001

resampled to 250m - min. value of 49 points
EVI2005097 | Continuous | MODIS Enhanced vegetation index
NDV2005097 | Continuous | MODIS Normalized difference vegetation index
NIR2005097 | Continuous | MODIS Band 2 (Near Infrared)

RED2005097 | Continuous | MODIS Band 1 (Red)

Table 1: Predictor variable

3 Examples

These examples demonstrate some of the capabilities of the ModelMap package by building three
types models: Random Forest with continuous response; Random Forest with binary response;
and, Stochastic Gradient Boosting with binary response. The continuous response variables are
percent cover for two species of interest: Pinyon and Sage. The binary response variables are
Presence/Absence of these same species.

Next, model validation diagnostics are performed with three techniques: an independent test set;
Out Of Bag estimation; and cross-validation. Independent test set validation and cross-validation
work for both Random Forest and Stochastic Gradient Boosting models. Out Of Bag estimation
is only available for Random Forest models. (Note: in an actual model comparison study, rather
than a package demonstration, the models would be compared with the same validation technique,
rather than mixing techniques.)

Finally, spatial maps are produced by applying these models to remote sensing raster layers.

3.1 Example dataset

The dataset is from a pilot study in Nevada launched in 2004 involving acquisition and photo-
interpretation of large-scale aerial photography, the Nevada Photo-Based Inventory Pilot (NPIP)
(Frescino et al., 2009).

The predictor data set consists of 6 predictor variables: 5 continuous variables, and 1 categor-
ical variable (Table 1). The predictor layers are 250-meter resolution, pixel-based raster layers
including Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite imagery (Justice
et al., 2002), a Landsat Thematic Mapper-based, thematic layer of predicted land cover, National
Land Cover Dataset (NLCD) (Homer et al., 2004), and a topographic layer of elevation from the
National Elevation Dataset (Gesch et al., 2002).

The MODIS data included 250-meter, 16-day, cloud-free, composites of MODIS imagery for April
6, 2005: visible-red (RED) and near-infrared (NIR) bands and 2 vegetation indices, normalized
difference vegetation index (NDVI) and enhanced vegetation index (EVI) (Huete et al., 2002). The
land cover and topographic layers were 30-meter products re-sampled to 250 meter using majority
and mean summaries, respectively.

The rectangular subset of Nevada chosen for these maps contains a small mountain range sur-
rounded by plains, and was deliberately selected to lie along the edge of the study region to
illustrate how ModelMap handles unsampled regions of a rectangle (Figure 5).

3.2 Example 1 - Random Forest - Continuous Response

Example 1 builds Random Forest models for two continuous response variables: Percent Cover for
Pinyon and Percent Cover for Sage. An independent test set is used for model validation.

3.2.1 Set up

Begin by defining some of the arguments for our model.

After installing the ModelMap package, download the sample datasets and save them in the
working directory for R.

Start by loading the ModelMap package.
R> library("ModelMap")

Specify model type. The choices are "RF" for Random Forest models, and "SGB" for Stochastic
Gradient boosting models.

R> model.type <- "RF"

Define training and test data file names. Note that the arguments qdata.trainfn and qdata.testfn
will accept both character strings giving the file names of CSV files of data, or the data itself in
the form of a data frame.

R> qgdatafn <- "VModelMapData.csv"
R> gdata.trainfn <- "VModelMapData_TRAIN.csv"
R> qdata.testfn <- "VModelMapData_TEST.csv"

Define the output folder.
R> folder <- getwd()

Split the data into training and test sets. In example 1, an independent test set is used for
model validation diagnostics. The function get.test() randomly divides the original data into
training and test sets. This function writes the training and test sets to the folder specified by
folder, under the file names specified by qdata.trainfn and qdata.testfn. If the arguments
qdata.trainfn and qdata.testfn are not included, filenames will be generated by appending
"_train" and "_test" to qdatafn.

R> get.test(proportion.test = 0.2, qdatafn = gdatafn, seed = 42,
+ folder = folder, qdata.trainfn = qdata.trainfn, qdata.testfn = qgdata.testfn)

Define file names to store model output. This filename will be used for saving the model itself. In
addition, since we are not defining other output filenames, the names for other output files will be
generated based on MODELfn.

R> MODELfn.a <- "VModelMapExla"
R> MODELfn.b <- "VModelMapEx1b"

Define the predictors and define which predictors are categorical. Example 1 uses five continuous
predictors: the four predictor layers from the MODIS imagery plus the topographic elevation layer.
As none of the chosen predictors are categorical set predFactor to FALSE.

R> predList <- c("ELEV250", "EVI2005097", "NDV2005097", "NIR2005097",
+ "RED2005097")
R> predFactor <- FALSE

Define the response variable, and whether it is continuous or binary.

R> response.name.a <- "PINYON"
R> response.name.b <- "SAGE"
R> response.type <- "continuous"

Define the seeds for each model.

R> seed.a <- 38
R> seed.b <- 39

Define the column that contains unique identifiers for each data point. These identifiers will be
used to label the output file of observed and predicted values when running model validation.

R> unique.rowname <- "ID"

3.2.2 Model creation

Now create the models. The model.build() function returns the model object itself. The func-
tion also saves a text file listing the values of the arguments from the function call. This file is
particularly useful when using the GUI prompts, as otherwise there would be no record of the
options used for each model.

R> model.obj.exla <- model.build(model.type = model.type, qdata.trainfn = qdata.trainfn,

+ folder = folder, MODELfn = MODELfn.a, predList = predList,

+ predFactor = predFactor, response.name = response.name.a,

+ response.type = response.type, seed = seed.a)

R> model.obj.exlb <- model.build(model.type = model.type, qdata.trainfn = gdata.trainfn,
+ folder = folder, MODELfn = MODELfn.b, predlList = predlList,

+ predFactor = predFactor, response.name = response.name.b,

+ response.type = response.type, seed = seed.b)

3.2.3 Model Diagnostics

Next make model predictions on an independent test set and run the diagnostics on these predic-
tions. Model predictions on an independent test set are not stochastic, it is not necessary to set
the seed.

The model.diagnostics() function returns a data frame of observed and predicted values. This
data frame is also saved as a CSV file. This function also runs model diagnostics, and creates
graphs and tables of the results. The graphics are saved as files of the file type specified by
device.type.

For a continuous response model, the model validation diagnostics graphs are the variable impor-
tance plot (Figure 1 and Figure 2), and a scatter plot of observed verses predicted values, labeled
with the Pearson’s and Spearman’s correlation coefficients and the slope and intercept of the linear
regression line (Figure 3 and Figure 4). In example 1, the diagnostic plots are saved as PDF files.

These diagnostics show that while the most important predictor variables are similar for both
models, the correlation coefficients are considerably higher for the Pinyon percent cover model as
compared to the Sage model.

R> model.pred.exla <- model.diagnostics(model.obj = model.obj.exla,

+ qdata.testfn = qdata.testfn, folder = folder, MODELfn = MODELfn.a,
+ unique.rowname = unique.rowname, prediction.type = "TEST",
+ device.type = c("pdf"), cex = 1.2)

R> model.pred.ex1b <- model.diagnostics(model.obj = model.obj.exlb,

Relative Influence

VModelMapExla pred

ELEV250 ° ELEV250 °
NDV2005097 o NDV2005097 o
NIR2005097 | o EVI12005097 o
EVI2005097 | o RED2005097 °
RED2005097 |o NIR2005097 o
| | | | | | | |
20 40 60 80 0 40000
%IncMSE IncNodePurity

Figure 1: Example 1 - Variable importance graph for Pinyon percent cover (RF model).

+ qdata.testfn = qdata.testfn, folder = folder, MODELfn = MODELfn.b,
+ unique.rowname = unique.rowname, prediction.type = "TEST",
+ device.type = c("pdf"), cex = 1.2)

3.2.4 Map production

Before creating maps of the response variable, Examine the predictor variable for elevation (Figure 5).

R> elevfn <- paste(folder, "/VModelMapData_dem_ELEVM_250.img", sep = "")
R> mapgrid <- readGDAL (elevfn, band = 1)
R> mapgrid <- as.image.SpatialGridDataFrame (mapgrid)

R> opar <- par(mar = c(4, 4, 3, 6), xpd = NA, mgp = c(3, 2, 0.3))

R> col.ramp <- terrain.colors(101)

R> zlim <- ¢(1500, max(mapgrid$z, na.rm = TRUE))

R> legend.label <- rev(pretty(zlim, n = 5))

R> legend.colors <- col.ramp[trunc((legend.label/max(legend.label)) *
+ 100) + 1]

R> legend.label <- paste(legend.label, "m", sep = "")

R> legend.label <- paste((7:3) * 500, "m")

ELEV250

NDV2005097

EVI2005097

RED2005097

NIR2005097

Relative Influence

VModelMapEx1b pred

Q

20 30 40 50

ELEV250

EVI2005097

NDV2005097

NIR2005097

RED2005097

I
0

I I I
20000 40000

%IncMSE IncNodePurity

Figure 2: Example 1 - Variable importance graph for Sage percent cover (RF model).

10

VModelMapExla pred

o o
L o
oo
o _| o
< ®
o o
o o O o
o [o o
o _| o
8 ™ 0™ 0 000 ,70
o-
> o oo o o ,’
S ’
[} ‘0
0
o
© o _|
3V
o _]
—
pearson's cor: 0.69
spearman's cor: 0.76
o - obs = 0.88(pred) + 0.11

I I I I I I
0 10 20 30 40 50

predicted

Figure 3: Example 1 - Observed verses predicted values for Pinyon percent cover (RF model).

11

VModelMapEx1b pred

o]
N~
o _]
©
o _]
T)
T 9
o <
-
Q
2
o _|
°© ®
o _]
3
S o
- o o pearson's cor: 0.43
@0 9 0 o .
60 o o spearman's cor: 0.41
O - im0 o obs = 0.93(pred) + 1.16

I I I I I I I I
0 10 20 30 40 50 60 70

predicted

Figure 4: Example 1 - Observed verses predicted values for Sage percent cover (RF model).

12

R> legend.colors <- col.ramp[c(100, 75, 50, 25, 1)]

R> image(mapgrid, col = col.ramp, zlim = zlim, asp = 1, bty = "n")

R> legend(x = max(mapgrid$x), y = max(mapgrid$y), legend = legend.label,
+ fill = legend.colors, bty = "n", cex = 1.2)

R> mtext ("Elevation of Study Region", side = 3, line = 1, cex = 1.5)

R> par(opar)

Run the function model.mapmake () to map the response variable over the study area.

The model.mapmake () function can extract information about the model from the model.obj, so
it is not necessary to re-supply the arguments that define the model, such as the type of model, the
predictors, etc ... (Note: If model was created outside of ModelMap, it may be necessary to supply
the response.name argument) Also, unlike model creation, map production is not stochastic, so
it is not necessary to set the seed.

The model .mapmake () uses a look up table to associate the predictor variables with the rasters.
The function argument rastLUTfn will accept either a file name of the CSV file containing the
table, or the data frame itself.

Although in typical user applications the raster look up table must include the full path for
predictor rasters, the table provided for the examples will be incomplete when initially downloaded,
as the working directory of the user is unknown and will be different on every computer. This
needs to be corrected by pasting the full paths to the user’s working directory to the first column,
using the value from folder defined above.

R> rastLUTfn <- "VModelMapData_LUT.csv"

R> rastLUTfn <- read.table(rastLUTfn, header = FALSE, sep = ",",
+ stringsAsFactors = FALSE)

R> rastLUTfn[, 1] <- paste(folder, rastLUTfn[, 1], sep = "/")

To produce a map from a raster larger than the memory limits of R, predictions are made on
subsets of the grid. The number of rows to read in at one time is defined by the numrows argument.
The higher the value of numrows, the faster the map will be produced, but the higher the memory
required. The maximum value of numrows depends on the width of the raster. If model.mapmake ()
crashes with the warning, "unable to assign..." try setting numrows to a lower number or use
the memory.limit () function to increase the memory limits in R.

Since this is a Random Forest model of a continuous response, the prediction at each pixel is
the mean of all the trees. Therefore these individual tree predictions can also be used to map
measures of uncertainty such as standard deviation and coefficient of variation for each pixel. To
do so, set map.sd = "TRUE". To calculate these pixel uncertainty measures, model.map() must
keep all the individual trees in memory, so map.sd = "TRUE" is much more memory intensive, and
the numrows argument may have to be set to an even lower value.

R> numrows = 500

R> model.mapmake (model.obj = model.obj.exla, folder = folder, MODELfn = MODELfn.a,
+ rastLUTfn = rastLUTfn, numrows = numrows, map.sd = TRUE)
R> model.mapmake (model.obj = model.obj.exlb, folder = folder, MODELfn = MODELfn.b,
+ rastLUTfn = rastLUTfn, numrows = numrows, map.sd = TRUE)

The function model .mapmake() creates an ASCII grid file of map information suitable to be
imported into a GIS. As this sample dataset is relatively small, we can also import it into R for
display.

We need to define a color ramp. For this response variable, zero values will display as white,
shading to dark green for high values.

13

Elevation of Study Region

S 0 3500 m

§ - O 3000 m

2] O 2500 m
B 2000 m

8 B 1500 m

o

O —

&

—

o

o

S |

&

—

8

S |

8

—

o

3

O —

>

—

-1560000 -1550000 -1540000

Figure 5: Elevation of study region. Projection: Universal Transverse Mercator (UTM) Zone 11,
Datum: NADS&3

14

R> 1 <- seq(100, 0, length.out 101)
R> ¢ <- seq(0, 100, length.out = 101)
R> col.ramp <- hcl(h = 120, ¢ = ¢, 1 = 1)

Next, we import the data and create the map (Figure 6). From the map, we can see that Pinyon
percent cover is higher in the mountains, while Sage percent cover is higher in the foothills at the
edges of the mountains.

Note that the sample map data was taken from the South Eastern edge of our study region, to
illustrate how ModelMap deals with portions of the rectangle that fall outside of the study region.
The empty wedge at lower right in the maps is the portion outside the study area. ModelMap
uses -9999 for unsampled data. When viewing maps in a GIS, a mask file can be used to hide
unsampled regions, or other commands can be used to set the color for -9999 values.

Since we know that percent cover can not be negative, we will set z1im to range from zero to the
maximum value found in our map.

R> opar <- par(mfrow = c(1, 2), mar = c(3, 3, 2, 1), oma = c(0,
+ 0, 3, 4), xpd = NA)

R> mapgrid.a <- read.asciigrid(paste(MODELfn.a, "_map.txt", sep = ""),
+ as.image = TRUE)
R> mapgrid.b <- read.asciigrid(paste(MODELfn.b, "_map.txt", sep = ""),
+ as.image = TRUE)

R> zlim <- ¢ (0, max(mapgrid.a$z, mapgrid.b$z, na.rm = TRUE))

R> legend.label <- rev(pretty(zlim, n = 5))

R> legend.colors <- col.ramp[trunc((legend.label/max(legend.label)) *
+ 100) + 1]

R> legend.label <- paste(legend.label, "J", sep = "")
R> image(mapgrid.a, col = col.ramp, zlim = zlim, asp = 1, bty = "n",
+ xaxt = "n", yaxt = "n")

R> mtext (response.name.a, side = 3, line = 1, cex = 1.2)

R> image (mapgrid.b, col = col.ramp, zlim = zlim, asp = 1, bty = "n",

+ xaxt = "n", yaxt = "n")

R> mtext(response.name.b, side = 3, line = 1, cex = 1.2)

R> legend(x = max(mapgrid.b$x), y = max(mapgrid.b$y), legend = legend.label,
+ fill = legend.colors, bty = "n", cex = 1.2)

R> mtext("Percent Cover", side = 3, line = 1, cex = 1.5, outer = T)

R> par(opar)

Next, we will define color ramps for the standard deviation and the coefficient of variation, and
map these uncertainty measures. Often, as the mean increases, so does the standard deviation
(Zar, 1996), therefore, a map of the standard deviation of the pixels (Figure 7) will look to the
naked eye much like the map of the mean. However, mapping the coefficient of variation (dividing
the standard deviation of each pixel by the mean of the pixel), can provide a better visualization of
spatial regions of higher uncertainty (Figure 8). In this case, for Pinyon the coefficient of variation
is interesting as it is higher in the plains on the upper left portion of the map, where percent cover
of Pinyon is lower.

R> stdev.ramp <- hcl(h = 15, ¢ = ¢, 1 =1)

R> opar <- par(mfrow = c(1, 2), mar = c(3, 3, 2, 1), oma = c(0,
+ 0, 3, 4), xpd = NA)

R> mapgrid.a <- read.asciigrid(paste(MODELfn.a, "_stdev.txt", sep = ""),
+ as.image = TRUE)
R> mapgrid.b <- read.asciigrid(paste(MODELfn.b, "_stdev.txt", sep = ""),

15

R>
R>
R>

R>
R>

R>
R>

R>
R>

R>

R>

R>

R>

R>

R>

R>

Percent Cover

PINYON SAGE

40%
30%
20%
10%
0%

ddEmEnm

Figure 6: Example 1 - Maps of percent cover for Pinyon and Sage (RF models).

as.image = TRUE)
zlim <- c(0, max(mapgrid.a$z, mapgrid.b$z, na.rm = TRUE))
legend.label <- rev(pretty(zlim, n = 5))
legend.colors <- stdev.ramp[trunc((legend.label/max(legend.label)) *
100) + 1]

legend.label <- paste(legend.label, "J|", sep = "")
image (mapgrid.a, col = stdev.ramp, zlim = zlim, asp = 1, bty = "n",
xaxt = "n", yaxt = "n")

mtext (response.name.a, side = 3, line = 1, cex = 1.2)
image (mapgrid.b, col = stdev.ramp, zlim =

xaxt = "n", yaxt = "n")
mtext (response.name.b, side = 3, line = 1, cex = 1.2)

o 11

zlim, asp = 1, bty = "n",

legend(x = max(mapgrid.b$x), y = max(mapgrid.b$y), legend = legend.label,

fill = legend.colors, bty = "n", cex = 1.2)

mtext ("Standard Deviation of Percent Cover", side = 3, line = 1,
cex = 1.5, outer = T)

par (opar)

coefv.ramp <- hcl(h = 70, ¢ =c, 1 = 1)

opar <- par(mfrow = c(1, 2), mar = c(3, 3, 2, 1), oma = c(0,
0, 3, 4), xpd = NA)

mapgrid.a <- read.asciigrid(paste(MODELfn.a,
as.image = TRUE)

mapgrid.b <- read.asciigrid(paste(MODELfn.b, "_coefv.txt", sep = ""),
as.image = TRUE)

zlim <- ¢(0, max(mapgrid.a$z, mapgrid.b$z, na.rm = TRUE))

n

n H)
2

_coefv.txt", sep

16

Standard Deviation of Percent Cover

PINYON SAGE

25%
20%
15%
10%
5%
0%

ddfEEnm

Figure 7: Example 1 - Map of standard deviation of Random Forest trees at each pixel for Pinyon
and Sage (RF models).

R>
R>
+
R>
+
R>
R>
+
R>
R>
+
R>
+
R>

legend.label <- rev(pretty(zlim, n = 5))
legend.colors <- coefv.ramp[trunc((legend.label/max(legend.label)) *
100) + 1]

image (mapgrid.a, col = coefv.ramp, zlim = zlim, asp = 1, bty = "n",
xaxt = "n", yaxt = "n")

mtext (response.name.a, side = 3, line = 1, cex = 1.2)

image (mapgrid.b, col = coefv.ramp, zlim = zlim, asp = 1, bty = "n",
xaxt = "n", yaxt = "n")

mtext(response.name.b, side = 3, line = 1, cex = 1.2)

legend(x = max(mapgrid.b$x), y = max(mapgrid.b$y), legend = legend.label,
fill = legend.colors, bty = "n", cex = 1.2)

mtext ("Coefficient of Variation of Percent Cover", side = 3,
line = 1, cex = 1.5, outer = T)

par (opar)

3.3 Example 2 - Random Forest - Binary Response

Example 2 builds a binary response model for presence of Pinyon and Sage. A catagorical predictor
is added to the model. Out-of-bag estimates are used for model validation.

3.3.1 Set up

Define model type.

R>

model.type <- "RF"

17

Coefficient of Variation of Percent Cover

PINYON SAGE
H 25
H 20
| 15
: = 10
o5
1 O o
4
|

Figure 8: Example 1 - Map of coefficient of variation of Random Forest trees at each pixel for
Pinyon and Sage (RF models).

Define data.

R> gdatafn <- "VModelMapData.csv"

Define folder.

R> folder <- getwd()

Define model filenames.

R> MODELfn.a <- "VModelMapEx2a"
R> MODELfn.b <- "VModelMapEx2b"

Define the predictors. These are the five continuous predictors from the first example, plus one
categorical predictor layer, the thematic layer of predicted land cover classes from the National
Land Cover Dataset. The argument predFactor is used to specify the categorical predictor.

R> predList <- c("ELEV250", "NLCDO1_250", "EVI2005097", "NDV2005097",
+ "NIR2005097", "RED2005097")
R> predFactor <- c("NLCD01_250")

Define the data column to use as the response, and if it is continuous or binary. Since response.type
= "binary" this variable will be automatically translated so that zeros are treated as Absent and
any value greater than zero is treated as Present.

R> response.name.a <- "PINYON"

R> response.name.b <- "SAGE"
R> response.type <- "binary"

18

Define the seeds for each model.

R> seed.a <- 40
R> seed.b <- 41

Define the column that contains unique identifiers.

R> unique.rowname <- "ID"

Define numrows.

R> numrows = 500

Define raster look up table.

R> rastLUTfn <- "VModelMapData_LUT.csv"

R> rastLUTfn <- read.table(rastLUTfn, header = FALSE, sep = ",",

+ stringsAsFactors = FALSE)
R> rastLUTfn[, 1] <- paste(folder, rastLUTfn[, 1], sep = "/")

3.3.2 Model creation
Create the model. Because Out-Of-Bag predictions will be used for model diagnostics, the full

dataset can be used as training data. To do this, set qdata.trainfn <- gdatafn, qdata.testfn
<- FALSE and v.fold = FALSE.

R> model.obj.ex2a <- model.build(model.type = model.type, qdata.trainfn = gdatafn,

+ folder = folder, MODELfn = MODELfn.a, predlList = predList,

+ predFactor = predFactor, response.name = response.name.a,

+ response.type = response.type, seed = seed.a)

R> model.obj.ex2b <- model.build(model.type = model.type, qdata.trainfn = gdatafn,
+ folder = folder, MODELfn = MODELfn.b, predList = predList,

+ predFactor = predFactor, response.name = response.name.b,

+ response.type = response.type, seed = seed.b)

3.3.3 Model Diagnostics

Make Out-Of-Bag model predictions on the training data and run the diagnostics on these pre-
dictions. This time, save JPEG, PDF, and PS versions of the diagnostic plots.

Out of Bag model predictions for a Random Forest model are not stochastic, so it is not necessary
to set the seed.

Since this is a binary response model model diagnostics include ROC plots and other thresh-
old selection plots generated by PresenceAbsence (Freeman, 2007; Freeman and Moisen, 2008a)
(Figure 9 and Figure 10) in addition to the variable importance graph (Figure 11 and Figure 12).

For binary response models, there are also CSV files of presence-absence thresholds optimized
by 12 possible criteria, along with their associated error statistics. For more details on these
12 optimization criteria see Freeman and Moisen (2008a). Some of these criteria are dependent
on user selected parameters. In this example, two of these parameters are specified: required
sensitivity (req.sens) and required specificity (req.spec). Other user defined parameters, such
as False Positive Cost (FPC) and False Negative Cost (FNC) are left at the default values. When
default values are used for these parameters, model.diagnostics() will give a warning. In this
case:

19

1: In error.threshold.plot(PRED, opt.methods = optimal.thresholds(),
costs assumed to be equal

The variable importance graphs show NLCD was a very important predictor for Pinyon presence,
but not an important variable when predicting Sage presence.

R> model.pred.ex2a <- model.diagnostics(model.obj = model.obj.ex2a,

+ gqdata.trainfn = qdatafn, folder = folder, MODELfn = MODELfn.a,
+ unique.rowname = unique.rowname, prediction.type = "OOB",
+ device.type = c("jpeg", "pdf", "postscript"), cex = 1.2)
R> model.pred.ex2b <- model.diagnostics(model.obj = model.obj.ex2b,
+ qdata.trainfn = qdatafn, folder = folder, MODELfn = MODELfn.b,
+ unique.rowname = unique.rowname, prediction.type = "OOB",
+ device.type = c("jpeg", "pdf", "postscript"), cex = 1.2)

Take a closer look at the text file of thresholds optimized by multiple criteria. These thresholds
are used later to display the mapped predictions, so read this file into R now.

R> opt.thresh.a <- read.table(paste(MODELfn.a, "_pred_optthresholds.csv",
+ sep = ""), header = TRUE, sep = ",", stringsAsFactors = FALSE)

R> opt.thresh.a[, -1] <- signif(opt.thresh.al[, -11, 2)

R> opt.thresh.b <- read.table(paste(MODELfn.b, "_pred_optthresholds.csv",
+ sep = ""), header = TRUE, sep = ",", stringsAsFactors = FALSE)

R> opt.thresh.b[, -1] <- signif(opt.thresh.b[, -1], 2)

R> pred.prev.a <- read.table(paste(MODELfn.a, "_pred_prevalence.csv",

+ sep = ""), header = TRUE, sep = ",", stringsAsFactors = FALSE)

R> pred.prev.al, -1] <- signif(pred.prev.al, -1], 2)

R> pred.prev.b <- read.table(paste(MODELfn.b, "_pred_prevalence.csv",

+ sep = ""), header = TRUE, sep = ",", stringsAsFactors = FALSE)

R> pred.prev.b[, -1] <- signif(pred.prev.b[, -1], 2)

Optimized thresholds for Pinyon:
R> opt.thresh.a

opt.methods threshold PCC sensitivity specificity Kappa

1 Default 0.50 0.92 0.92 0.92 0.83
2 Sens=Spec 0.51 0.92 0.92 0.92 0.83
3 MaxSens+Spec 0.53 0.92 0.92 0.92 0.84
4 MaxKappa 0.53 0.92 0.92 0.92 0.84
5 MaxPCC 0.61 0.92 0.91 0.93 0.84
6 PredPrev=0bs 0.58 0.92 0.91 0.93 0.83
7 ObsPrev 0.46 0.91 0.92 0.91 0.83
8 MeanProb 0.47 0.91 0.92 0.91 0.83
9 MinROCdist 0.53 0.92 0.92 0.92 0.84
10 RegSens 0.75 0.90 0.85 0.95 0.81
11 RegSpec 0.23 0.90 0.96 0.85 0.81
12 Cost 0.59 0.92 0.91 0.93 0.83

And for Sage:

R> opt.thresh.b

20

opt.methods threshold PCC sensitivity specificity Kappa

1 Default 0.50 0.66 0.75 0.54 0.30
2 Sens=8pec 0.57 0.64 0.64 0.64 0.28
3 MaxSens+Spec 0.49 0.67 0.78 0.53 0.31
4 MaxKappa 0.49 0.67 0.78 0.53 0.31
5 MaxPCC 0.46 0.67 0.81 0.48 0.30
6 PredPrev=0bs 0.54 0.65 0.69 0.60 0.29
7 ObsPrev 0.56 0.64 0.66 0.62 0.28
8 MeanProb 0.56 0.64 0.66 0.62 0.28
9 MinROCdist 0.53 0.66 0.71 0.59 0.30
10 RegSens 0.41 0.67 0.85 0.43 0.30
11 RegSpec 0.76 0.55 0.32 0.85 0.16
12 Cost 0.48 0.67 0.79 0.51 0.31

Observed and predicted prevalence for Pinyon:

R> pred.prev.a

opt.thresh.opt.methods threshold Obs.Prevalence pred
1 Default 0.50 0.46 0.47
2 Sens=Spec 0.51 0.46 0.47
3 MaxSens+Spec 0.53 0.46 0.47
4 MaxKappa 0.53 0.46 0.47
5 MaxPCC 0.61 0.46 0.46
6 PredPrev=0bs 0.58 0.46 0.46
7 ObsPrev 0.46 0.46 0.47
8 MeanProb 0.47 0.46 0.47
9 MinROCdist 0.53 0.46 0.47
10 ReqgSens 0.75 0.46 0.42
11 RegSpec 0.23 0.46 0.52
12 Cost 0.59 0.46 0.46
And for Sage:
R> pred.prev.b

opt.thresh.opt.methods threshold Obs.Prevalence pred
1 Default 0.50 0.56 0.63
2 Sens=8pec 0.57 0.56 0.52
3 MaxSens+Spec 0.49 0.56 0.64
4 MaxKappa 0.49 0.56 0.64
5 MaxPCC 0.46 0.56 0.68
6 PredPrev=0bs 0.54 0.56 0.56
7 ObsPrev 0.56 0.56 0.54
8 MeanProb 0.56 0.56 0.53
9 MinROCdist 0.53 0.56 0.58
10 RegSens 0.41 0.56 0.73
11 RegSpec 0.76 0.56 0.24
12 Cost 0.48 0.56 0.66

The model quality graphs show that the model of Pinyon presence is much higher quality than
the Sage model. This is illustrated with four plots: a histogram plot, a calibration plot, a ROC
plot with it’s associated Area Under the Curve (AUC), and an error rate verses threshold plot

21

Pinyon has a double humped histogram plot, with most of the observed presences and absences
neatly divided into the two humps. Therefor the optimized threshold values fall between the two
humps and neatly divide the data into absences and presences. For Sage, on the other hand, the
observed presences and absences are scattered throughout the range of predicted probabilities,
and so there is no single threshold that will neatly divide the data into present and absent groups.
In this case, the different optimization criteria tend to be widely separated, each representing a
different compromise between the error statistics (Freeman and Moisen, 2008b).

Calibration plots provide a goodness-of-fit plot for presence-absence models, as described by Pearce
and Ferrier (2000), Vaughan and Ormerod (2005), and Reineking and Schréder (2006). In a
Calibration plot the predicted values are divided into bins, and the observed proportion of each
bin is plotted against the predicted value of the bin. For Pinyon, the standard errors for the bins
overlap the diagonal, and the bins do not show a bias. For Sage, however, the error bars for the
highest and lowest bins do not overlap the diagonal, and there is a bias where low probabilities
tend to be over predicted, and high probabilities tend to be under predicted.

The ROC plot from a good model will rise steeply to the upper left corner then level off quickly,
resulting in an AUC near 1.0. A poor model (i.e. a model that is no better than random assign-
ment) will have a ROC plot lying along the diagonal, with an AUC near 0.5. The Area Under
the Curve (AUC) is equivalent to the chance that a randomly chosen plot with an observed value
of present will have a predicted probability higher than that of a randomly chosen plot with an
observed value of absent. The PresenceAbsence package used to create the model quality graphs
for binary response models uses the method from DeLong et al. (1988) to calculate Area Under
the Curve (AUC). For these two models, the Area Under the Curve (AUC) for Pinyon is 0.97 and
the ROC plot rises steeply, while the AUC for Sage is only 0.70, and the ROC plot is much closer
to the diagonal.

In the Error Rate verses Threshold plot sensitivity, specificity and Kappa are plotted against all
possible values of the threshold (Fielding and Bell, 1997). In the graph of Pinyon error rates,
sensitivity and specificity cross at a higher value, and also, the error statistics show good values
across a broader range of thresholds. The Kappa curve is high and flat topped, indicating that
for this model, Kappa will be high across a wide range of thresholds. For Sage, sensitivity and
specificity cross at a lower value, and the Kappa curve is so low that it is nearly hidden behind
the graph legend. For this model even the most optimal threshold selection will still result in a
relatively low Kappa value.

3.3.4 Map production
The function model .mapmake () creates ascii text files of map predictions.

R> model.mapmake (model.obj = model.obj.ex2a, folder = folder, MODELfn = MODELfn.a,

+ rastLUTfn = rastLUTfn, numrows = numrows, na.action = "na.omit")
R> model.mapmake (model.obj = model.obj.ex2b, folder = folder, MODELfn = MODELfn.b,
+ rastLUTfn = rastLUTfn, numrows = numrows, na.action = "na.omit")

When working with categorical predictors, sometimes there are categories in the prediction data
(either the test set, or the map data) not found in the training data. In this case, there were three
classes for the predictor NLCDO1_250 that were not present in the training data. With the default
na.action = "na.omit" the model.mapmake() function generated the following warnings, and
these pixels will show up as blank pixels in the maps.

2: In production.prediction(model.obj = model.obj, rastLUTfn = rastLUTfn,
categorical factored predictor NLCDO1_250 contains levels 41, 43, 20 not
found in training data

3: In production.prediction(model.obj = model.obj, rastLUTfn = rastLUTfn,
Returning -9999 for data points with levels not found in the training
data

22

Figure 9: Example 2 - Model quality and threshold selection graphs for Pinyon presence (RF

model).

number of plots

100 200 300 400 500

[o]

Sensitivity (true positives)

VModelMapEx2a_pred

B present
O absent

0.0

02 04 06 08 10

0.0

0.2 0.4 0.6 0.8 1.0

predicted probability

ROC Plot

AUC:
—— 0.97 pred

T
0.0

T T T T T
02 04 06 08 10

1-Specificity (false positives)

23

observed as proportion of bin

Accuracy Measures

1.0

0.8

0.6

02 04

0.0

02 04 06 08 10

0.0

Observed vs. Predicted

476 .
&

T T T T T T
00 02 04 06 08 10

Predicted Probability of Occurrence

Error Rate verses Threshold

sensitivity
specificity
— Kappa

T T T T T T
00 02 04 06 08 10

Threshold

VModelMapEx2b_pred

Observed vs. Predicted

o |
§ - B present c -
O absent 5w 227
S 332.
9 o S - {
5 @ - S 320 {
s - s <« |
5 g ° 1
s o 2 201 ¢
g S 4 < B
E - 8 o 108 {
=] el
c [
¢ o 4 .
8 g ©
o -
[=] =) -
s .-
e - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 08 1.0
predicted probability Predicted Probability of Occurrence
ROC Plot Error Rate verses Threshold
o | e I -
- - . ’,’
7T o o |
:g ° g ° /l
€ o | 2 o | o
g o g o K
> = Z o
z 351 £ S
S 8 7 itivit
£ o AUC: < el g senstivity
& 3 : =} / ---- specificity
o | —— 0.70 pred o | —— Kappa
°h T T T T T °h T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
1-Specificity (false positives) Threshold

Figure 10: Example 2 - Model quality and threshold selection graphs for Sage presence (RF model).

24

Relative Influence

VModelMapEx2a pred

NLCDO01_250 ° NLCDO1_250 °
ELEV250 o ELEV250 o
EVI12005097 o NDV2005097 °
NIR2005097 o EVI12005097 °
NDV2005097 | o NIR2005097 °
RED2005097 [0 RED2005097 o
I I I I I I I I
0.75 085 0.95 0 50 100
MeanDecreaseAccuracy MeanDecreaseGini

Figure 11: Example 2 - Variable importance graph for Pinyon presence (RF model).

25

Relative Influence

VModelMapEx2b_pred

ELEV250 ° ELEV250 °
EVI2005097 o EVI2005097 o
NDV2005097 o NDV2005097 o
RED2005097 o NIR2005097 °
NIR2005097 o RED2005097 o
NLCDO01_250 [0 NLCDO01_250 | o
T 1T T 1 I I I I
05 07 09 0 50 100 150
MeanDecreaseAccuracy MeanDecreaseGini

Figure 12: Example 2 - Variable importance graph for Sage presence (RF model).

26

Begin by mapping the probability surface, in other words, the probability that the species is
present at each grid point (Figure 13).

First Define a color ramp. For this map, pixels with a high probability of presence will display as
green, low probability will display as brown, and model uncertainty (probabilities near 50%) will
display as yellow. Notice that the map for Pinyon, is mostly dark green and dark brown, with
a thin dividing line of yellow. With a high quality model, most of the pixels are assigned high
or low probabilities. The map for Sage, however, is mostly yellow, with only occasional areas of
green and brown. With poor quality models, many of the pixels are inderminate, and assigned
probabilities near 50%.

R> h = c(seq(10, 30, length.out = 10), seq(31, 40, length.out = 10),

+ seq(41, 90, length.out = 60), seq(91, 100, length.out = 10),
+ seq(101, 110, length.out = 10))

R> 1 = c(seq(25, 40, length.out = 10), seq(40, 90, length.out = 35),
+ seq(90, 90, length.out = 10), seq(90, 40, length.out = 35),

+ seq(40, 10, length.out = 10))

R> probpres.ramp <- hcl(h = h, ¢ = 80, 1 = 1)

Import the data and create the map. Since we know that probability of presence can range from
zero to one, we will use those values for z1im.

R> opar <- par(mfrow = c(1, 2), mar = ¢(3, 3, 2, 1), oma = c(0,
+ 0, 3, 4), xpd = NA)

R> mapgrid.a <- read.asciigrid(paste(MODELfn.a, "_map.txt", sep = ""),
+ as.image = TRUE)
R> mapgrid.b <- read.asciigrid(paste(MODELfn.b, "_map.txt", sep = ""),
+ as.image = TRUE)

R> legend.subset <- ¢(100, 80, 60, 40, 20, 1)
R> legend.colors <- probpres.ramp[legend.subset]
R> legend.label <- c("100%", " 80z", " 60x", " 407", " 20%4", " O%")

R> image(mapgrid.a, col = probpres.ramp, zlim = c(0, 1), asp = 1,
+ bty = "n", xaxt = "n", yaxt = "n")

R> mtext (response.name.a, side = 3, line = 1, cex = 1.2)

R> image (mapgrid.b, col = probpres.ramp, zlim = c(0, 1), asp = 1,

+ bty = "n", xaxt = "n", yaxt = "n")

R> mtext (response.name.b, side = 3, line = 1, cex = 1.2)

R> legend(x = max(mapgrid.b$x), y = max(mapgrid.b$y), legend = legend.label,
+ fill = legend.colors, bty = "n", cex = 1.2)

R> mtext ("Probability of Presence", side = 3, line = 1, cex = 1.5,

+ outer = T)

R> par(opar)

To translate the probability surface into a Presence-Absence map it is necessary to select a cutoff
threshold. Probabilities below the selected threshold are mapped as absent while probabilities
above the threshold are mapped as present. Many criteria that can be used for threshold selection,
ranging from the traditional default of 50 percent, to thresholds optimized to maximize Kappa, to
thresholds picked to meet certain management criteria. The choice of threshold criteria can have

a dramatic effect on the final map. For further discussion on this topic see Freeman and Moisen
(2008D).

Here are examples of Presence-Absence maps for Pinyon and Sage produced by four different
threshold optimization criteria (Figures 14 and 15). For a high quality model, such as Pinyon, the
various threshold optimization criteria tend to result in similar thresholds, and the models tend to
be less sensitive to threshold choice, therefore the Presence Absence maps from the four criteria

27

Probability of Presence

PINYON SAGE

100%
80%
60%
40%
20%

0%

Figure 13: Example 2 - Probability surface map for presence of Pinyon and Sage (RF models).

are very similar. Poor quality models, such as this model for Sage, tend to have no single good
threshold, as each criteria is represents a different compromise between errors of omission and
errors of commission. It is therefore particularly important to carefully match threshold criteria
to the intended use of the map.

R> opar <- par(mfrow = c(2, 2), mar = c(2.5, 3, 4, 1), oma = c(0,

+ 0, 4, 6), xpd = NA)

R> mapgrid <- read.asciigrid(paste(MODELfn.a, "_map.txt", sep = ""),
+ as.image = TRUE)

R> criteria <- c("Default", "MaxKappa", "ReqSens'", "ReqSpec")

R> criteria.labels <- c("Default", "MaxKappa", "ReqSens = 0.9",

+ "ReqSpec = 0.9")

R> for (i in 1:4) {

+ thresh <- opt.thresh.a$threshold[opt.thresh.a$opt.methods ==

+ criterialil]

+ presencegrid <- mapgrid

+ presencegrid$z <- ifelse(presencegrid$z > thresh, 1, 0)

+ image (presencegrid, col = c("white", "forestgreen"), zlim = c(0,
+ 1), asp = 1, bty = "n", xaxt = "n", yaxt = "n")

+ if (i ==2) {

+ legend(x = max(mapgrid$x), y = max(mapgrid$y), legend = c("Present",
+ "Absent"), fill = c("forestgreen", "white"), bty = "n",
+ cex = 1.2)

+ }

+ mtext (criteria.labels[i], side = 3, line = 2, cex = 1.2)

+ mtext (paste("threshold =", thresh), side = 3, line = 0.5,

+ cex = 1)

+ F

28

R> mtext (MODELfn.a, side = 3, line = 0, cex = 1.2, outer = TRUE)
R> mtext (response.name.a, side = 3, line = 2, cex = 1.5, outer = TRUE)
R> par(opar)

R> opar <- par(mfrow = c(2, 2), mar = c(2.5, 3, 4, 1), oma = c(0,

+ 0, 4, 6), xpd = NA)
R> mapgrid <- read.asciigrid(paste(MODELfn.b, "_map.txt", sep = ""),
+ as.image = TRUE)

R> criteria <- c("Default", "MaxKappa", "ReqSens'", "ReqSpec")
R> criteria.labels <- c("Default", "MaxKappa", "ReqSens = 0.9",

+ "ReqSpec = 0.9")

R> for (i in 1:4) {

+ thresh <- opt.thresh.b$threshold[opt.thresh.b$opt.methods ==

+ criteriali]]

+ presencegrid <- mapgrid

+ presencegrid$z <- ifelse(presencegrid$z > thresh, 1, 0)

+ image (presencegrid, col = c("white", "forestgreen"), zlim = c(0,
+ 1), asp = 1, bty = "n", xaxt = "n", yaxt = "n")

+ if (i ==2) {

+ legend (x = max (mapgrid$x), y = max(mapgrid$y), legend = c("Present",
+ "Absent"), fill = c("forestgreen", "white"), bty = "n",
+ cex = 1.2)

+ }

+ mtext(criteria.labels[i], side = 3, line = 2, cex = 1.2)

+ mtext (paste ("threshold =", thresh), side = 3, line = 0.5,

+ cex = 1)

+ }

R> mtext (MODELfn.b, side = 3, line = 0, cex = 1.2, outer = TRUE)
R> mtext (response.name.b, side = 3, line = 2, cex = 1.5, outer = TRUE)
R> par(opar)

3.4 Example 3 - Stochastic Gradient Boosting - Binary Response

Example 3 models the same data as previous examples, but this time with Stochastic Gradient
Boosting. Stochastic Gradient Boosting does not have the option of out-of-bag estimates for model
validation. To use all of the data for model building and avoid setting aside an independent test

set use cross-validation for model validation.

(Note: in the gbm package, the function gbm.perf() offers the optional argument method =
"00B", however, this argument specifies the technique to be used to estimated the best number of

trees (n.trees), and is not a method for SGB model prediction.)

3.4.1 Set up

Define model type.

R> model.type <- "SGB"

Define data.

R> gdatafn <- "VModelMapData.csv"

Define folder.

29

PINYON
VModelMapEx2a

Default MaxKappa
threshold = 0.5 threshold = 0.53

B Present
O Absent

ReqSens = 0.9 ReqSpec = 0.9
threshold = 0.75 threshold = 0.23

Figure 14: Example 2 - Presence-Absence maps by four different threshold selection criteria for
Pinyon (RF model).

30

SAGE
VModelMapEx2b

Default MaxKappa
threshold = 0.49

! 3 B Present
el O Absent

ReqSens = 0.9 ReqSpec = 0.9
threshold = 0.41 threshold = 0.76

0 -

Figure 15: Example 2 - Presence-Absence maps by four different threshold selection criteria for
Sage (RF model).

31

R> folder <- getwd()
Define model filenames.

R> MODELfn.a <- "VModelMapEx3a'"
R> MODELfn.b <- "VModelMapEx3b"

Example 3 uses the same predictors as example 2.

R> predList <- c("ELEV250", "NLCD01_250", "EVI2005097", "NDV2005097",
+ "NIR2005097", "RED2005097")

R> predFactor <- c("NLCD01_250")

Define the response variable, and whether it is continuous or binary.

R> response.name.a <- "PINYON"

R> response.name.b <- "SAGE"

R> response.type <- "binary"

Define the seeds for each model.

R> seed.a <- 42
R> seed.b <- 43

Define the column that contains unique identifiers.

R> unique.rowname <- "ID"

Define numrows.

R> numrows = 500

Define raster look up table.

R> rastLUTfn <- "VModelMapData_LUT.csv"

R> rastLUTfn <- read.table(rastLUTfn, header = FALSE, sep = ",",

+ stringsAsFactors = FALSE)
R> rastLUTfn[, 1] <- paste(folder, rastLUTfn[, 1], sep = "/")

3.4.2 Model creation

Create the model and run the model validation diagnostics, this time saving JPEG, PDF, and PS

versions of the diagnostic plots.

R> model.obj.ex3a <- model.build(model.type = model.type, qdata.trainfn

+ folder = folder, MODELfn = MODELfn.a, predlList = predList,

+ predFactor = predFactor, response.name = response.name.a,

+ response.type = response.type, seed = seed.a)

R> model.obj.ex3b <- model.build(model.type = model.type, qdata.trainfn
+ folder = folder, MODELfn = MODELfn.b, predlList = predList,

+ predFactor = predFactor, response.name = response.name.b,

+ response.type = response.type, seed = seed.b)

32

qdatafn,

qdatafn,

3.4.3 Model Diagnostics

Make cross validation model predictions on the training data and run the diagnostics on these
predictions.

Model predictions using cross validation are stochastic, so it is necessary to set the seed.

This time, set na.action = "na.roughfix". With this option, if the categorical predictor NLCDO1_250
has categories present in the validation data that were not present in the training data, the most
common category from the training data will be substituted for the new, unknown category. When
running cross-validation, this can be a common occurrence, especially if it is a small dataset with
many categories. When this does occur, model.map() will generate warnings:

9: In production.prediction(model.obj = model.obj, rastLUTfn = rastLUTfn,
categorical factored predictor NLCDO1_250 contains levels 41, 43, 20 not
found in training data

10: In production.prediction(model.obj = model.obj, rastLUTfn = rastLUTfn,
Replacing categorical factored predictor levels not found in training data,
with most common category that is found in training

Again, the model.diagnostics() function creates diagnostic graphs and saves a file of observed
and predicted values. In the case of Cross Validation predictions, there is an additional column
listing the assigned fold for each data point. Variable importance was almost identical for the SGB
model and the RF model in Example 2. The AUC for Pinyon also very similar for the two models
(0.95 for SGB verses 0.97 for RF). The SGB model for Sage, however, had a stronger AUC than
the RF model (0.80 for SGB verse 0.70 for RF).

R> model.pred.ex3a <- model.diagnostics(model.obj = model.obj.ex3a,

+ qdata.trainfn = gqdatafn, folder = folder, MODELfn = MODELfn.a,

+ unique.rowname = unique.rowname, seed = 44, prediction.type = "CV",
+ device.type = c("jpeg", "pdf", "postscript"), cex = 1.2,

+ na.action = "na.roughfix")

R> model.pred.ex3b <- model.diagnostics(model.obj = model.obj.ex3b,

+ gdata.trainfn = qdatafn, folder = folder, MODELfn = MODELfn.b,

+ unique.rowname = unique.rowname, seed = 45, prediction.type = "CV",
+ device.type = c("jpeg", "pdf", "postscript"), cex = 1.2,

+ na.action = "na.roughfix")

R> opt.thresh.a <- read.table(paste(MODELfn.a, "_pred_optthresholds.csv",
+ sep = ""), header = TRUE, sep = ",", stringsAsFactors = FALSE)

R> opt.thresh.a[, -1] <- signif(opt.thresh.al[, -1], 2)

R> opt.thresh.b <- read.table(paste(MODELfn.b, "_pred_optthresholds.csv",
+ sep = ""), header = TRUE, sep = ",", stringsAsFactors = FALSE)

R> opt.thresh.b[, -1] <- signif(opt.thresh.b[, -1], 2)

Here are the optimized thresholds for Pinyon:
R> opt.thresh.a

opt.methods threshold PCC sensitivity specificity Kappa

1 Default 0.50 0.92 0.92 0.92 0.83
2 Sens=8pec 0.49 0.92 0.92 0.92 0.83
3 MaxSens+Spec 0.54 0.92 0.91 0.92 0.84
4 MaxKappa 0.54 0.92 0.91 0.92 0.84

33

VModelMapEx3a_pred
Relative Influence

ELEV250

EVI2005097 I
[I

Predictors

NIR2005097

NDV2005097

RED2005097

I I I I I |
10 20 30 40 50 60 70

Relative influence

Figure 16: Example 3 - Variable importance graph for Pinyon presence (SGB model).

34

VModelMapEx3b_pred
Relative Influence

ELEV250
EVI2005097

NDV2005097

Predictors

RED2005097

NIR2005097

NLCDO1_250

I I |
20 30 40

o —
=
o

Relative influence

Figure 17: Example 3 - Variable importance graph for Sage presence (SGB model).

35

Figure 18: Example 3 - Model quality and threshold selection graphs for Pinyon presence (SGB

model).

number of plots

100 200 300 400 500 600

[o]

Sensitivity (true positives)

VModelMapEx3a_pred

Observed vs. Predicted

o | 478 .
B present c - 58 4.
_ O absent F—— {
c o
S -
g 3
3 44 :
o
o <
© o
el
[
s o B
a2 ° 567
© o | e
DI:I=|=| °
T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 08 1.0
predicted probability Predicted Probability of Occurrence
ROC Plot Error Rate verses Threshold
o | o -
- -
[ee) [ee)
c 7 o o 7]
<
>
o | g <o |
o o
=
<] § <
o xg o
L [sensitivity
N . < N e -
o 7 AUC: o 7 ---- specificity
° —— 0.96 pred ° —— Kappa
S S
T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
1-Specificity (false positives) Threshold

36

VModelMapEx3b_pred

Observed vs. Predicted

o
8
< o |
B present c - 3.
o B
s O absent 5 @ 555 .
® c =
2 S 4
] £ o | 449 -
N Qo o o4
5 o 9] *
— o = b
A g 2
= © o 7 138"
E 3
=] > ~] 4
S 2 o 46
Q .
N
o ___-
e - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 08 10
predicted probability Predicted Probability of Occurrence
ROC Plot Error Rate verses Threshold
S S . .----
i i e
K
7 = 2 ;
z ° g °
1%
8 o | g2 o |
o O o o
3 =
Iz < § <] ’
£ =} 5 =} L
3z < I O sensitivity
=S . <« I
& ©° 7 AUC: s 7] ---- specificity
° —— 0.71 pred ° —— Kappa
S oS
T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
1-Specificity (false positives) Threshold

Figure 19: Example 3 - Model quality and threshold selection graphs for Sage presence (SGB
model).

37

5 MaxPCC 0.54 0.92 0.91 0.92 0.84
6 PredPrev=0bs 0.55 0.92 0.91 0.92 0.83
7 ObsPrev 0.46 0.92 0.92 0.91 0.83
8 MeanProb 0.46 0.92 0.92 0.91 0.83
9 MinROCdist 0.54 0.92 0.91 0.92 0.84
10 RegSens 0.75 0.90 0.85 0.95 0.81
11 ReqgSpec 0.21 0.90 0.95 0.85 0.80
12 Cost 0.54 0.92 0.91 0.92 0.84

And for Sage:
R> opt.thresh.b

opt.methods threshold PCC sensitivity specificity Kappa

1 Default 0.50 0.65 0.82 0.44 0.27
2 Sens=8pec 0.58 0.65 0.65 0.65 0.29
3 MaxSens+Spec 0.59 0.65 0.63 0.67 0.29
4 MaxKappa 0.55 0.66 0.72 0.57 0.30
5 MaxPCC 0.43 0.66 0.93 0.32 0.27
6 PredPrev=0bs 0.56 0.65 0.70 0.60 0.30
7 ObsPrev 0.56 0.65 0.70 0.60 0.30
8 MeanProb 0.56 0.65 0.69 0.60 0.29
9 MinROCdist 0.59 0.65 0.63 0.67 0.29
10 RegSens 0.48 0.66 0.87 0.39 0.27
11 RegSpec 0.67 0.59 0.38 0.87 0.23
12 Cost 0.43 0.66 0.93 0.32 0.27

3.4.4 Map production

Run model .mapmake () to create the maps.

R> model.mapmake (model.obj = model.obj.ex3a, folder = folder, MODELfn

+ rastLUTfn = rastLUTfn, map = TRUE, numrows = numrows, na.action
R> model.mapmake (model.obj = model.obj.ex3b, folder = folder, MODELfn
+ rastLUTfn = rastLUTfn, map = TRUE, numrows = numrows, na.action

MODELfn.a,
"na.roughfix")
MODELfn.b,
"na.roughfix")

Map the probability surface (the probability that the species is present at each grid point)

(Figure 20), using the color ramp defined in example 2.

R> h = c(seq(10, 30, length.out = 10), seq(31, 40, length.out = 10),

+ seq(41, 90, length.out = 60), seq(91, 100, length.out = 10),

+ seq(101, 110, length.out = 10))

R> 1 = c(seq(25, 40, length.out = 10), seq(40, 90, length.out = 35),
+ seq(90, 90, length.out = 10), seq(90, 40, length.out = 35),

+ seq(40, 10, length.out = 10))

R> probpres.ramp <- hcl(h = h, ¢ = 80, 1 = 1)

R> opar <- par(mfrow = c(1, 2), mar = c(3, 3, 2, 1), oma = c(0,

+ 0, 3, 4), xpd = NA)

R> mapgrid.a <- read.asciigrid(paste(MODELfn.a, "_map.txt", sep = ""),
+ as.image = TRUE)

R> mapgrid.b <- read.asciigrid(paste(MODELfn.b, "_map.txt", sep = ""),
+ as.image = TRUE)

38

Probability of Presence

PINYON SAGE

100%
80%
60%
40%
20%

0%

EEC00OEm

Figure 20: Example 3 - Probability surface maps for Pinyon and Sage presence (SGB models)

R> legend.subset <- c¢(100, 80, 60, 40, 20, 1)
R> legend.colors <- probpres.ramp[legend.subset]
R> legend.label <- c("100%", " 804", " 60%", " 407", " 20%4", " O%")

R> image(mapgrid.a, col = probpres.ramp, zlim = c(0, 1), asp = 1,
+ bty = "n", xaxt = "n", yaxt = "n")

R> mtext(response.name.a, side = 3, line = 1, cex = 1.2)

R> image(mapgrid.b, col = probpres.ramp, zlim = c(0, 1), asp = 1,

+ bty = "n", xaxt = "n", yaxt = "n")

R> mtext(response.name.b, side = 3, line = 1, cex = 1.2)

R> legend(x = max(mapgrid.b$x), y = max(mapgrid.b$y), legend
+ fill = legend.colors, bty = "n", cex = 1.2)

R> mtext ("Probability of Presence", side = 3, line = 1, cex = 1.5,
+ outer = T)

R> par(opar)

legend. label,

4 Conclusion

In summary, the ModelMap software package for R creates sophisticated models from training data
and validates the models with an independent test set, cross-validation, or in the case of Random
Forest Models, with out-of-bag (OOB) predictions on the training data. It creates graphs and
tables of the model diagnostics. It applies these models to GIS image files of predictors to create
detailed prediction surfaces. It will handle large predictor files for map making, by reading in the
GIS data in sections, and output the prediction for each of these sections, before reading the next
section.

39

Appendices

A Argument List

Model building Arguments

model.type
qdata.trainfn
folder
MODELfn
predList
predFactor

response.name
response.type
seed
na.action

Model type: "RF" or "SGB".

Filename of the training data file for building model.

Folder for all output.

Filename to save model object.

Predictor short names used to build the model.

Predictor short names from predList that are factors (i.e categorical
predictors).

Response variable used to build the model.

Response type: "binary" or "continuous".

Seed to initialize randomization to build RF or SGB models.

Specifies the action to take if there are NA values in the prediction data

Random Forest Models:

ntree Number of random forest trees.
mtry Number of variables to try at each node of Random Forest trees.
Stochastic Gradient Boosting Models:
n.trees Total number of stochastic gradient boosting trees for an SGB model.
The gbm function gbm.perf (method="00B") will be used to select the
best number of trees from this total number of trees.
shrinkage Shrinkage parameter applied to each tree in the expansion. Also known

interaction.depth

bag.fraction

train.fraction

n.minobsinnode

as the learning rate or step-size reduction.

Maximum depth of variable interactions. interaction.depth = 1 im-
plies an additive model, interaction.depth = 2 implies a model with
up to 2-way interactions, etc. ..

Fraction of the training set observations randomly selected to propose
the next tree in the expansion. If bag.fraction < 1 then running the
same model twice will result in similar but different fits.

Fraction of observations used to fit the model with the remainder are
used for computing out-of-sample estimates of the loss function. Not
needed if bag.fraction < 1.

Minimum number of observations in the trees terminal nodes. Note that
this is the actual number of observations not the total weight.

40

Model Diagnostics Arguments

model.obj

qdata.trainfn
qdata.testfn
folder

MODELfn
response.name
unique.rowname
seed
prediction.type

MODELpredfn
na.action

v.fold
device.type

DIAGNOSTICEfn
jpeg.res
device.width
device.height
cex

The model object to use for prediction, if the model has been previously
created.

Filename of the training data file for building model.

Filename of independent data set for testing (validating) model.

Folder for all output.

Filename to save model object.

Response variable used to build the model.

Name of column in training and test that uniquely identifies each row .
Seed to initialize randomization to build RF or SGB models.

Type of prediction to use for model validation: "TEST", "CV", "00B" or
"TRAIN"

Filename for output of validation prediction *.csv file.

Specifies the action to take if there are NA values in the prediction data or if
there is a level or class of a categorical predictor variable in the validation
test set or the mapping data set, but not in the training data set.

The number of cross-validation folds.

Vector of one or more device types for graphical output: "default",
"jpeg", "pdf", "postscript", "win.metafile". "default" refers to the
default graphics device for your computer

Filename for output files from model validation diagnostics.

Pixels per inch for jpeg output.

Device width for diagnostic plots in inches.

Device height for diagnostic plots in inches.

Cex for diagnostic plots.

req.sens Required sensitivity for threshold optimization for binary response model.

req.spec Required specificity for threshold optimization for binary response model.

FPC False Positive Cost for threshold optimization for binary response model.

FNC False Negative Cost for threshold optimization for binary response model.

Map Production Arguments

model.obj The model object to use for prediction, if the model has been previously
created.

folder Folder for all output.

MODELfn Filename to save model object.

rastLUTfn Filename of .csv file for a raster look up table.

na.action

numrows
map.sd

asciifn
asciifn.mean
asciifn.stdev

asciifn.coefv

Specifies the action to take if there are NA values in the prediction data or
if there is a level or class of a categorical predictor variable in the validation
test set or the mapping data set, but not in the training data set.

Number of rows of rasters to import for each loop.

Should maps of mean, standard deviation, and coefficient of variation
of the predictions be produced: T or F. Only used if response.type =
"continuous".

Filename of output file for map production. If NULL, "modelfn _map.txt".
Filename of output file for mean of trees. If NULL, "model fn_map_mean.txt".
Filename of output file for standard deviation of trees. If NULL,
"model fn _map_stdev.txt".

Filename of output file for coefficient of variation of trees. If NULL,
"model fn _map_coefv.txt".

41

References

L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

L. Breiman, R. A. Friedman, R. A. Olshen, and C. G. Stone. Classification and Regression Trees.
Wadsworth, 1984.

G. De’ath and K. E. Fabricius. Classification and regression trees: a powerful yet simple technique
for ecological data analysis. Ecology, 81:3178-3192, 2000.

E. R. DeLong, D. M. Delong, and D. L. Clarke-Pearson. Comparing areas under two or more
correlated receiver operating characteristic curves: A nonparametric approach. Biometrics,

44(3):387-394, 1988.

J. Elith, J. R. Leathwick, and T. Hastie. A working guide to boosted regression trees. Journal of
Animal Ecology, 77:802-813, 2008.

J. S. Evans and S. A. Cushman. Gradient modeling of conifer species using random forests.
Landscape Ecology, 24(5):673-683, 2009.

A. H. Fielding and J. F. Bell. A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environmental Conservation, 24(1):38-49, 1997.

E. Freeman. PresenceAbsence: An R Package for Presence-Absence Model Evaluation. USDA
Forest Service, Rocky Mountain Research Station, 507 25th street, Ogden, UT, USA, 2007.
URL http://CRAN.R-project.org/. eafreeman@fs.fed.us.

E. Freeman. ModelMap: An R Package for Modeling and Map production using Random Forest
and Stochastic Gradient Boosting. USDA Forest Service, Rocky Mountain Research Station, 507
25th street, Ogden, UT, USA, 2009. URL http://CRAN.R-project.org/. eafreeman@fs.fed.us.

E. A. Freeman and G. Moisen. Presenceabsence: An r package for presence absence analysis.
Journal of Statistical Software, 23(11):1-31, 2008a. URL http://wuw. jstatsoft.org/v23/i11.

E. A. Freeman and G. G. Moisen. A comparison of the performance of threshold criteria for
binary classification in terms of predicted prevalence and kappa. FEcological Modelling, 217:
48-58, 2008b.

T. S. Frescino, G. G. Moisen, K. A. Megown, V. J. Nelson, Elizabeth, Freeman, P. L. Patterson,
M. Finco, K. Brewer, and J. Menlove. Nevada photo-based inventory pilot(npip) photo sampling
procedures. Gen. Tech. Rep. RMRSGTR-222, U.S. Departmentof Agriculture, Forest Service,
Rocky Mountain Research Station., Fort Collins, CO, 2009.

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics,
29(5):1189-1232, 2001.

J. H. Friedman. Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4):
367-378, 2002.

D. Gesch, M. Oimoen, S. Greenlee, C. Nelson, M. Steuck, and D. Tyler. The national elevation
dataset. photogrammetric engineering and remote sensing. Photogrammetric Engineering and
Remote Sensing, 68:5-11, 2002.

C. Homer, C. Huang, L. Yang, B. Wylie, and M. Coan. Development of a 2001 national land-cover
database for the united states. Photogrammetric Engineering and Remote Sensing, 70:829-840,
2004.

A. Huete, K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. Overview of the
radiometric and biophysical performance of the modis vegetation indices. Remote Sensing of
Environment, 83:195-213, 2002.

42

C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy,
and J. T. Morisette. An overview of modis land data processing and product status. Remote
Sensing of Environment, 83:3-15, 2002.

A. Liaw and M. Wiener. Classification and regression by randomForest. R News, 2(3):18-22, 2002.
URL http://CRAN.R-project.org/doc/Rnews/.

Y. Lin and Y. Jeon. Random forest and adaptive nearest neighbors. Technical Report 1055,
Department of Statistics, University of Wisconsin, 1210 West Dayton St., Madison, WI 53706,
2002.

G. G. Moisen. Classification and regression trees. In S. E. Jgrgensen and B. D. Fath, editors,
Encyclopedia of Ecology, volume 1, pages 582-588. Elsevier, 2008.

G. G. Moisen, E. A. Freeman, J. A. Blackard, T. S. Frescino, N. E. Zimmermann, and T. C.
Edwards, Jr. Predicting tree species presence in utah: a comparison of stochastic gradient
boosting, generalized additive models, and tree-based methods. Ecological Modelling, 199:176—
187, 2006.

J. Pearce and S. Ferrier. Evaluating the predicting performance of habitat models developed using
logistic regression. Ecological Modelling, 133:225-245, 2000.

E. J. Pebesma and R. S. Bivand. Classes and methods for spatial data in R. R News, 5(2):9-13,
November 2005. URL http://CRAN.R-project.org/doc/Rnews/.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2008. URL http://www.R-project.org.
ISBN 3-900051-07-0.

B. Reineking and B. Schréder. Constrain to perform: Regularization of habitat models. Ecological
Modelling, 193:675-690, 2006.

G. Ridgeway. The state of boosting. Computing Science and Statistics, 31:172-181, 2002.

G. Ridgeway. gbm: Generalized Boosted —Regression Models, 2007. URL
http://www.i-pensieri.com/gregr/gbm.shtml. R package version 1.6-3.

C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance
measures: Illustrations, sources and a solution. Bioinformatics, 8:25, 2007.

I. P. Vaughan and S. J. Ormerod. The continuing challenges of testing species distribution models.
Journal of Applied Ecology, 42:720-730, 2005.

M. P. Vayssieres, R. P. Plant, and B. H. Allen-Diaz. Classification trees: An alternative non-
parametric approach for predicting species distributions. Journal of vegetation science, 11:
679-694, 2000.

J. H. Zar. Biostatistical Analysis. Prentice Hall, 1996.

43

