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Power and Sample size Estimation for Bioequivalence Studies 

Short cursory excerpt 

D. Labes  

(Version 2 Sep. 2010) 

 

The used mathematical and statistical apparatus is here only formulated for the evaluation of 

the pharmacokinetic metrics which are assumed log-normal distributed. 

The description follows closely Diletti, Hauschke and Steinijans (1991). 

 
For the formulas using untransformed PK metrics refer to Phillips (1990). 

 
 

The TOST procedure 

Let µT and µR the expected mean values of the pharmacokinetic metric (f.i. AUC, or Cmax) of 

the Test and Reference formulation to be compared within a bioequivalence study. 

Let the interval (Θ1 , Θ2 ) denote the bioequivalence acceptance range where 0<Θ1<1<Θ2. 

Most regulatory guidances set (Θ1 , Θ2 ) = (0.8, 1.25) for log-normal distributed pharmaco-

kinetic metrics (i.e. AUC, Cmax). Other values may be used (f.i. (0.75, 1.3333) for widened 

Cmax, or (0.9, 1.1111) for NTI drugs). 

 

The bioequivalence test problem based on the ratio µT/µR is stated as: 

10 /: RTH   or 2/ RT   (null: bioinequivalence) 

211 /:  RTH    (alternative: bioequivalence) 

 

In case of log-normal distributed pharmaco-kinetic metrics the test problem is transformed 

accordingly to 

   10 log/log: RTH   or    2log/log RT   (bioinequivalence) 

     211 log/loglog:  RTH    (bioequivalence) 

were log(x) denotes the natural logarithm.      RTRT  loglog/log   is estimated by 

the difference of the arithmetic means of the log-transformed observations RT XX  . 

 

H0 is rejected in favor of bioequivalence if the classical (1-2α)100% confidence interval for 

µT/µR is included in the bioequivalence range (Westlake 1981, 1988). 

The inclusion of the (1-2α)100% confidence interval in the acceptance range is equivalent to 

the two one-sided t-tests (Schuirmann 1987). 
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Bioequivalence is in case of data from a 2x2 cross-over study concluded if the following two 

conditions hold true: 
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where se is estimated from the mean squared error of an appropriate analysis of variance. 

 2,1  nt   denotes the (1- α)-quantile of the central t-distribution with n-2 degrees of 

freedom. n is the number of subjects under study. 

Here we assume that the number of subjects within the two sequence groups TR and RT, 

respectively, are the same. This assumption is also applied for the other designs covered 

within the package PowerTOST. 

 
 

Power of the TOST procedure 

The power of a statistical test is the probability that the hypothesis H0, in our case 

bioinequivalence, is rejected if the alternative hypothesis H1, here bioequivalence, is true. 

In other words the probability of correctly accepting bioequivalence is the power of the test. 

The power of the two one-sided t-tests (TOST) is thus given by 

 

 holdsencebioequivalttandttobPower nn |Pr )2,1(2)2,1(1     (I) 

 

The t1 and t2 values are the t-test statistics of the two one-sided t-tests described above. 

 

Owen (1965) showed that (t1, t2) has a bivariate non-central t-distribution and that the power 

can be calculated as the difference of two definite integrals (Owen's Q function):  

 

),0;,(),0;,(1 1)2,1(2)2,1( RtQRtQPower ndfndf      (II) 

 

where t(1-α, df) is the (1-α) quantile of a t-distribution with df degrees of freedom. 

df is (n-2) in case of a classical 2x2 cross-over design and  
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for log-transformed pharmaco-kinetic metrics, where se is the residual standard error, Θ1 and 

Θ2 are the lower and upper bioequivalence acceptance bounds (usually 0.8 and 1.25). 

 

The residual variance (s2
e) is connected to the within-subject coefficient of variation CV by 

 

)1log( 22  CVmsese  

1)exp( 2  esCV  

 

Owen‟s Q function is defined as: 
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where  x  is the gamma-function,  x  and  X  are the density and cumulative 

distribution function of the standard normal distribution, respectively. 

 

Owen‟s Q function was long part of the SAS system (SAS® Analyst 1999), but 

undocumented until SAS9.2. It was implemented here in the R package PowerTOST via 

numerical evaluation of the definite integral using the integrate() function of the package 

stats, part of the base R distribution (see implementation details below). 

 
 
Equation (II) can be approximated by the univariate non-central t-distribution via 

 

),2,(),2,( 1)2,1(2)2,1(     ntptntptPower nn  (IV) 

 

where ),,( dftpt  is the distribution function of the non-central t distribution with df degrees 

of freedom and noncentrality parameter δ. 

Equation (III) can further approximated, if the non-central t-distribution is approximated by a 

“shifted” central t-distribution, according to 

 

 2,)2,( 1)2,1()2,1(2   ntptntptPower nn    (V) 

 

where ),( dftpt  is the distribution function of the central t-distribution with df degrees of 

freedom. 
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Both approximations perform very well if the degrees of freedom df are reasonable high and 

the obtained power is in the usually interesting range (≥ 60-70%). 

 

Equation (III) is used throughout the book from S.A. Julious (2010), without indicating that it 

is an approximation; and in many other papers. 

 

Equation (IV) is used in the book by Chow and Liu (2009) in chapter 9 concerning sample 

size calculations for higher-order (replicate) crossover designs, also without indicating the 

approximate nature. It is implemented in the commercial sample size software PASS 2008 

(Hintze J. 2008), module “Equivalence of means/Two means in a higher order cross-over 

design”. 

 
 

Other study designs 

The formulas for other study designs used in bioequivalence studies differ from the given 

ones only by 

 the degrees of freedom df and  

 the factor 2 under the square root in the denominator of the “non-centrality” 

parameters δ1 and δ2. 

The factor 2 has to be replaced by the so-called design constant bk. 

This holds if the same assumptions are made as in the 2x2 cross-over, namely the number 

of subjects in the sequence groups or the two groups in the parallel group design are equal, 

the within-subject variabilities or the variabilities in the two parallel groups of the Test and 

Reference formulations are assumed equal and no subject by formulation interaction is 

incorporated in the ANOVA for replicate cross-over designs. 

 

See the function known.designs() for the values of df=degrees of freedom and bk 

implemented. 

 

For the two-group parallel design the sample size is the number of subjects in each 

treatment group. The CV to be used here is the CV of the total variability. 

For the cross-over designs n is the total number of subjects and the CV to be used here is 

the within-subject CV (CV of the residual error). 
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Sample size estimation 

Equation (II), or the approximations (IV) and (V), respectively, are implicit in n – the sample 

size – and can be solved for given n, alpha, power to achieve, bioequivalence margins and 

the assumed null („true‟) ratio. 

The algorithm starts with a suitable chosen value of the sample size, calculates the power for 

that and increases / decreases this start value in steps of the sequence groups in the study 

design until the power reaches or exceed the desired level. 

 

The start value is chosen via the large sample approximation of the power equation (Julious 

2010), namely the maximum of n01 and n02 according to 
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in case of the 2x2 cross-over design, where zp is the p quantile of the standard normal 

distribution. 1-β is the power. If Θ0 = 1 then z(1-β) has to be replaced by z(1-β/2). 

bk is the so-called design constant, which is =2 in case of a 2x2 cross-over. 

 

 

Implementation details 

Owen’s Q function is implemented via the integrate() function of the R package stats 

which performs numerical integration via an adaptive algorithm. 

The function to integrate over is hidden in the internal function 

.Q.integrand(x,nu,t,delta) 

To avoid numerical overflow in the factor before the definite integral it is calculated 

logarithmically within that function as 

lnQconst <- -((nu/2.0)-1.0)*log(2.0) - lgamma(nu/2.) 

lgamma(x) is the log(  x ) function from the R package stats. 

The factor 2  vanishes if the density function  x  of the standard normal distribution in 

equation (III) is replaced by exp(-0.5*x^2). 

 

Since for really large values of nu and the upper integration limit R the integrand is a function 

which is zero over nearly all its range, the integrate() function breaks down (see 
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help(integrate)) and OwensQ() returns erroneously 0. Therefore the upper integration 

limit is decreased in steps of R/500 until the .Q.integrand has a value >0. 

 

For an alternative implementation of the power calculation according to equation (II) see the 

function power.equivalence.md() of the package MBESS. Author of that function is  

Kem F. Philipps. 

 
 
The exact power according to equation (II) is implemented in the hidden internal function 

.power.TOST(alpha=0.05, ltheta1, ltheta2, diffm, se, n, df, bk=2). 

This function is used by the high level functions power.TOST() or sampleN.TOST() if you 

set exact=TRUE (the default). 

 

The approximate power according to the non-central t-distribution is implemented in the 

hidden internal function  

.approx.power.TOST(alpha=0.05, ltheta1, ltheta2, diffm, se, n, df, bk=2) 

This function is used if your set exact=FALSE in power.TOST() or sampleN.TOST(). 

 

The approximation according to equation (V), via “shifted” central t-distribution is 

implemented in the hidden function 

.approx2.power.TOST(alpha=0.05, ltheta1, ltheta2, diffm, se, n, df, bk=2). 

This function is not used further within the package and contained only for testing purposes. 

 

Both approximations can yield power values <0. In that case the power will be set =0. 

 

To use these internal functions by yourself, you must supply the values diffm=log(Θ0), 

theta1= log(Θ1) and theta2= log(Θ2) in case of log-transformed evaluation. 

n is the sample size, df the degrees of freedom, bk the design constant. 

It is highly recommended to use the high level functions power.TOST() or 

sampleN.TOST(). They shield you from all the peculiarities of the designs and log-

transformed or un-transformed evaluation. 

 
 
If you are interested in more insight in the implementation load down the source code of the 

package PowerTOST and have a look at the code and especially at the comments within it. 
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