
0.1 describe: Describe a model’s systematic and stochas-

tic parameters

Description

In order to use parse.formula(), parse.par(), and the model.*.multiple() commands,
you must write a describe.mymodel() function where mymodel is the name of your mod-
eling function. (Hence, if your function is called normal.regression(), you need to write
a describe.normal.regression() function.) Note that describe() is not a generic func-
tion, but is called by parse.formula(..., model = "mymodel") using a combination of
paste() and exists(). You will never need to call describe.mymodel() directly, since it
will be called from parse.formula() as that function checks the user-input formula or list
of formulas.

Syntax

describe.mymodel()

Arguments

The describe.mymodel() function takes no arguments.

Output Values

The describe.mymodel() function returns a list with the following information:

� category: a character string, consisting of one of the following:

– "continuous": the dependent variable is continuous, numeric, and unbounded
(e.g., normal regression), but may be censored with an associated censoring indi-
cator (e.g., tobit regression).

– "dichotomous": the dependent variable takes two discrete integer values, usually
0 and 1 (e.g., logistic regression).

– "ordinal": the dependent variable is an ordered factor response, taking 3 or
more discrete values which are arranged in an ascending or descending manner
(e.g., ordered logistic regression).

– "multinomial": the dependent variable is an unordered factor response, taking
3 or more discrete values which are arranged in no particular order (e.g., multi-
nomial logistic regression).

– "count": the dependent variable takes integer values greater than or equal to 0
(e.g., Poisson regression).

1



– "bounded": the dependent variable is a continuous numeric variable, that is re-
stricted (bounded within) some range (e.g., (0,∞)). The variable may also be
censored either on the left and/or right side, with an associated censoring indica-
tor (e.g., Weibull regression).

– "mixed": the dependent variables are a mix of the above categories (usually
applies to multiple equation models).

Selecting the category is particularly important since it sets certain interface parame-
ters for the entire GUI.

� package: (optional) a list with the following elements

– name: a characters string with the name of the package containing the mymodel()
function.

– version: the minimum version number that works with Zelig.

– CRAN: if the package is not hosted on CRAN mirrors, provide the URL here as a
character string. You should be able to install your package from this URL using
name, version, and CRAN:

install.packages(name, repos = CRAN, installWithVers = TRUE)

By default, CRAN = "http://cran.us.r-project.org/".

� parameters: For each systematic and stochastic parameter (or set of parameters) in
your model, you should create a list (named after the parameters as given in your
model’s notation, e.g., mu, sigma, theta, etc.; not literally myparameter) with the
following information:

– equations: an integer number of equations for the parameter. For parameters
that can take an undefined number of equations (for example in seemingly un-
related regression), use c(2, Inf) or c(2, 999) to indicate that the parameter
can take a minimum of two equations up to a theoretically infinite number of
equations.

– tagsAllowed: a logical value (TRUE/FALSE) specifying whether a given parameter
allows constraints. If there is only one equation for a parameter (for example, mu
for the normal regression model has equations = 1), then tagsAllowed = FALSE

by default. If there are two or more equations for the parameter (for example, mu
for the bivariate probit model has equations = 2), then tagsAllowed = TRUE

by default.

– depVar: a logical value (TRUE/FALSE) specifying whether a parameter requires a
corresponding dependent variable.

2



– expVar: a logical value (TRUE/FALSE) specifying whether a parameter allows ex-
planatory variables. If depVar = TRUE and expVar = TRUE, we call the parameter
a “systematic component” and parse.formula() will fail if formula(s) are not
specified for this parameter. If depVar = FALSE and expVar = TRUE, the pa-
rameter is estimated as a scalar ancillary parameter, with default formula ~ 1, if
the user does not specify a formula explicitly. If depVar = FALSE and expVar =

FALSE, the parameter can only be estimated as a scalar ancillary parameter.

– specialFunction: (optional) a character string giving the name of a function that
appears on the left-hand side of the formula. Options include "Surv", "cbind",
and "as.factor".

– varInSpecial: (optional) a scalar or vector giving the number of variables taken
by the specialFunction. For example, Surv() takes a minimum of 2 arguments,
and a maximum of 4 arguments, which is represented as c(2, 4).

If you have more than one parameter (or set of parameters) in your model, you will
need to produce a myparameter list for each one. See examples below for details.

Examples

For a Normal regression model with mean mu and scalar variance parameter sigma2, the
minimal describe.*() function is as follows:

describe.normal.regression <- function() {

category <- "continuous"

mu <- list(equations = 1, # Systematic component

tagsAllowed = FALSE,

depVar = TRUE,

expVar = TRUE)

sigma2 <- list(equations = 1, # Scalar ancillary parameter

tagsAllowed = FALSE,

depVar = FALSE,

expVar = FALSE)

pars <- list(mu = mu, sigma2 = sigma2)

model <- list(category = category, parameters = pars)

}

See Section ?? for full code to execute this model from scratch in R with Zelig.
Now consider a bivariate probit model with parameter vector mu and correlation param-

eter rho (which may or may not take explanatory variables). Since the bivariate probit
function uses the pmvnorm() function from the mvtnorm library, we list this under package.

describe.bivariate.probit <- function() {

category <- "dichotomous"

package <- list(name = "mvtnorm",

3



version = "0.7")

mu <- list(equations = 2, # Systematic component

tagsAllowed = TRUE,

depVar = TRUE,

expVar = TRUE)

rho <- list(equations = 1, # Optional systematic component

tagsAllowed = FALSE, # Estimated as an ancillary

depVar = FALSE, # parameter by default

expVar = TRUE)

pars <- list(mu = mu, rho = rho)

list(category = category, package = package, parameters = pars)

}

See Section ?? for the full code to write this model from scratch in R with Zelig.
For a multinomial logit model, which takes an undefined number of equations (corre-

sponding to each level in the response variable):

describe.multinomial.logit <- function() {

category <- "multinomial"

mu <- list(equations = c(1, Inf),

tagsAllowed = TRUE,

depVAR = TRUE,

expVar = TRUE,

specialFunction <- "as.factor",

varInSpecial <- c(1, 1))

list(category = category, parameters = list(mu = mu))

}

(This example does not have corresponding executable sample code.)

See Also

� Section ?? for an overview of how the describe.*() function works with parse.formula().

� Section ?? for information on parse.formula().

Contributors

Kosuke Imai, Gary King, Olivia Lau, and Ferdinand Alimadhi.

4


