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Abstract

The amei package for R is a tool that provides a flexible statistical framework for
generating optimal epidemiological interventions that are designed to minimize the total
expected cost of an emerging epidemic. Uncertainty regarding the underlying disease
parameters is propagated through to the decision process via Bayesian posterior inference.
The strategies produced through this framework are adaptive: vaccination schedules are
iteratively adjusted to reflect the anticipated trajectory of the epidemic given the current
population state and updated parameter estimates. This document, which is (slightly)
modified version of Merl et al. (2010), published in the Journal of Statistical Software,
briefly covers the background and methodology underpinning the implementation provided
by the package and contains extensive examples showing the functions and methods in
action.
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1. Introduction

The goal of the study of infectious diseases is to better understand how infections are spread
and maintained, and ultimately to find ways to control the spread of a disease. The most
common methods for intervening in the spread of an infectious disease are to either remove
susceptible individuals or apply treatment to infected individuals. For instance, the suscep-
tible population may be culled, as in the case of foot-and-mouth disease (Tildesley et al.
2006; Enserink 2001), or the infected population may be quarantined, as in the case of SARS
(Lloyd-Smith et al. 2003). Most commonly, susceptibles may be vaccinated, as in the case
with influenza or smallpox (Ferguson et al. 2003; Halloran et al. 2002).

Each of these actions incurs a quantifiable epidemiological cost. For culling, the cost is an
additional number of deaths; for quarantine, the cost is likely to be measured in monetary
units rather than lost lives; for vaccination, the cost may be measured in both monetary units
as well the number of additional vaccine–induced infections; for medical treatment, the cost
is again monetary. Furthermore, the costs associated with each action can depend upon the
state of the disease within the population of interest. This raises the question of how to find
optimal epidemiological interventions in a manner that adaptively depends on the state of
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the epidemic.

Most existing methods for finding optimal intervention strategies are concerned with the
situation of pre-emptive intervention which is assumed to be completed before the onset of
the epidemic (for instance see Ball and Lyne 2002; Patel et al. 2005; Tildesley et al. 2006).
In this kind of situation, there is no reason to consider sequentially updated (i.e. adaptive)
interventions: as soon as the intervention policy is triggered, the epidemic threat will be
eradicated. However, in most scenarios, total and instantaneous intervention will not be an
implementable strategy. Moreover, these methods usually evaluate the cost of the epidemic
in a manner that assumes no uncertainty in key model parameters, including transmission
rate, recovery rate, and others (however, see Elderd et al. 2006 and our brief discussion in
Section 5).

Here we introduce amei, an R package (R Development Core Team 2009) that implements the
statistical framework introduced by Merl et al. (2009). This framework allows one to respond
to an emerging epidemic while simultaneously learning about its evolutionary dynamics. We
consider vaccination strategies defined by a fraction of the current susceptible population to be
targeted for vaccination, and a threshold number of susceptibles below which the vaccination
campaign is called off. We couple the evaluation of optimal, adaptive, intervention strategies
with Bayesian procedures for performing on-line estimation of the parameters of the underly-
ing epidemic model, thereby propagating parameter uncertainty through to policy decisions.
We demonstrate the advantages of adaptive intervention via the functions provided by the
package using simulations modeled after an influenza outbreak at a British boarding school
described by Murray (2002). We compare the distribution of costs arising from epidemiolog-
ical intervention under the adaptive policies to those arising from non-adaptive policies (i.e.
policies not dependent on the state of the epidemic and/or not reflecting parameter uncer-
tainty), and find that the adaptive policies result in low total costs, efficient use of available
resources, and are robust to model misspecification.

This tutorial is comprised of three main sections. The mathematical specification of the
Bayesian models used for inference and the Monte Carlo methods for constructing optimal
vaccination strategies (both static or adaptive and on–line) are contained in Section 2. In
Section 3, the functions and methods implemented in the package are illustrated by following
a single, detailed, example, whose results were first reported by Merl et al. (2009). Section
4 contains a second example with an alternative transmission model, thereby illustrating the
additional benefits of the approach and features of the package. The paper concludes in
Section 5 with a discussion of the methodology and related work highlighting other freely
available software with comparisons and contrasts. Miscellaneous details on implementation,
etc., are provided in an appendix.

2. Methods

2.1. SIR Model

In amei, we consider a stochastic version of a standard Susceptible–Infected–Removed (SIR)
model (Anderson and May 1991; Hetchote 2000) with permanent immunity and with mortal-
ity. In this model, the dynamic variables at time t are the number of susceptible individuals,
S(t); the number of infected individuals, I(t); the number of recovered individuals, R(t); and
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the number of removed/dead individuals, D(t). In a standard SIR model we would typically
lump all of the Recovered and Dead individuals into a single removed class. However, in
controlling an epidemic we expect there to be differential costs associated with deaths versus
other types of removal (see below), so we count the numbers of deaths separately. We assume
the population is closed to immigration or emigration so that S(t) + I(t) + R(t) + D(t) = N ,
where N is constant.

We adopt a flexible negative binomial form for the transmission function (Godfray and Hassell
1989; Mangel 2006; McCallum et al. 2001). Under this assumption, the SIR model is described
by the following system of differential equations (Hetchote 2000; McCallum et al. 2001):

dS

dt
= −kS ln

(
1 +

bI

k

)
(1)

dI

dt
= kS ln

(
1 +

bI

k

)
− (ν + µ)I

dR

dt
= νI (2)

dD

dt
= µI (3)

The model parameters are: the transmission rate b; the overdispersion (or “clumpiness”) pa-
rameter k; the death rate µ; and the rate of recovery to the immune class ν. The negative
binomial distribution can be interpreted as a compound stochastic process in which encoun-
ters between infected and susceptible individuals occur randomly (i.e. according to a Poisson
process) such that the encounter rate varies according to a gamma distribution with coef-
ficient of variation k−1/2. Thus, via k, the negative binomial transmission can account for
social interactions and/or network factors in disease transmission, without requiring explicit
characterization of the population structure.

This SIR formulation leads to a natural discrete time approximation for the numbers of
infections (Ĩ), recoveries (R̃), and deaths (D̃) arising in the unit time interval from t to
t + 1. Assuming the total number of infected individuals, I, is approximately constant and
integrating Eq. (1) over a unit time interval gives

S(t + 1) = S(t)
[

k

k + bI(t)

]k

, (4)

so that the fraction of susceptible individuals surviving throughout a unit time interval is[
k

k+bI(t)

]k
. When viewed as a discrete time stochastic process, where the mean number of

remaining susceptible individuals is given by Eq. (4), the mean number of new infections
occurring between time t and t + 1 is

S(t)

(
1−

[
k

k + bI(t)

]k
)

.

Therefore, if S(t) = s and I(t) = i, we may sensibly take the new infections Ĩ at time t + 1
to follow

Ĩ|s, i ∼ Bin(s, pi(i, b, k)), where pi(i, b, k) = 1−
(

k

k + bi

)k

, (5)
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and Bin(n, π) is the binomial distribution with size n and success probability π. Similarly,
by integrating Eqs. (2–3), the numbers of recoveries and deaths occurring between time t and
t + 1 can be described by

R̃|i ∼ Bin(i, pr) (6)
D̃|i, r̃ ∼ Bin(i− r̃, pd) (7)

where pr = 1 − e−ν and pd = 1 − e−µ. The forward dynamics for the total numbers of
susceptible and infected individuals are therefore

S(t + 1) =S(t)− Ĩ|s, i
I(t + 1) =I(t) + (Ĩ|s, i)− (R̃|i)− (D̃|i, r̃ + ĩ).

Here the lower case symbols {s, i, r} denote the realized value of the associated capital letter
random variable. In this discrete time approximation we have assumed a particular ordering
of events, namely that recoveries occur first, followed by deaths from among those infected
individuals who did not recover, followed by new infections. Simulation studies indicated that
these assumptions, as well as other possible orderings, resulted in system dynamics that were
equal in expectation to the deterministic solutions to the continuous time SIR model.

2.2. Online Parameter Estimation

A primary task of amei is to perform inference on the SIR model parameters, conditional on
sequential observations of the numbers of susceptible, infected, and recovered individuals in
the population. Given the discrete time approximation in the previous section, it is possible
to do this online (i.e. as the epidemic progresses) via straightforward parametric Bayesian
methods. In particular, we use Markov Chain Monte Carlo (MCMC) (e.g. Gamerman and
Lopes 2006) to learn about the posterior distributions of b, k, ν, and µ conditioned on the
evolution of the epidemic observed so far. The likelihood is given recursively in Eq. (5–7).
Let ĩt = S(t−1)−S(t) be the number of new infecteds at time T , and similarly for the newly
recovered and dead individuals r̃t and d̃t so that r̃t + d̃t ≤ I(t − 1). Then, the likelihood of
the data observed up to time T is given by

T∏
t=1

Bin(̃it |S(t− 1), pi(I(t− 1), b, k))

×
T∏

t=1

Bin(r̃t|pr)×
T∏

t=1

Bin(d̃t|I(t)− r̃t, pd).

Observe that it consists of three mutually independent components when conditioning on the
course of the epidemic.

Conditional conjugacy can be exploited for ν and µ via beta priors for pr and pd. A
Beta(αr, βr) prior for pr implies that

p(ν) = (1− e−v)αr−1e−vβr . (8)

Conjugate updating leads to the posterior conditional

pr| · · · ∼ Beta
(
αr +

∑T
t=1 r̃t, βr +

∑T
t=1 I(t)− r̃t

)
. (9)
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The form of the conditional posterior for ν is similar to Eq. (8) and can be simulated by
first drawing pr via Eq. (9) and then applying the inverse transformation ν = − log(1− pd).
Sampling for µ proceeds similarly with

pd| · · · ∼ Beta
(
αd +

∑T
t=1 d̃t, βd +

∑T
t=1 I(t)− r̃t − d̃t

)
. (10)

Thus it is possible to take Gibbs samples for ν and µ so long as appropriate hyperparameters
αr, βr, αd, βd can be found to represent our prior beliefs. In ignorance we simply set these to
unity by default, leading to a uniform prior on pr and pd. The user is free to specify his/her
own prior parameterization in the package.

Obtaining samples for b and k requires the Metropolis–Hastings algorithm. Our prior beliefs
can be encoded with gamma distributions, and conditional on a previous sample (b, k) the
next sample (b′, k′) can be obtained by Metropolis–within–Gibbs steps using:

p(b′|k, . . . ) (11)

∝ Γ[b′|αb, βb]
T∏

t=1

Bin(̃it |S(t− 1), pi(I(t− 1), b′, k)), and

p(k′|b′, . . . ) (12)

∝ Γ[k′|αk, βk]
T∏

t=1

Bin(̃it |S(t− 1), pi(I(t− 1), b′, k′)).

The default values for the prior parameterization set in the package are (αb, βb) = (αk, βk) =
(1, 3) which (though seemingly informative at first glance) turns out to be uninformative on
the scale of the support of the posterior. As before, these can easily be changed by the user.
We use random walk uniform proposals on the positive real line, i.e. b′ ∼ U [3b/4, 4b/3], which
gives reasonably good mixing in the Markov chain.

The presence of a vaccination strategy (described in the next section) necessitates a simple
change to the above equations. If 0 ≤ vt ≤ S(t− 1) is the number of susceptibles which have
been vaccinated, then we simply replace S(t−1) with S(t−1)−vt so that ĩt = S(t−1)−vt−S(t).

2.3. Optimal Vaccination Strategies: Fixed and Adaptive

Having obtained estimates of the SIR model parameters at some time during the epidemic,
we next want find the best way to intervene in the spread of the epidemic. The first step
is to formalize the notion of the “best” intervention strategy. This requires a specification
of the costs of various actions, such as vaccination, versus the cost of allowing the epidemic
to spread in an uncontrolled fashion. In amei, we formulate the total expected cost of the
epidemic in terms of the underlying costs associated with maintaining infected individuals
until recovery, suffering death, and administering vaccinations. We assume costs associated
with each action can be specified in some common currency, such as monetary costs, or
probabilities of mortality (such that the cost to be minimized is the expected numbers of
deaths).

We formulate our vaccination strategies in terms of a policy where a fraction, α, of susceptibles
are prevented from risk of infection by moving them directly into an immune/recovered class,
such as by perfect vaccination, until the number of individuals that are still susceptible drop



6 amei: An R package for the Adaptive Management of Epidemiological Interventions

below a threshold, γ, and vaccination is discontinued. Let c1(α, γ, s) denote the cost associated
with the vaccination strategy (α, γ) when S(t) = s. If cv denotes the cost per vaccine unit,
then

c1(α, γ, s) =
{

cvαs if s > γ
0 if s ≤ γ.

Thus the number if individuals vaccinated at time t is vt = αs. Let c2(i) denote the cost
component that depends on the number of infections in the population, I(t) = i. This com-
ponent includes the costs associated with maintaining the non-recovered infected individuals
and costs associated with deaths, as in

c2(i) = cti + cdd̃,

where ct is the cost per treatment/maintenance of a non-removed infected individual, and cd

is the cost per death.

Assuming the initial epidemiological state is S(0) = s0, I(0) = i0, the expected total cost of
the epidemic under intervention strategy (α, γ) can be expressed recursively as

E{C0} = c1(α, γ, s0) + c2(i0) + E{C1}, (13)

where E{Ct} denotes the expected cost accumulated from time t onwards, terminating at some
arbitrary time horizon. The optimal intervention strategy (α, γ) is the one that minimizes
the total accumulated cost over the course of the epidemic. Two methods for calculating such
strategies are as follows.

The first case we are interested in is when the parameters of the SIR model are known, and we
wish to calculate the single best intervention strategy (α, γ). The total expected cost depends
on the parameter values and the initial epidemiological state (s0, i0). Thus, conditional on
the parameter values, Monte Carlo simulation of the disease dynamics specified in Section 2.1
can be used to search over values of α and γ in order to find the combination that minimizes
E{C0}. For each combination of α and γ considered, we conduct n stochastic simulations of
the outbreak in order to estimate the mean cost associated with the intervention (α, γ). The
strategy producing the lowest mean cost is defined to be the optimal intervention. Typically
we discretize and create a grid of admissible α and γ settings. In the examples in Section 3
we allow α to range from 0 to 1 in increments of 0.1, and γ to range from from 2 to s0−s0/10
in increments of s0/10, i.e. taking 10 steps.1

In the second case, we want to calculate an adaptive strategy that sequentially updates the
best strategy (α, γ) as we learn more about the epidemic model parameters. As above,
the expected cost surface associated with a given set of parameter values (as obtained by
MCMC, described above), can be explored using standard Monte Carlo methods. At each
time step, MCMC is used to produce samples from the current posterior distribution on
model parameters conditional on all data observed up to that point. These samples are used
to calculate the optimal vaccination strategy from that time point onward, as outlined as
above. After calculating the optimal strategy associated with each set of posterior samples,
the adaptive strategy to be implemented at that time step is defined to be the strategy that
most frequently minimizes the expected cost over all samples.

1We generally do not include γ = s0 in the grid since this policy (coupled with any α) is equivalent to α = 0
for any γ.
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3. An illustrative example

In this section we demonstrate the advantages of adaptive intervention using simulations
modeled after an influenza outbreak at a British boarding school described by Murray (2002).
We shall compare the distribution of costs arising from epidemiological intervention under
the adaptive policies to those arising from non-adaptive policies. The epidemic conforms to
many standard assumptions of SIR models: a population essentially closed to immigration and
emigration; includes recovery and immunity; and has near homogeneous mixing of susceptibles
and infecteds. The epidemic was traced back to a single infected student out of a population
of 763 individuals.

For reproducibility of the results in this section we have set the random seed as follows.

R> set.seed(12345)

The following sections tacitly use similarly reset seeds.

We begin by exploring the behavior of the SIR model, described in Section 2.1, without any
intervention. The first step is to set the relevant parameters that are necessary for simulating
the epidemic. These consist of: the “true” underlying parameters for the SIR model upon
which our costs will be evaluated; the initial condition of the population at the beginning of
the epidemic; and the relative costs of infections, deaths, and vaccinations.

R> tp <- list(b = 0.00218, k = 10, nu = 0.4, mu = 0)

R> init <- list(S0 = 762, I0 = 1, R0 = 0, D0 = 0)

R> costs <- list(vac = 2, death = 4, infect = 1)

Murray (2002) provides estimates of the transmission rate (b) and recovery rate (ν), which we
use in the tp “true parameterization” set above. We set the death rate (µ) to zero since there
are no deaths in this epidemic. Finally, we set the negative binomial dispersion parameter (k)
to be large to reflect the homogeneous mixing of the population. The costs, chosen purely
for illustrative purposes, describe the unit cost (or loss) for a single vaccination or death,
relative to the daily cost of maintaining an infected individual.

As a baseline, we are interested in the costs of a no–vaccination policy on epidemic trajec-
tories with the above parameters. To explore this, we set the vaccination policy used in the
simulation to zero.

R> vac <- list(frac = 0, stop = 0)

We are now ready to run the Monte Carlo experiment. The function MCepi can be used to
simulate the population and cost trajectories for the experiment. This function simulates the
stochastic SIR model under a given vaccination strategy. For each realization of the epidemic
progression the function calculates the cost over time for the epidemic. This is repeated many
times2, and the mean trajectories for both the populations and the costs, as well as the 5th
and 95th quantiles, are recorded.

R> init.MCepi <- MCepi(init, tp, vac, costs)

2The number of MC simulations can be varied with the MCreps argument to MCepi. The default value of
MCreps is 1000.
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Now we can simply plot the results to look at the distribution of the susceptible, infected, and
recovered individuals in the population as the epidemic progresses (top panel of Figure 1), as
well as the distribution of costs over time (bottom panel of Figure 1).

R> plot(init.MCepi)
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R> plot(init.MCepi, type = "costs")
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Figure 1: Monte Carlo simulated epidemic trajectories (top) for the numbers of susceptible,
infected, and recovered individuals, and the associated cost(s) (bottom) with a null vaccination
strategy. (2.5,50,97.5%) quantiles are shown.
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Next we examine the dynamics of the system when we have perfect information and use a
fixed vaccination policy. First construct a grid of admissible policies. In this case, we shall
consider strategies that: vaccinate a fixed proportion of the susceptible population, from 0 to
100%, in steps of 10%; and that stop vaccinating susceptibles when the remaining susceptible
population falls below some threshold between 2 and the initial susceptible population minus
75, in increments of 75, as explained in Section 2.3.

R> vacgrid <- list(fracs = seq(0, 1, 0.1), stops = seq(2,

+ init$S0 - 75, 75))

Once this grid has been initialized, we can run the Monte Carlo experiment, using the function
optvac, which finds the vaccination policy that minimizes the total cost of the (stochastic)
epidemic. This is done by simulating the epidemic forward under the known, true, parame-
terization and calculating the cost of each vaccination strategy.

R> out.optvac <- optvac(init, tp, vacgrid, costs)

This function outputs the costs for each of the possible vaccination strategies. The best and
worst policies can be obtained as follows:

R> best <- getpolicy(out.optvac)

R> worst <- getpolicy(out.optvac, which = "worst")

R> rbind(best, worst)

row col frac stop cost
best 10 3 0.9 152 1657
worst 1 1 0.0 2 2297

The same information can be obtained via the generic print and summary commands, which
will be shown later. We can also plot the cost surface over the space of possible vaccination
strategies. This takes the form of a heat plot, where lower cost policies appear in deep red,
and high cost policies appear in white (Figure 2).
Given the calculated optimal policy, we can explore the effects of the vaccination strategy on
the progression of the epidemic together with the trajectory of costs under this strategy. We
do this by again simulating the epidemic dynamics using the function MCepi, however this
time we include the best fixed vaccination policy.

R> vac.opt <- best[3:4]

R> opt.MCepi <- MCepi(init, tp, vac.opt, costs)

Figure 3 summarizes the trajectories (top) of the epidemic under the optimal vaccination
strategy over time, and the corresponding costs (bottom). By default we assume a fixed lag
of 7 time steps from when the first infection appears to when the first intervention can take
place3. This is apparent in Figure 3, where there is a sharp transition from day 7 when
the vaccinations begin, and the susceptible population drops dramatically. The number of
vaccinated individuals can be added to the plot by specifying the argument showv = TRUE,
however we omit this here to reduce clutter in the figure. Information on the distribution of
the number of vaccine units dispensed can be extracted as follows.

3This can be varied with the start argument to MCepi.
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R> plot(out.optvac)
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Figure 2: Heatmap depicting the expected cost surface associated with variable stop time
vaccination strategies based on the true parameter values. The minimum expected cost (1657)
is achieved by a strategy of vaccinating 90% of susceptibles at each time step, until the number
of susceptibles falls below 152. As expected, the maximum expected cost (2297 cost units) is
realized through inaction (top row and left column policies are never implemented)

R> getvac(opt.MCepi)

q0.025 mean median q0.975
1 368 538.38 548 664

We can compare these results to the case without vaccination (Figure 3, top), and see that
the optimal vaccination strategy effectively suppresses the spread of the infection. The costs
also spike around time 7 as the vaccination policy is implemented. These costs then stabilize
at a lower level than that observed under the no–vaccination strategy in Figure 1 (bottom).
We can easily extract information on the distribution of final costs of the no–vaccination and
optimal (fixed) vaccination policies for comparison as follows.

R> T <- length(opt.MCepi$Median$C)

R> optC <- getcost(opt.MCepi)
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R> plot(opt.MCepi)
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R> plot(opt.MCepi, type = "costs")
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Figure 3: Monte Carlo simulated trajectories (top) for the numbers of susceptible, infected,
and recovered individuals and cost(s) (bottom) trajectories under optimal (fixed) vaccination
strategy.

R> initC <- getcost(init.MCepi)

R> data.frame(rbind(initC, optC), row.names = c("init",
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+ "opt"))

q0.025 mean median q0.975
init 2142.8 2297.1 2299 2437.0
opt 1444.9 1684.1 1683 1944.1

The optimal (fixed/static) strategy gives a (mean) savings of approximately 613.004 units, or
27% compared to the cost without an intervention. The same information is available through
the generic print and summary commands, e.g.

R> opt.MCepi

Call:
MCepi(init = init, params = tp, vac = vac.opt, costs = costs)

Distribution of vaccinations administered:
q0.025 mean median q0.975

vac 368 538.38 548 664

Distribution of final costs:
q0.025 mean median q0.975

cost 1444.9 1684.1 1683 1944.1

Now we consider adaptive management strategies using the manage function. In this case we
assume that we do not have perfect information on the underlying epidemic. As such, we
want to simultaneously estimate the epidemic model parameters as well as find an optimal
management strategy.

In order to proceed, we must define the epistep function, which will provide the “observed”
SIR count data upon which our inferences will be based. This function can be regarded as
the “true” disease process that is being approximated by the SIR model we have described.
The default epistep function provides simulations from the same disease model (Eqns. 5–7)
that is being used for assumed for inference, however the user can specify custom epistep
functions. By customizing this function, a user can provide custom data to amei, or explore
the effects of model misspecification, as we shall describe in Section 4.

We also need to start with an initial guess, i.e. priors, for the epidemic parameters that we
want to estimate. The default option is to do this by choosing appropriate hyperparameters
for the priors explained earlier. The defaults used by manage are those given in Section 2.2.

Here, we run the manage function with default values for hyperparameters and epistep to
adaptively design a vaccination strategy to manage the epidemic. At each time step in the
evolution of the epidemic the manage function uses MCMC to sample from the posterior dis-
tribution of the parameters (b, k, ν, µ) given the available history of the epidemic and any
already–implemented intervention. Then, a thinned subset of these samples are used propa-
gate uncertainty in the parameter estimates through to the costs of the vaccination strategies.
These costs are obtained by performing Monte Carlo forward simulations of the epidemic from
the current time point into the future with those parameters. As explained in Section 2.3 we
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choose to implement the strategy that most frequently minimizes the cost. After the inter-
vention is implemented, the state in the next time step is determined by epistep, and the
process is repeated.4

R> out.man <- manage(init, epistep, vacgrid, costs)

To explore the results of the simulation we again plot the evolution of the epidemic (Figure 4,
top) as well as the cost trajectory under the optimal vaccination (Figure 4, bottom), both
for a single run. We can now compare the case with adaptive management to the case
without vaccination (Figure 1, bottom), as well as the case of optimal vaccination with perfect
information (Figure 3, bottom). As before, we can extract information on the final cost of the
epidemic as follows.

R> getcost(out.man)

[1] 1744

Since the manage function is not performing a Monte Carlo experiment, the number returned
is a scalar. Notice that the adaptive strategy is comparable to the best fixed strategy obtained
when the true parameterization is known. Later, we shall perform a Monte Carlo version of
the adaptive management strategy to make a more meaningful comparison.

We can also see the final distribution of the SIR model parameters contained in out.man$samps.
This is shown in Figure 5. A summary is provided by the generic print and summary com-
mands:

R> out.man

Call:
manage(init = init, epistep = epistep, vacgrid = vacgrid, costs = costs)

Distribution of SIR model parameters:
b k nu

Min. :0.00189 Min. :0.0842 Min. :0.271
1st Qu.:0.00233 1st Qu.:0.2347 1st Qu.:0.330
Median :0.00250 Median :0.3481 Median :0.346
Mean :0.00252 Mean :0.4461 Mean :0.348
3rd Qu.:0.00268 3rd Qu.:0.5710 3rd Qu.:0.366
Max. :0.00379 Max. :2.0773 Max. :0.443

mu
Min. :1.21e-06
1st Qu.:5.30e-04
Median :1.39e-03
Mean :2.07e-03
3rd Qu.:3.09e-03

4The function manage has default time horizons specified for both the last time an intervention can be
implemented and the time of the final observation of the epidemic. These can be varied with the arguments
Tstop and T, respectively. By default we specify T=40 and Tstop=T.
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R> plot(out.man)
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R> plot(out.man, type = "cost")
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Figure 4: Trajectory (top) in terms of the numbers of susceptible, infected, recovered, and
vaccinated individuals, and the corresponding cost (bottom) of the epidemic under adaptive
management.

Max. :1.16e-02
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R> true <- as.list(formals(epistep)$true)

R> plot(out.man, type = "params", tp = tp)

0.000 0.001 0.002 0.003 0.004

0
50

0
10

00
15

00

b

de
ns

ity

X●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

k

de
ns

ity

X

0.0 0.1 0.2 0.3 0.4

0
5

10
15

ν

de
ns

ity

X ●

0.000 0.004 0.008 0.012

0
50

15
0

25
0

µ

de
ns

ity

X●

Figure 5: Final posterior distributions of estimated parameters (clockwise from the left: trans-
mission rate, overdispersion parameter, mortality rate, recovery rate). “True” parameter val-
ues are indicated by a dot; mean posterior values are indicated by an ‘x’; and the central 95%
region of the distribution is shaded.

Vaccinations administered and cost:
vac cost

1 554 1744

We also note that it is possible to utilize the manage function in a piecemeal way, or in
“epochs”. This is accomplished by passing the output of the manage function, an "epiman"-
class object, as the first (init) argument. The management of the epidemic will re-start
where it left off. It will stop at the newly specified (later) time horizon Tstop specified by
that argument.

Next, we illustrate a Monte Carlo experiment where epidemics are initialized and proceed
randomly through the adaptive management strategy illustrated above so that we can see
the average behavior, costs, and associated variability. The function MCmanage facilitates this
experiment, and it essentially calls the manage function many times (which can be controlled
by the MCreps argument). In order to provide a (relatively) quick demonstration we have set a
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low default of MCreps = 30 and have used low defaults for the other Monte Carlo parameters
to management.

R> out.MCmanage <- MCmanage(init, epistep, vacgrid, costs)

To reproduce the results in Merl et al. (2009), use

MCvits = 100, MCMCpits = 10000, vacsamps = 100, MCreps = 100

and otherwise use the defaults. The object that is returned is of class "MCepi" with fields
similar to those that are output from the MCepi function which implements a static (fixed)
vaccination strategy. Thus, the same generic plot commands can be used. Figure 6 shows
plots summarizing the distribution of epidemic trajectories (top) and costs (bottom) under
the adaptive management. Distributional information on number of vaccine units dispensed
can be extracted as follows.

R> getvac(out.MCmanage)

q0.025 mean median q0.975
1 454.35 554.77 551 663.12

Figure 7 shows the distribution of fractions of individuals vaccinated and the stopping level
for the epidemic trajectories under adaptive management in the Monte Carlo experiment. We
can compare the costs (and quantile bounds) to that of the best fixed vaccination strategy
calculated assuming that the true parameterization is known.

R> cinit <- getcost(init.MCepi)

R> copt <- getcost(opt.MCepi)

R> cman <- getcost(out.MCmanage)

R> data.frame(rbind(cinit, copt, cman), row.names = c("init",

+ "opt", "man"))

q0.025 mean median q0.975
init 2142.8 2297.1 2299.0 2437.0
opt 1444.9 1684.1 1683.0 1944.1
man 1494.2 1690.2 1687.5 1855.5

The cost of the non-intervention strategy is shown again for calibration purposes. As be-
fore, the generic print and summary commands can be used to obtain the same information.
Notice that, in this short Monte Carlo experiment, the adaptive management scheme approx-
imates the best static vaccination scheme obtained then the true parameterization is known
in advance.

It is interesting to compare to what the cost of managing the epidemic would have been
without estimating the parameters as the epidemic progressed, but rather by guessing what the
appropriate parameters might be. Suppose our best guess at the parameters underestimated
the true transmission probability b and overestimated the true recovery probability ν.
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R> plot(out.MCmanage)
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R> plot(out.MCmanage, type = "costs")
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Figure 6: Monte Carlo simulated epidemic trajectories (top) for the numbers of suscepti-
ble, infected, and vaccinated individuals, and the associated cost(s) (bottom) under adaptive
management

R> bad <- list(b = 0.001, k = 10, nu = 0.9, mu = 0)

The optimal (static) policy under this parameterization can be constructed, as demonstrated
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R> plot(out.MCmanage, type = "fracs")
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R> plot(out.MCmanage, type = "stops")
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Figure 7: Fractions vaccinated (top) and stopping levels (bottom) for the simulated epidemic
trajectories shown in Figure 6 that were under adaptive management. In both cases, the
(2.5, 50, 97.5)-% quantiles are shown.

above.

R> costs.bad <- optvac(init, bad, vacgrid, costs)
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R> pol.bad <- getpolicy(costs.bad)

R> pol.bad

row col frac stop cost
best 2 10 0.1 677 376

Then, we can calculate the distribution of costs of managing the true epidemic with a policy
developed under our best guess of the parameterization.

R> bad.MCepi <- MCepi(init, tp, pol.bad[3:4], costs)

R> cbad <- getcost(bad.MCepi)

R> cbad

q0.025 mean median q0.975
1 2126 2278.6 2280.5 2436

Comparing these costs with the ones obtained above, under adaptive management, we can see
that a poor guess can lead to a significantly worse strategy—nearly 57% larger on average.
Clearly, good quality (online) estimates of the SIR model are crucial to ensuring a cost–
effective approach to the management of an epidemic.

4. Alternative Transmission Model

We would like to see how well the fixed and adaptive strategies can do when faced not only
with parameter mis-specification, but when there may be some component of the underlying
transmission model that is not accounted for in the implemented SIR model upon which its
vaccination strategies are based. Towards this end, we chose a fairly simple extension of the
SIR model where infection does not pass directly from individual to individual. Instead, they
become infected by encountering a reservoir of the infectious agent (for instance bacteria or
fungi in water or soil) contributing infected individuals. The continuous time dynamics are:

dS

dt
= −aS

(
C

C + C0

)
dI

dt
= aS

(
C

C + C0

)
− (ν + µ)I

dR

dt
= νI (14)

dD

dt
= µI

dC

dt
= ρI −mC

where the concentration of the infective agent in the reservoir is given by C; the transmission
rate is modeled by a saturating function of C, so that as C → ∞ the transmission rate
approaches the constant a at a rate determined by C0; infective agents die or are removed
from the reservoir at rate mC; and the per capita rate at which new infected agents are added
to the reservoir is ρ.
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This system can be discretized in a similar manner to the system discussed earlier, so that
the single step transmission dynamics are given by:

Ĩ|s, C ∼ Bin(s, pi(a,C,C0)), (15)

where

pi(a,C,C0) = 1− exp
(

−aC

C + C0

)
(16)

and Bin(n, π) is the binomial distribution. The dynamics for R̃ and D̃ are exactly as before
(Eqs. (6–7)). The single step dynamics for the reservoir are expected to be more smooth than
the epidemic in the population at large. For instance, for bacteria the concentration could
be in the thousands or millions of individuals. In this case the evolution of the reservoir is
approximately

C(t + 1)− C(t) = [ρI(t)]− dc. (17)

Here dc is the number (per unit reservoir) of infectious agents (stochastically) removed from
the reservoir in a unit time, which has distribution

dc ∼ Bin(C, pdc), (18)

where pdz = 1− e−m.

In R, we may implement the above transition model by encoding it in an alternative epistep
function for use with the amei package methods as follows.

R> alt.epistep <-

+ function(SIR, last=list(rem=0, rec=0, infect=0, dead=0, Z=0),

+ tp=list(a = 0.05, mu = 0.05, nu = 0.1, m = 0.4,

+ rho = 200, C = 500))

+ {

+ ## calculate the infection probability based on the

+ ## reservoir, and randomly infect susceptibles

+ Z <- last$Z

+ fz <- Z/(Z+tp$C)

+ pi <- 1 - exp(-tp$a * fz)

+ infect <- rbinom(1, SIR$S, pi)

+

+ ## update recovereds and deaths

+ pr <- 1 - exp(-tp$nu)

+ rec <- rbinom(1,SIR$I,pr)

+ pd <- 1 - exp(-tp$mu)

+ dead <- rbinom(1, SIR$I-rec, pd)

+

+ ## reservoir dynamics

+ pz <- 1 - exp(-tp$m)

+ dz <- rbinom(1, Z, pz)

+ bz <- round(SIR$I*tp$rho)
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+ Z <- Z - dz + bz

+

+ ## the returned list is passed in as "last" in a

+ ## subsequent call to this "epistep" function

+ return(list(rem=(rec+dead), rec=rec, infect=infect,

+ dead=dead, Z=Z))

+ }

Here we first use the manage function with a NULL vaccination strategy (and also, optionally,
a NULL cost structure), in order to see how the behavior of this system compares to the default
epistep model implemented within amei. We can then also look at the estimated “effective”
SIR parameters.

This system can resemble the standard SIR model, especially when m is large, so infective
agents do not remain in the reservoir for long.

R> init1 <- list(S0 = 150, I0 = 1, R0 = 0, D0 = 0)

R> tp <- list(a = 0.1, mu = 0, nu = 0.3, m = 50, rho = 500,

+ C = 500)

R> alt.epistep1 <- alt.epistep

R> formals(alt.epistep1)$tp <- tp

R> out.alt <- manage(init1, alt.epistep1, NULL, NULL, T = 80)

The top of Figure 8 shows the resulting dynamics under the default parameterization offered by
the formals of the alt.epistep function. To illustrate how this new system can (significantly)
differ from the SIR dynamics consider the case of very small m. Small m enables new infections
to occur even if there had been no infected individuals in a previous time step since the
infective agent may persist in the reservoir for a long time without infected individuals being
present.

R> tp <- list(a = 0.1, mu = 0, nu = 0.3, m = 0.001, rho = 500,

+ C = 500)

R> alt.epistep2 <- alt.epistep

R> formals(alt.epistep2)$tp <- tp

R> out.alt2 <- manage(init1, alt.epistep2, NULL, NULL, T = 80)

The effect of these new dynamics may be readily seen in the bottom panel of Figure 8 as
the epidemic progresses. In this second case (with small m), it is also very unlikely that any
susceptible individuals will be left at the end of an epidemic. This contrasts with both the
stochastic SIR model and these alternative dynamics with m large, as it is possible that, due
to stochastic effects, the infection will die out before all susceptibles have been exposed.

It is interesting to examine the posterior distributions of the parameters for these two cases
(Figure 9) if we assume that these underlying alternative dynamics are well approximated
by the simpler SIR model. As one might expect, the estimates of the recovery and death
rates in both cases are quite similar, especially since these dynamics are the same as those
implemented within amei. However, the estimates of b and k are quite different in the two
cases. The 95% credible intervals hardly overlap, indicating that the two cases result in
dynamics that are quantitatively different.
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R> plot(out.alt, showv = FALSE)
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R> plot(out.alt2, showv = FALSE)
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Figure 8: Trajectories in terms of the numbers of susceptibles, infecteds, recovereds, and dead
individuals under the alternative model in Eq. (14) with parameters {(a = 0.1, µ = 0.0, ν =
0.3, ρ = 500, C0 = 500} and with (top) m = 50 (bottom) m = 0.001.

We now move on to our task of examining how well the fixed and adaptive strategies can do
when faced with an epidemic which is evolving according to a transmission function outside
of the class of SIR models (1–3) used to calculate the (optimal) vaccination strategy. The
first step here is to let the fixed strategy “cheat”. That is, we allow the fixed strategy to see a
full epidemic spread according to the true model and parameterization without intervention,
and estimate the best SIR model approximation. To do this we use the manage function with
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R> plot(out.alt, type = "params", showd = TRUE)
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R> plot(out.alt2, type = "params", showd = TRUE)
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Figure 9: Posterior parameter distributions for b, k, µ, and ν when the simulated source
epidemic follows the alternative transmission model with parameters {(a = 0.1, µ = 0.0, ν =
0.3, ρ = 500, C0 = 500} and with (top) m = 50 (bottom) m = 0.001.

a NULL vaccination strategy and a NULL cost structure, and default “true” parameters.

R> init <- list(S0 = 600, I0 = 1, R0 = 0, D0 = 0)

R> time <- 80

R> posterior <- manage(init, alt.epistep, NULL, NULL, T = time,

+ bkrate = 100)
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R> plot(log(posterior$samp$b), type = "l", main = "", ylab = expression(b))
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R> plot(posterior$samp$k, type = "l", main = "", ylab = expression(k))
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R> plot(posterior$samp$nu, type = "l", main = "", ylab = expression(nu))
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R> plot(posterior$samp$mu, type = "l", main = "", ylab = expression(mu))
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Figure 10: Traces of samples from the posterior distribution of the parameters for the (mis-
specified) SIR model.

Figure 10 shows trace plots of the samples obtained. From the output we can extract the
mean parameterization obtained at the final time point of the epidemic.

R> mean.params <- as.list(apply(posterior$samp, 2, mean))
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Based on these parameters, and thus assuming an SIR model, we can calculate the optimal
static vaccination policy.

R> costs <- list(vac = 2.5, death = 4, infect = 1)

R> vacgrid <- list(fracs = seq(0, 1, 0.1), stops = seq(2,

+ init$S0 - 50, 50))

R> alt.optvac <- optvac(init, mean.params, vacgrid, costs,

+ T = time)

R> alt.best <- getpolicy(alt.optvac)

R> plot(alt.optvac)
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Figure 11: The cost surface calculated for fixed strategies using parameters estimated from a
single run of the alternative epidemic model.

The cost surface is shown in Figure 11.

Then, based on the extracted policy, we can use MCepi to simulate the true evolution of the
epidemic (via alt.epistep) many times in order to build up an understanding of the distribu-
tion of costs of the optimal static policy calculated under the simplified SIR parametrization.

R> alt.vac.opt <- alt.best[3:4]

R> alt.MCepi <- MCepi(init, alt.epistep, alt.vac.opt, costs,

+ T = time)

R> getcost(alt.MCepi)
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q0.025 mean median q0.975
1 1854 2027.6 2026 2216.1

Now for the comparison. We provide the alt.epistep function to MCmanage in order to build
up an understanding of how the optimal adaptive strategy fares under a restricted SIR model.
Here we use the default, non-informative priors.

R> alt.MCmanage <- MCmanage(init, alt.epistep, vacgrid,

+ costs, T = time)

R> getcost(alt.MCmanage)

q0.025 mean median q0.975
1 1829.1 2026.9 2039.2 2185.4

An alternative (and possibly fairer) approach would be to allow the adaptive strategy to cheat
as well by choosing the prior to be tightly concentrated around around the mean.params
estimated above. We can see by looking at the full trajectories in Figures 12 and 13 that
the strategies implemented by both the fixed and adaptive methods are very similar. The
adaptive strategy can do better than the fixed strategy, both in extreme and average cases.
The adaptive framework has the added benefit that prior information on similar epidemics
may be used, which typically results in a narrower spread of (often lower) costs, leading to
even further improvements over fixed strategies—even ones which can see into the future.

We can also look back to Figure 11 to see the kind of improvement that the optimal strategy
can have over the case when no one is (or very few individuals are) vaccinated. We can extract
the expected cost under this worst fixed strategy and compare it to the best fixed strategy
directly.

R> alt.worst <- getpolicy(alt.optvac, which = "worst")

R> rbind(alt.best, alt.worst)

row col frac stop cost
best 11 1 1.0 2 2298
worst 4 11 0.3 502 4611

Here it is easy to see how much better using an optimal fixed strategy with good parameter
settings is compared to not vaccinating. Since the adaptive strategy has comparable (or
lower) costs to the fixed strategy over many trials of the epidemic, we can conclude that the
adaptive strategy gives similar reductions in costs over the NULL vaccination policy as the
fixed policy does, even though the adaptive algorithm must begin planning and implementing
the intervention with considerably less information than the fixed strategy it is compared with
here.

We have shown here that it is straightforward to build functions with fairly simple extensions
to the SIR model to use with the amei package. Using one example, we can see that the
model implemented within amei to plan the interventions is flexible enough to allow effective
vaccination strategies, even when this model does not match the one which is known to govern
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R> plot(alt.MCepi, showd = TRUE)

0 20 40 60 80

0
10

0
30

0
50

0
Monte Carlo Epidemics

time

in
di

vi
du

al
s

S
I
R
D

S
I
R
D

S
I
R
D

R> plot(alt.MCepi, type = "costs")
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Figure 12: Trajectories in terms of top the numbers of susceptibles, infecteds, recovereds, and
dead individuals under the alternative model in Eq. (14) and bottom costs under the default
parameterization under the optimal static vaccination policy.
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R> plot(alt.MCmanage, showd = TRUE)
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R> plot(alt.MCmanage, type = "costs")
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Figure 13: Trajectories in terms of top the numbers of susceptibles, infecteds, recovereds, and
dead individuals under the alternative model in Eq. (14) and bottom costs under the default
parameterization under the adaptive vaccination policy.
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the true underlying epidemic dynamics. We have also shown how one can estimate “effective”
SIR parameters from an alternative dynamic epidemic model. These estimates can be used
to build a fixed policy, or the posterior samples could even be used as parameters to enhance
the adaptive strategies.

5. Discussion and related work

Our amei package for R implements a statistical framework that enables concurrent estimation
of epidemic parameters and optimal intervention strategies. In particular, it allows parameter
uncertainty to be taken into consideration when planning an intervention.

In the current implementation, we look for adaptive strategies of only one type—vaccination
of proportions of the population until susceptibles fall below some threshold. However, if
we were to instead allow the fraction of the population targeted for vaccination to be a
function of future disease states we could regard Eq. (13) as a stochastic iteration equation
and use stochastic dynamic programming (Clark and Mangel 2000) to calculate the optimal
intervention associated with a set of parameter values. Such an approach may be useful
for situations in which knowledge of the disease state is available, but for whatever reason
sequential inference is not possible. In the situation considered here, in which the static
strategy is sequentially updated based on the current disease state and parameter estimates,
the adaptive strategy that emerges is flexible in that it consists of a state–dependent sequence
of target fractions, but does not involve the additional computational burden associated with
stochastic dynamic programming.

As in many decision problems, it can be difficult to specify cost functions that truly represent
all aspects of the actions. Although amei is based on a very simple cost evaluation scheme,
it is straightforward to extend our approach to more complex cost functions, including state-
dependent costs. We refer the reader to Merl et al. (2009) for more detailed discussion of
more complex cost assignments.

If there is not much data observed during an epidemic (for instance if the epidemic is occurring
in a small population) then estimating disease parameters within any framework could, of
course, be difficult. One could use data about previous epidemics to estimate parameters, for
instance by maximum likelihood methods, to plan an intervention. However, as we showed
in Section 3, should these estimates be poor then the cost of intervening in the epidemic can
be greatly increased. By instead using previous epidemic data to inform the priors within a
Bayesian framework, such as the one we describe here, we can take into account other research
and observations without risking the high costs inherent in using incorrect parameter estimates
for planning an intervention.

Recently other authors (e.g. Elderd et al. 2006) have also proposed using Bayesian methods to
estimate disease parameters and propagate uncertainty in parameter estimates through to an
optimal of vaccination strategy. For instance, Elderd et al. (2006), considered a Susceptible–
Exposed–Infectious–Recovered (SEIR) model for a small pox epidemic with mass action infec-
tion dynamics, and either mass or trace vaccination. However, in their approach the likelihood
requires numerical solutions of the system of DEs (which can be computationally intensive).
Ball and Lyne (2002); Ball et al. (2007) have also written technical papers on the optimal
vaccination strategies in epidemics, but do not consider adapting the policy over time.

Compared to these approaches, our proposed method has several advantages. Our negative
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binomial discretization of the SIR model is much less computationally intensive, and could
easily be expanded to include an exposed class. Additionally, this model is comparatively
simple since it connects intuitively with a straightforward SIR model, and is thus likely to
be much more approachable to policy makers and practitioners outside of statistics. Our
approach is also adaptive, allows a much more flexible cost framework, and is generalizable to
other types of interventions. Since the intervention strategy implemented by amei is iteratively
updated upon the arrival of new data, the vaccination schedule is inherently adaptive to
the state of the epidemic. This allows significant changes in the vaccination strategy mid-
intervention. This may be helpful, for example, in a scenario where an intervention may be
discontinued during a lull, a subsequent refinement of parameter estimates or a surge of new
infections may dictate that the vaccination campaign should be re-initiated.

Not only can more complicated infection dynamics be used for simulating the dynamics of a
disease, but in addition the method implemented in amei can be modified to include more
complicated disease dynamics such as latent states or vector-communicated diseases, as well as
more complicated intervention strategies that allow combinations of vaccination, quarantine,
and culling. Also note the possibility of calculating policies based on a minimization of some
quantile of the realized cost rather than the mean cost. This would lead to a minimization of
worst-case-scenarios, which may be useful in practice.

There are other R packages that involve the simulation of epidemics, and inference for mod-
els like SIR. As far as we can tell, ours is the only one which considers (on–line) adaptive
management of interventions. However, two packages that take approaches similar to ours for
inferring the parameters governing an epidemic are worth mentioning here. stochasticGEM
(Zwane 2007) provides Bayesian inference for partially observed stochastic epidemics. The
implementation in this package also allows for estimating parameters governing the infectious
and incubation period length. Several variants of the general epidemic model are considered
(e.g. Gibson and Renshaw 1998; Höhle et al. 2005; O’Neill and Roberts 1999; O’Neill and
Becker 2001; O’Neill 2002; Streftaris and Gibson 2004), including the stochastic SIR with
Markovian and non–Markovian infectious periods, and SEIR models. As with amei, esti-
mation is via MCMC. Höhle, et al., whose methods are implemented in the stochasticGEM
package, have themselves released an R package called RLadyBug (Höhle and Feldmann 2008),
which requires JAVA. In RLadyBug maximimum likelihood and Bayesian inference can be per-
formed to estimate the parameters and provide confidence/credible intervals and the ability
to test hypotheses. The package can also estimate parameters for epidemics which include
population heterogeneity. The authors of RLadyBug provide a nice paper outlining the usage
(Höhle and Feldmann 2007) with examples. Both RLadyBug and stochasticGEM contain
interesting data sets on epidemics and visualization tools.

There are several other R packages that allow for the manipulation and analysis of epidemic
and disease data. They include a few packages which are predominantly used for teaching
purposes, e.g. : Epi (Carstensen et al. 2008) with methods for multiscale and censored data;
epiR (Stevenson et al. 2008) focusing on veterinary epidemiology, and epibasix (Rotondi 2007).
Two other packages that include a range of statistical functionality for data manipulation and
inference are epicalc(Chongsuvivatwong 2008) and epitools (Aragon 2008).
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A. Implementation details

At a high level, most of the functions and routines in the amei package are written in R.
However, most of the sub–routines implementing the Monte Carlo evaluation of costs for
the various vaccination strategies, which are obtained by repeatedly simulating the epidemic
forward in time given the current samples of the parameter estimates, are written in C for
speed considerations. There is significant scope for parallelizations of these Monte Carlo
routines, since each forward simulation is independent of the next. For this reason future
versions of this package may leverage Pthreads or MPI to obtain significant speedups.

This document has been authored in Sweave (Leisch 2002). This means that the code quoted
throughout is certified by R, and the Stangle command can be used to extract it. The demo
available in this package will run the same code via demo("amei").
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Höhle M, Feldmann U (2007). “RLadyBug–An R Package for Stochastic Epidemic Models.”
Computational Statistics and Data Analysis, 52(2), 680–686.
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